1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
|
# Copyright (c) 1997-2024
# Ewgenij Gawrilow, Michael Joswig, and the polymake team
# Technische Universität Berlin, Germany
# https://polymake.org
#
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 2, or (at your option) any
# later version: http://www.gnu.org/licenses/gpl.txt.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#-------------------------------------------------------------------------------
CREDIT topcom
TOPCOM is a package for computing Triangulations Of Point Configurations and Oriented Matroids.
Copyright by Jörg Rambau.
http://www.rambau.wm.uni-bayreuth.de/TOPCOM/
# path to the programs from the TOPCOM package
custom $topcom;
CONFIGURE {
eval {
if($mptopcom && ! -e "$topcom/points2chiro"){
$topcom = $mptopcom;
}
};
$topcom =~ s{(?<=\S)$}{/points2chiro};
my $path=find_program($topcom, "points2chiro", { prompt => "the `points2chiro' program from the TOPCOM package" }) or return;
($topcom) = $path =~ $directory_re;
}
# @category Triangulation and volume
# Use the [[wiki:external_software#TOPCOM]] package for computing polytope triangulations.
label topcom
#Converts an Array<Array<Int>> of symmetries into a text that TOPCOM understands
sub symmetry_to_text {
return "[[".join("],[", map { join(",", @{$_}) } @{ $_[0]})."]]";
}
# extracts the symmetry generators of a polymake object into a format that TOPCOM understands
sub topcom_sym_string {
my ($p, $ignoresym) = @_;
my $sym_string = "[]";
if ($p->lookup("GROUP") && !$ignoresym) {
if (defined( my $a = $p->isa("PointConfiguration") ? $p->lookup("GROUP.POINTS_ACTION") : $p->lookup("GROUP.RAYS_ACTION") )) {
$sym_string = symmetry_to_text($a->GENERATORS);
}
}
return $sym_string;
}
# @category Triangulations, subdivisions and volume
# This converts a polytope, cone or point configuration into a format that topcom understands
# @param Cone P (or PointConfiguration)
# @return String
# @example To convert a 2-cube without symmetries into topcom format, type
# > print topcom_input_format(cube(2));
# | [[1,-1,-1],[1,1,-1],[1,-1,1],[1,1,1]]
# | []
# If you also want the symmetry group, you can type
# > print topcom_input_format(cube(2,group=>1));
# | [[1,-1,-1],[1,1,-1],[1,-1,1],[1,1,1]]
# | [[1,0,3,2],[0,2,1,3]]
user_function topcom_input_format($) {
my $p = shift;
my $V = $p->isa("PointConfiguration") ? $p->POINTS : $p->RAYS;
my $topcom_string = "[" . join(",", map { "[".join(",", @{$_})."]" } @{$V}) . "]";
return $topcom_string . "\n" . topcom_sym_string($p) . "\n";
}
# @category Triangulations, subdivisions and volume
# This computes the chirotope of a point or vector configuration.
# @param Matrix V The points or vectors, given as rows.
# @option Array<Array<Int>> symmetry A list of generators of a symmetry group of the points, given as permutations on the indices. If specified, the chirotope is only computed up to symmetry.
# @return String
sub topcom_chirotope($$) {
my ($p, $V) = @_;
my $input = new TempTextFile;
print $input "[", join(",", map { "[".join(",", @{$_})."]" } @{$V}), "]" . "\n" . topcom_sym_string($p) . "\n";
my $cmd = "$topcom/points2chiro";
unless (defined($p->lookup("GROUP"))) {
$cmd .= " --nosymmetries";
}
my $error = new TempTextFile;
my $result = `$cmd < $input 2>$error`;
if($?){
my $errormsg = `cat $error`;
die "Could not run topcom: $errormsg\n";
}
$result =~ s/^.*\n\Z//m; # TOPCOM appends the symmetry generators as text, which we forget here.
return $result;
}
sub call_topcom_co_or_circuits {
my ($p, $executable, $ignoresym) = @_;
my $input = new TempTextFile;
print $input $p->CHIROTOPE , "\n" , topcom_sym_string($p, $ignoresym) , "\n";
my $cmd = $executable;
unless ($DebugLevel) {
$cmd .= " 2>/dev/null";
}
open my $output, "$cmd <$input |"
or die "can't start $executable: $!\n";
local $_;
$_ = <$output>;
$_ = <$output> if $_ =~ /^\d+,\d+/; # skip dimension
$_ = <$output> if $_ =~ /^\{/; # opening brace
my @circuits;
do {
if ($_ =~ /\{/) { # not the closing bracket
chomp;
my $pair = new Pair<Set<Int>,Set<Int>>;
my @e = split /\},\{/, $_;
$_ = $e[0];
s/C.*:=? ?//; s/\{//g; s/ ?\[//g; s/\]//g; s/\};?//g;
my @x=( split /,/, $_ );
$pair->first=\@x;
$_ = $e[1];
s/\{//g; s/ ?\[//g; s/\]//g; s/\};?//g;
@x = split /,/, $_;
$pair->second=\@x;
push @circuits, $pair;
}
} while (<$output>);
new Set<Pair<Set,Set>>(\@circuits);
}
sub call_topcom_circuits($;$)
{
call_topcom_co_or_circuits($_[0], "$topcom/chiro2circuits", $_[1]);
}
sub call_topcom_cocircuits($;$)
{
call_topcom_co_or_circuits($_[0], "$topcom/chiro2cocircuits", $_[1]);
}
sub call_topcom_chiro2placingtriang($) {
my $input = new TempTextFile;
print $input $_[0], "\n";
my $cmd = "$topcom/chiro2placingtriang";
unless ($DebugLevel) {
$cmd .= " 2>/dev/null";
}
local $_ = `$cmd <$input`;
chomp;
s/^\{//; s/\}$//; s/\},\{/}\n{/g; tr/,/ /;
[ split /\n/, $_ ];
}
sub call_topcom_on_chiro {
my($p, $cmd, $opt) = @_;
my $input = new TempTextFile;
print $input $p->CHIROTOPE, "\n", topcom_sym_string($p), "\n";
return compute_triangs_with_topcom($cmd, $input, $opt);
}
sub call_topcom_on_points {
my($p, $cmd, $opt) = @_;
my $input = new TempTextFile;
print $input topcom_input_format($p), "\n";
return compute_triangs_with_topcom($cmd, $input, $opt);
}
sub call_topcom_chiro2alltriangs($) {
my $input = new TempTextFile;
print $input $_[0], "\n";
return compute_triangs_with_topcom("chiro2alltriangs", $input, "");
}
sub compute_triangs_with_topcom {
my($cmd, $input, $opt) = @_;
my $executable = "$topcom/$cmd";
$executable .= " $opt";
my $errorex = $executable;
unless ($DebugLevel) {
$executable .= " 2>/dev/null";
}
open my $output, "$executable < $input |"
or die "can't start $errorex: $!\n";
local $_;
my @triangs;
while (<$output>) {
s/T.*:=? ?//; s/\];//; s/^\{//; s/\};?$//; s/\},\{/}\n{/g; tr/,/ /;
my @e = split /\n/, $_;
push @triangs, \@e;
}
\@triangs;
}
# @category Triangulations, subdivisions and volume
# Computes all regular triangulations of a point configuration.
#
# @param PointConfiguration pc or Polytope p input point configuration or polytope
# @return Array<Set<Set<Int>>>
user_function topcom_regular_triangulations($) {
my $self = shift;
return new Array<Set<Set<Int>>>(call_topcom_on_points($self, "points2triangs", "--regular"));
}
# @category Triangulations, subdivisions and volume
# Computes all triangulations of a point configuration that are connected by
# bistellar flips to the regular triangulations. The triangulations are
# computed via the chirotope. If the input point configuration or polytope has
# a symmetry group, only triangulations up to symmetry will be computed.
# @param PointConfiguration pc or Polytope p input point configuration or polytope
# @return Array<Set<Set<Int>>>
user_function topcom_regular_and_connected_triangulations($) {
my $self = shift;
return new Array<Set<Set<Int>>>(call_topcom_on_chiro($self, "chiro2triangs", ""));
}
# @category Triangulations, subdivisions and volume
# Computes all fine triangulations of a point configuration that are connected
# by bistellar flips to a fine seed triangulation. The triangulations are
# computed via the chirotope. If the input point configuration or polytope has
# a symmetry group, only fine triangulations up to symmetry will be computed.
# @param PointConfiguration pc or Polytope p input point configuration or polytope
# @return Array<Set<Set<Int>>>
user_function topcom_fine_and_connected_triangulations($){
my $self = shift;
return new Array<Set<Set<Int>>>(call_topcom_on_chiro($self, "chiro2finetriangs", ""));
}
# @category Triangulations, subdivisions and volume
# Computes all fine triangulations (sometimes called “full”) of a chirotope.
# The triangulations are computed via the chirotope.
# If the input point configuration or polytope has a symmetry group, only fine
# triangulations up to symmetry will be computed.
# @param PointConfiguration pc or Polytope p input point configuration or polytope
# @return Array<Set<Set<Int>>>
user_function topcom_fine_triangulations($){
my $self = shift;
return new Array<Set<Set<Int>>>(call_topcom_on_chiro($self, "chiro2allfinetriangs", ""));
}
# @category Triangulations, subdivisions and volume
# Computes all fine and regular triangulations of a point configuration.
# @param PointConfiguration pc or Polytope p input point configuration or polytope
# @return Array<Set<Set<Int>>>
user_function topcom_fine_and_regular_triangulations($) {
my $self = shift;
return new Array<Set<Set<Int>>>(call_topcom_on_points($self, "points2finetriangs", "--regular"));
}
# @category Triangulations, subdivisions and volume
# Computes all triangulations of a point configuration via its chirotope.
# @param PointConfiguration pc input point configuration
# @return Array<Set<Set<Int>>>
user_function topcom_all_triangulations {
my $self=shift;
return new Array<Set<Set<Int>>>(call_topcom_chiro2alltriangs($self->CHIROTOPE));
}
# @category Triangulations, subdivisions and volume
# Computes the point configuration of GKZ vectors of a point configuration
# via its chirotope using topcom or mptopcom.
#
# @param PointConfiguration pc input point configuration
# @return PointConfiguration
#
# @example The following [[PointConfiguration]] is called the "mother of all
# examples (moae)". It has two non-regular triangulations, which can be seen
# when comparing the number of points of the output configuration with the
# number of vertices of the convex hull of the output configuration.
# > $moae = new PointConfiguration(POINTS=>[[1,4,0,0],[1,0,4,0],[1,0,0,4],[1,2,1,1],[1,1,2,1],[1,1,1,2]]);
# > $moae = project_full($moae);
# > $SC_moae = secondary_configuration($moae);
# > print $SC_moae -> N_POINTS;
# | 18
# > print $SC_moae -> CONVEX_HULL -> N_VERTICES;
# | 16
user_function secondary_configuration<Scalar>(PointConfiguration<Scalar>) {
my $self=shift;
my $v = new Matrix<Scalar>( map { gkz_vector<Scalar>($self->POINTS, $_) } @{topcom_all_triangulations($self)} );
my $vh = ones_vector<Scalar>() | $v;
return new PointConfiguration<Scalar>(POINTS => $vh);
}
# @category Triangulations, subdivisions and volume
# Computes the point configuration of GKZ vectors of a point configuration
# via its chirotope using topcom or mptopcom.
#
# @param Polytope pc input polytope
# @return PointConfiguration
#
# @example The square only has two triangulations using its vertices.
# > $square = cube(2,1,0);
# > $SC_square = secondary_configuration($square);
# > print $SC_square -> POINTS;
# | 1 1 2 2 1
# | 1 2 1 1 2
user_function secondary_configuration<Scalar>(Polytope<Scalar>) {
my $self=shift;
my $v = new Matrix<Scalar>( map { gkz_vector<Scalar>($self->VERTICES, $_) } @{topcom_all_triangulations($self)} );
my $vh = ones_vector<Scalar>() | $v;
return new PointConfiguration<Scalar>(POINTS => $vh);
}
# @category Triangulations, subdivisions and volume
# Computes the GKZ secondary polytope of a point configuration via its
# using topcom or mptopcom.
#
# @param PointConfiguration pc input point configuration
# @return Polytope
#
# @example The following [[PointConfiguration]] is called the "mother of all
# examples (moae)". It has two non-regular triangulations, which can be seen
# when comparing the number of points in the secondary configuration with the
# number of vertices of the secondary polytope.
# > $moae = new PointConfiguration(POINTS => [[1,4,0,0],[1,0,4,0],[1,0,0,4],[1,2,1,1],[1,1,2,1],[1,1,1,2]]);
# > $moae = project_full($moae);
# > $SC_moae = secondary_configuration($moae);
# > $SP_moae = secondary_polytope($moae);
# > print $SC_moae -> N_POINTS;
# | 18
# > print $SP_moae -> N_VERTICES;
# | 16
user_function secondary_polytope<Scalar>(PointConfiguration<Scalar>) {
my $self=shift;
my $v = new Matrix<Scalar>( map { gkz_vector<Scalar>($self->POINTS, $_) } @{topcom_regular_triangulations($self)} );
my $vh = ones_vector<Scalar>() | $v;
return new Polytope<Scalar>(VERTICES => $vh, LINEALITY_SPACE => []);
}
# @category Triangulations, subdivisions and volume
# Computes the GKZ secondary polytope of a point configuration via its
# using topcom or mptopcom.
#
# @param Polytope pc input polytope
# @return Polytope
#
# @example The square only has two triangulations using its vertices.
# > $square = cube(2,1,0);
# > $SP_square = secondary_polytope($square);
# > print $SP_square -> VERTICES;
# | 1 1 2 2 1
# | 1 2 1 1 2
user_function secondary_polytope<Scalar>(Polytope<Scalar>) {
my $self=shift;
my $v = new Matrix<Scalar>( map { gkz_vector<Scalar>($self->VERTICES, $_) } @{topcom_regular_triangulations($self)} );
my $vh = ones_vector<Scalar>() | $v;
return new Polytope<Scalar>(VERTICES => $vh, LINEALITY_SPACE => []);
}
# @category Triangulations, subdivisions and volume
# Computes the fiber polytope of a projection of point configurations P->Q via
# the GKZ secondary configuration.
# @param PointConfiguration pc (or Polytope) source point configuration or polytope
# @param PointConfiguration pc target point configuration
# @return PointConfiguration
user_function fiber_polytope<Scalar>($ PointConfiguration<Scalar>) {
my ($P, $Q) = @_;
my $V = $P->isa("PointConfiguration") ? $P->POINTS : $P->VERTICES;
if ($V->rows() != $Q->N_POINTS) {
croak("fiber_polytope: The original and target configurations must have the same number of points");
}
my $W = new Matrix<Scalar>( map { gkz_vector<Scalar>($Q->POINTS, $_) * $V } @{topcom_all_triangulations($Q)} );
my $Wh = ones_vector<Scalar>() | $W;
return new PointConfiguration<Scalar>(POINTS=>$Wh);
}
# @category Triangulations, subdivisions and volume
# Computes the fiber polytope of a projection of point configurations P->Q via the GKZ secondary configuration.
# @param PointConfiguration pc (or Polytope) source point configuration or polytope
# @param Polytope pc target polytope
# @return PointConfiguration
user_function fiber_polytope<Scalar>($ Polytope<Scalar>) {
my ($P, $Q) = @_;
my $V = $P->isa("PointConfiguration") ? $P->POINTS : $P->VERTICES;
if ($V->rows() != $Q->N_VERTICES) {
croak("fiber_polytope: The original and target configurations must have the same number of points");
}
my $W = new Matrix<Scalar>( map { gkz_vector<Scalar>($Q->VERTICES, $_) * $V } @{topcom_all_triangulations($Q)} );
my $Wh = ones_vector<Scalar>() | $W;
return new PointConfiguration<Scalar>(POINTS=>$Wh);
}
# @category Triangulations, subdivisions and volume
# Computes the fiber polytope of a projection of point configurations P -pi-> Q via the GKZ secondary configuration.
# @param PointConfiguration P (or Polytope) source point configuration or polytope
# @param Matrix pi the projection acting on P
# @return PointConfiguration
user_function fiber_polytope<Scalar>($ Matrix<Scalar>) {
my ($P, $pi) = @_;
my $V = $P->isa("PointConfiguration") ? $P->POINTS : $P->VERTICES;
my $Q = new PointConfiguration<Scalar>(POINTS=>$V * $pi);
return fiber_polytope($P, $Q);
}
# @category Triangulations, subdivisions and volume
# returns all sets of points that form a
# circuit with the given list of points
# @param Polytope or PointConfiguration P
# @param Set<Int> S subset of point indices
# @return Set<Set<Int>> A list of point sets that intersect positively the set S
user_function positive_circuits {
my $self=shift;
my $set=new Set<Int>(num_sorted_uniq(sort {$b <=> $a} @_));
my $pos_circuits = new Set<Set<Int>>;
foreach (@{$self->CIRCUITS}) {
if ( $_->first == $set ) {
$pos_circuits += $_->second;
} else {
if ( $_->second == $set ) {
$pos_circuits += $_->first;
}
}
}
return $pos_circuits;
}
object Polytope<Rational> {
rule topcom.chirotope : CHIROTOPE : VERTICES {
$this->CHIROTOPE = topcom_chirotope($this, $this->VERTICES);
}
weight 6.10;
}
object Polytope {
rule topcom.circuits : CIRCUITS : CHIROTOPE {
$this->CIRCUITS=call_topcom_circuits($this, true);
}
weight 6.10;
precondition : FULL_DIM;
rule topcom.cocircuits : COCIRCUITS : CHIROTOPE {
$this->COCIRCUITS=call_topcom_cocircuits($this, true);
}
weight 6.10;
precondition : FULL_DIM;
rule topcom.triangulation.poly: TRIANGULATION(new).FACETS : CHIROTOPE {
$this->TRIANGULATION->FACETS = call_topcom_chiro2placingtriang($this->CHIROTOPE);
}
} # end object Polytope
object VectorConfiguration<Rational> {
rule topcom.chirotope : CHIROTOPE : VECTORS {
$this->CHIROTOPE = topcom_chirotope($this, $this->VECTORS);
}
weight 6.10;
precondition : FULL_DIM;
}
object VectorConfiguration {
rule topcom.circuits : CIRCUITS : CHIROTOPE {
$this->CIRCUITS=call_topcom_circuits($this, true);
}
weight 6.10;
precondition : FULL_DIM;
rule topcom.cocircuits : COCIRCUITS : CHIROTOPE {
$this->COCIRCUITS=call_topcom_cocircuits($this, true);
}
weight 6.10;
precondition : FULL_DIM;
} # end object VectorConfiguration
object PointConfiguration {
rule topcom.triangulation.pc : TRIANGULATION(new).FACETS : CHIROTOPE {
$this->TRIANGULATION->FACETS = call_topcom_chiro2placingtriang($this->CHIROTOPE);
}
precondition : FULL_DIM;
} # end object PointConfiguration
# Local Variables:
# mode: perl
# cperl-indent-level:3
# indent-tabs-mode:nil
# End:
|