1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
|
# Copyright (c) 1997-2024
# Ewgenij Gawrilow, Michael Joswig, and the polymake team
# Technische Universität Berlin, Germany
# https://polymake.org
#
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 2, or (at your option) any
# later version: http://www.gnu.org/licenses/gpl.txt.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#-------------------------------------------------------------------------------
# The [[POINTS]] of an object of type PointConfiguration encode a not necessarily convex finite point set.
# The difference to a parent [[VectorConfiguration]] is that the points have homogeneous coordinates, i.e.
# they will be normalized to have first coordinate 1 without warning.
# @tparam Scalar default: [[Rational]]
declare object PointConfiguration<Scalar=Rational> : VectorConfiguration<Scalar>;
INCLUDE
point_configuration_properties.rules
object PointConfiguration {
method construct(polytope::Polytope) {
my $polytope=$_[1];
if($polytope->LINEALITY_DIM!=0){ die "The polytope has non trivial lineality." }
return new PointConfiguration(POINTS=>$polytope->VERTICES);
}
rule CONVEX_HULL.POINTS = POINTS;
rule AFFINE_HULL = CONVEX_HULL.AFFINE_HULL;
rule BOUNDED : FAR_POINTS {
$this->BOUNDED= !@{$this->FAR_POINTS};
}
weight 0.1;
rule BOUNDED : POINTS {
foreach my $v (@{$this->POINTS}) {
if (! $v->[0]) {
$this->BOUNDED=0;
return;
}
}
$this->BOUNDED=1;
}
weight 1.10;
rule BOUNDED = CONVEX_HULL.BOUNDED;
rule CONVEX_HULL.BOUNDED = BOUNDED;
rule CONVEX : N_POINTS, CONVEX_HULL.N_VERTICES {
$this->CONVEX= $this->N_POINTS==$this->CONVEX_HULL->N_VERTICES;
}
weight 0.1;
rule CONVEX_HULL.VERTICES = POINTS;
precondition : CONVEX;
rule CONVEX_HULL.VERTEX_POINT_MAP : POINTS, CONVEX_HULL.VERTICES{
$this->CONVEX_HULL->VERTEX_POINT_MAP=vertex_point_map($this->CONVEX_HULL->VERTICES,$this->POINTS);
}
weight 2.10;
rule VERTEX_POINT_MAP=CONVEX_HULL.VERTEX_POINT_MAP;
rule NON_VERTICES : POINTS, CONVEX_HULL.VERTICES {
$this->NON_VERTICES = non_vertices($this->POINTS,$this->CONVEX_HULL->VERTICES);
}
weight 2.10;
rule GRAPH.ADJACENCY : CONVEX_HULL.POINTS_IN_FACETS, CONVEX_HULL.FACETS, POINTS, VECTOR_DIM {
$this->GRAPH->ADJACENCY=points_graph_from_incidence($this->POINTS,$this->CONVEX_HULL->POINTS_IN_FACETS,$this->CONVEX_HULL->FACETS,$this->VECTOR_DIM-1);
}
precondition : VECTOR_DIM { $this->VECTOR_DIM>2 }
weight 3.10;
rule GRAPH.ADJACENCY : N_POINTS, VERTEX_POINT_MAP {
my $g = new GraphAdjacency($this->N_POINTS);
$g->edge($this->VERTEX_POINT_MAP->[0],$this->VERTEX_POINT_MAP->[1]);
$this->GRAPH->ADJACENCY = $g;
}
precondition : VECTOR_DIM { $this->VECTOR_DIM==2 }
weight 1.10;
rule GRAPH.ADJACENCY : N_POINTS {
my $g = new GraphAdjacency($this->N_POINTS);
$this->GRAPH->ADJACENCY = $g;
}
precondition : VECTOR_DIM { $this->VECTOR_DIM==1 }
weight 1.10;
rule GRAPH.ADJACENCY = CONVEX_HULL.GRAPH.ADJACENCY;
precondition : CONVEX;
rule FAR_POINTS : POINTS {
$this->FAR_POINTS=far_points($this->POINTS);
}
weight 1.10;
rule BARYCENTER : POINTS {
$this->BARYCENTER=barycenter($this->POINTS);
}
precondition : BOUNDED;
weight 1.10;
rule CENTERED = CONVEX_HULL.CENTERED;
rule TRIANGULATION.MASSIVE_GKZ_VECTOR : POINTS, TRIANGULATION.FACETS, CONVEX_HULL.POINTS_IN_FACETS, VECTOR_DIM {
$this->TRIANGULATION->MASSIVE_GKZ_VECTOR=massive_gkz_vector($this, $this->TRIANGULATION, $this->VECTOR_DIM-1);
}
rule TRIANGULATION.GKZ_VECTOR : POINTS, TRIANGULATION.FACETS {
$this->TRIANGULATION->GKZ_VECTOR=gkz_vector($this->POINTS,$this->TRIANGULATION->FACETS);
}
rule SPLITS : POINTS, GRAPH.ADJACENCY, CONVEX_HULL.FACETS, VECTOR_DIM {
$this->SPLITS = splits($this->POINTS,$this->GRAPH->ADJACENCY,$this->CONVEX_HULL->FACETS,$this->VECTOR_DIM-1);
}
rule SPLIT_COMPATIBILITY_GRAPH.ADJACENCY : CONVEX_HULL.FACETS, CONVEX_HULL.AFFINE_HULL, SPLITS {
$this->SPLIT_COMPATIBILITY_GRAPH->ADJACENCY = split_compatibility_graph($this->SPLITS,$this->CONVEX_HULL);
}
rule TRIANGULATION.REFINED_SPLITS : SPLITS, POINTS, TRIANGULATION.FACETS {
$this->TRIANGULATION->REFINED_SPLITS=splits_in_subdivision($this->POINTS,$this->TRIANGULATION->FACETS,$this->SPLITS);
}
rule TRIANGULATION.BOUNDARY.FACETS, TRIANGULATION.BOUNDARY.VERTEX_MAP, TRIANGULATION.BOUNDARY.FACET_TRIANGULATIONS : TRIANGULATION.FACETS, CONVEX_HULL.POINTS_IN_FACETS {
($this->TRIANGULATION->BOUNDARY->FACETS, $this->TRIANGULATION->BOUNDARY->VERTEX_MAP, $this->TRIANGULATION->BOUNDARY->FACET_TRIANGULATIONS)=
triang_boundary($this->TRIANGULATION->FACETS, $this->CONVEX_HULL->POINTS_IN_FACETS);
}
rule CONVEX_HULL.TRIANGULATION_INT = TRIANGULATION.FACETS;
rule LABELS : N_POINTS {
my @labels = (0..$this->N_POINTS-1);
$this->LABELS="@labels";
}
weight 0.10;
sub translate_to_points {
my ($arr, $vpm) = @_;
foreach (@$$arr) {
foreach (@$_) {
$_ = $vpm->[$_];
}
}
}
#Visualization
rule PIF_CYCLIC_NORMAL : CONVEX_HULL.VIF_CYCLIC_NORMAL, CONVEX_HULL.VERTEX_POINT_MAP {
my $pif=new Array<Array<Int>>($this->CONVEX_HULL->VIF_CYCLIC_NORMAL);
translate_to_points(\$pif, $this->CONVEX_HULL->VERTEX_POINT_MAP);
$this->PIF_CYCLIC_NORMAL(temporary)=$pif;
}
# @category Combinatorics
# Output the faces of a given dimension
# @param PointConfiguration p the input point configuration
# @return Array<Set<Int>>
user_method faces_of_dim($) {
my ($this, $d) = @_;
return new Array<Set<Int>>(map { [map {$this->CONVEX_HULL->VERTEX_POINT_MAP->[$_]} @$_] } @{$this->CONVEX_HULL->faces_of_dim($d)})
}
# Triangulation
rule TRIANGULATION(any).VERTEX_LABELS = LABELS;
rule TRIANGULATION(any).COORDINATES : POINTS {
$this->TRIANGULATION->COORDINATES(temporary)=$this->POINTS->minor(All,~[0]);
}
weight 0.10;
rule TRIANGULATION(any).BALL : {
$this->TRIANGULATION->BALL=1;
}
weight 0.1;
rule TRIANGULATION(any).VOLUME = CONVEX_HULL.VOLUME;
rule TRIANGULATION(any).G_DIM : VECTOR_AMBIENT_DIM {
$this->TRIANGULATION->G_DIM = $this->VECTOR_AMBIENT_DIM-1;
}
weight 0.1;
#rule TRIANGULATION(any).BOUNDARY.COORDINATES : POINTS {
# $this->TRIANGULATION->BOUNDARY->COORDINATES(temporary)=$this->POINTS->minor(All,~[0]);
#}
#weight 0.10;
rule TRIANGULATION(any).BOUNDARY.SPHERE : {
$this->TRIANGULATION->BOUNDARY->SPHERE=1;
}
weight 0.1;
#rule TRIANGULATION(any).BOUNDARY.G_DIM = AMBIENT_DIM;
# @category Combinatorics
# Tells the full-dimensional simplices that contain no points except for the vertices.
property MAX_INTERIOR_SIMPLICES : Array<Set>;
# @category Combinatorics
# Tells the number of MAX_INTERIOR_SIMPLICES
property N_MAX_INTERIOR_SIMPLICES : Int;
# @category Combinatorics
# Tells the full-dimensional simplices on the boundary that contain no points except for the vertices.
property MAX_BOUNDARY_SIMPLICES : Array<Set>;
# @category Combinatorics
# Tells the number of MAX_BOUNDARY_SIMPLICES
property N_MAX_BOUNDARY_SIMPLICES : Int;
# @category Combinatorics
# Tells the number of codimension 1 simplices that are not on the boundary
property INTERIOR_RIDGE_SIMPLICES : Array<Set>;
# @category Combinatorics
# Tells the cocircuit equations that hold for the configuration, one for each interior ridge
property COCIRCUIT_EQUATIONS : SparseMatrix;
# @category Combinatorics
# A lower bound for the minimal number of simplices in a triangulation
property SIMPLEXITY_LOWER_BOUND : Int;
# @category Combinatorics
# The full-dimensional simplices that contain no points except for the vertices.
rule MAX_INTERIOR_SIMPLICES : VECTOR_DIM, POINTS, CONVEX_HULL.POINTS_IN_FACETS {
$this->MAX_INTERIOR_SIMPLICES = max_interior_simplices($this);
}
# @category Combinatorics
# The number of MAX_INTERIOR_SIMPLICES
rule N_MAX_INTERIOR_SIMPLICES : MAX_INTERIOR_SIMPLICES {
$this->N_MAX_INTERIOR_SIMPLICES = $this->MAX_INTERIOR_SIMPLICES->size();
}
# @category Combinatorics
# The number of MAX_BOUNDARY_SIMPLICES
rule N_MAX_BOUNDARY_SIMPLICES : MAX_BOUNDARY_SIMPLICES {
$this->N_MAX_BOUNDARY_SIMPLICES = $this->MAX_BOUNDARY_SIMPLICES->size();
}
# @category Combinatorics
# The interior //d-1//-dimensional simplices of a cone of combinatorial dimension //d//
# symmetries of the cone are NOT taken into account
rule INTERIOR_RIDGE_SIMPLICES, MAX_BOUNDARY_SIMPLICES : VECTOR_DIM, POINTS, CONVEX_HULL.POINTS_IN_FACETS {
my $pair=interior_and_boundary_ridges($this);
$this->INTERIOR_RIDGE_SIMPLICES = $pair->first;
$this->MAX_BOUNDARY_SIMPLICES = $pair->second;
}
# @category Combinatorics
# A matrix whose rows contain the cocircuit equations of C
rule COCIRCUIT_EQUATIONS : VECTOR_DIM, POINTS, CONVEX_HULL.VERTICES_IN_FACETS, INTERIOR_RIDGE_SIMPLICES, MAX_INTERIOR_SIMPLICES {
$this->COCIRCUIT_EQUATIONS = cocircuit_equations($this->VECTOR_DIM-1, $this->POINTS, $this->CONVEX_HULL->VERTICES_IN_FACETS, $this->INTERIOR_RIDGE_SIMPLICES, $this->MAX_INTERIOR_SIMPLICES);
}
# @category Combinatorics
# A lower bound for the number of simplices needed to triangulate the convex hull
# Symmetries are NOT taken into account
rule SIMPLEXITY_LOWER_BOUND : CONVEX_HULL.VOLUME, MAX_INTERIOR_SIMPLICES, POINTS, VECTOR_DIM, COCIRCUIT_EQUATIONS {
$this->SIMPLEXITY_LOWER_BOUND = simplexity_lower_bound($this->VECTOR_DIM-1, $this->POINTS, $this->MAX_INTERIOR_SIMPLICES, $this->CONVEX_HULL->VOLUME, $this->COCIRCUIT_EQUATIONS);
}
} # end object PointConfiguration
# A point configuration with an exact coordinate type, like Rational.
declare object_specialization ExactCoord<Scalar> = PointConfiguration<Scalar> [is_ordered_field_with_unlimited_precision(Scalar)] {
rule default.triangulation.pc: TRIANGULATION(new).FACETS : POINTS {
$this->TRIANGULATION->FACETS=placing_triangulation($this->POINTS);
}
weight 4.10;
rule TRIANGULATION.FACETS : POINTS, TRIANGULATION.WEIGHTS {
$this->TRIANGULATION->FACETS=regular_subdivision($this->POINTS, $this->TRIANGULATION->WEIGHTS);
}
weight 3.10;
incurs TRIANGULATION.FacetPerm;
rule TRIANGULATION.REGULAR, TRIANGULATION.WEIGHTS : POINTS, TRIANGULATION.FACETS {
my $pair = is_regular($this->POINTS,$this->TRIANGULATION->FACETS);
if ($this->TRIANGULATION->REGULAR = $pair->first) {
$this->TRIANGULATION->WEIGHTS = $pair->second;
}
}
} # end object_specialization ExactCoord
# @category Producing a point configuration
# Produces the Minkowski sum of //P1// and //P2//.
# @param PointConfiguration P1
# @param PointConfiguration P2
# @return PointConfiguration
# @example
# > $P1 = new PointConfiguration(POINTS=>simplex(2)->VERTICES);
# > $P2 = new PointConfiguration(POINTS=>[[1,1,1],[1,-1,1],[1,1,-1],[1,-1,-1],[1,0,0]]);
# > $m = minkowski_sum($P1,$P2);
# > print $m->POINTS;
# | 1 1 1
# | 1 -1 1
# | 1 1 -1
# | 1 -1 -1
# | 1 0 0
# | 1 2 1
# | 1 0 1
# | 1 2 -1
# | 1 0 -1
# | 1 1 0
# | 1 1 2
# | 1 -1 2
# | 1 1 0
# | 1 -1 0
# | 1 0 1
user_function minkowski_sum<Scalar> (PointConfiguration<type_upgrade<Scalar>>, PointConfiguration<type_upgrade<Scalar>> ) {
my ($p1,$p2) = @_;
return minkowski_sum(1,$p1,1,$p2);
}
# @category Producing a point configuration
# Produces the polytope //lambda//*//P1//+//mu//*//P2//, where * and + are scalar multiplication
# and Minkowski addition, respectively.
# @param Scalar lambda
# @param PointConfiguration P1
# @param Scalar mu
# @param PointConfiguration P2
# @return PointConfiguration
# @example
# > $P1 = new PointConfiguration(POINTS=>simplex(2)->VERTICES);
# > $P2 = new PointConfiguration(POINTS=>[[1,1,1],[1,-1,1],[1,1,-1],[1,-1,-1],[1,0,0]]);
# > $m = minkowski_sum(1,$P1,3,$P2);
# > print $m->POINTS;
# | 1 3 3
# | 1 -3 3
# | 1 3 -3
# | 1 -3 -3
# | 1 0 0
# | 1 4 3
# | 1 -2 3
# | 1 4 -3
# | 1 -2 -3
# | 1 1 0
# | 1 3 4
# | 1 -3 4
# | 1 3 -2
# | 1 -3 -2
# | 1 0 1
user_function minkowski_sum<Scalar> (type_upgrade<Scalar>, PointConfiguration<type_upgrade<Scalar>>, type_upgrade<Scalar>, PointConfiguration<type_upgrade<Scalar>> ) {
my ($l1,$p1,$l2,$p2) = @_;
my $v1=$p1->give("POINTS");
my $v2=$p2->give("POINTS");
my $p=minkowski_sum_client($l1,$v1,$l2,$v2);
my $p_out = new PointConfiguration(POINTS=>$p);
$p_out->description = "Minkowski sum of ".$l1."*".$p1->name." and ".$l2."*".$p2->name;
return $p_out;
}
# @category Producing a cone
# Computes the normal cone of //p// at a face //F// (or vertex //v//).
# By default this is the inner normal cone.
# @param PointConfiguration p
# @param Set<Int> F (or Int v) point indices which are not contained in the far face
# @option Bool outer Calculate outer normal cone? Default value is 0 (= inner)
# @option Bool attach Attach the cone to //F//? Default 0 (ie, return the cone inside the hyperplane at infinity)
# @return Cone
# @example [prefer cdd] [require bundled:cdd] To compute the outer normal cone of a doubled 2-cube, do this:
# > $v = cube(2)->VERTICES;
# > $p = new PointConfiguration(POINTS=>($v/$v));
# > print normal_cone($p, 4, outer=>1)->RAYS;
# | 0 -1
# | -1 0
user_function normal_cone<Scalar>(PointConfiguration<Scalar> $; { outer => 0, attach => 0 }) {
my ($c, $F, $options) = @_;
if ($F =~ /^\d+/ || ref($F) == "ARRAY") {
$F = new Set($F);
}
return normal_cone_impl<Scalar>($c, $F, "CONVEX_HULL.FACETS_THRU_POINTS", "CONVEX_HULL.POINTS", "CONVEX_HULL.FACETS", $options);
}
# @category Triangulations, subdivisions and volume
# find the maximal interior simplices of a point configuration
# Symmetries of the configuration are NOT taken into account.
# @param PointConfiguration P the input point configuration
# @return Array<Set>
# @example [prefer cdd] [require bundled:cdd] To calculate the maximal interior simplices of a point configuration, type
# > $p=new PointConfiguration(POINTS=>[[1,0,0],[1,1,0],[1,0,1],[1,1,1],[1,1/2,1/2]]);
# > print max_interior_simplices($p);
# | {0 1 2}
# | {0 1 3}
# | {0 1 4}
# | {0 2 3}
# | {0 2 4}
# | {1 2 3}
# | {1 3 4}
# | {2 3 4}
user_function max_interior_simplices<Scalar>(PointConfiguration<Scalar>) {
max_interior_simplices_impl<Scalar>(@_);
}
# @category Triangulations, subdivisions and volume
# Calculate the universal polytope of a point configuration A. It is a 0/1 polytope with one vertex for every triangulation of A.
# Each coordinate of the ambient space corresponds to a simplex in the configuration.
# @tparam Scalar the underlying number type
# @param PointConfiguration<Scalar> PC the point configuration
# @return Polytope
# @example [prefer cdd] [require bundled:cdd] To calculate the universal polytope of a point configuration, type
# > $p=new PointConfiguration(POINTS=>[[1,0,0],[1,1,0],[1,0,1],[1,1,1],[1,1/2,1/2]]);
# > print universal_polytope($p)->VERTICES;
# | 1 0 1 0 1 0 0 0 0
# | 1 1 0 0 0 0 1 0 0
# | 1 0 0 1 0 1 0 1 1
# Notice how the first vertex corresponds to the triangulation using all points, and the other ones to the triangulations that don't use the inner point.
user_function universal_polytope<Scalar>(PointConfiguration<Scalar>) {
my $p = shift;
return universal_polytope_impl($p->VECTOR_DIM-1, $p->POINTS, $p->MAX_INTERIOR_SIMPLICES, $p->CONVEX_HULL->VOLUME, $p->COCIRCUIT_EQUATIONS);
}
# Local Variables:
# mode: perl
# cperl-indent-level:3
# indent-tabs-mode:nil
# End:
|