1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
|
# Copyright (c) 1997-2024
# Ewgenij Gawrilow, Michael Joswig, and the polymake team
# Technische Universität Berlin, Germany
# https://polymake.org
#
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 2, or (at your option) any
# later version: http://www.gnu.org/licenses/gpl.txt.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#-------------------------------------------------------------------------------
# @category Geometry
# An object of type VectorConfiguration deals with properties of row vectors,
# assembled into an n x d matrix called [[VECTORS]].
# The entries of these row vectors are interpreted as non-homogeneous coordinates.
# In particular, the coordinates of a VECTOR will *NOT* be normalized to have a leading 1.
# @tparam Scalar default: [[Rational]]
declare object VectorConfiguration<Scalar=Rational>;
INCLUDE
vector_configuration_properties.rules
object VectorConfiguration {
rule CHIROTOPE : VECTORS {
$this->CHIROTOPE = chirotope($this->VECTORS);
}
precondition : FULL_DIM;
weight 6.11;
method construct(polytope::Cone) {
my $cone=$_[1];
return new VectorConfiguration(VECTORS=>$cone->RAYS/$cone->LINEALITY_SPACE/-$cone->LINEALITY_SPACE);
}
rule MULTIPLE_VECTORS : VECTORS {
$this->MULTIPLE_VECTORS=detect_multiple($this->VECTORS);
}
weight 1.10;
rule N_VECTORS : VECTORS {
$this->N_VECTORS=$this->VECTORS->rows;
}
weight 0.1;
rule LABELS : N_VECTORS {
my @labels = (0..$this->N_VECTORS-1);
$this->LABELS="@labels";
}
weight 4.10;
# The purpose of the following rule is to have simpler preconditions in subsequent rules.
# The scheduler efficiently handles preconditions which amount to checking a boolean.
rule FULL_DIM : VECTOR_AMBIENT_DIM, VECTOR_DIM {
$this->FULL_DIM=($this->VECTOR_AMBIENT_DIM==$this->VECTOR_DIM);
}
weight 0.1;
rule VECTOR_AMBIENT_DIM : VECTORS {
$this->VECTOR_AMBIENT_DIM=$this->VECTORS->cols;
}
weight 0.1;
rule VECTOR_DIM : VECTOR_AMBIENT_DIM, LINEAR_SPAN {
$this->VECTOR_DIM = $this->VECTOR_AMBIENT_DIM - $this->LINEAR_SPAN->rows;
}
weight 0.1;
rule LINEAR_SPAN : VECTOR_AMBIENT_DIM {
$this->LINEAR_SPAN=new Matrix<Scalar>(0, $this->VECTOR_AMBIENT_DIM);
}
precondition : FULL_DIM;
weight 0.1;
rule VECTOR_DIM : VECTORS {
$this->VECTOR_DIM=rank($this->VECTORS);
}
weight 1.10;
rule POSITIVE : VECTORS {
foreach my $v (@{$this->VECTORS}) {
foreach my $x (@$v) {
if ($x<0) {
$this->POSITIVE=0;
return;
}
}
}
$this->POSITIVE=1;
}
weight 1.10;
rule LINEAR_SPAN : VECTORS {
$this->LINEAR_SPAN=null_space($this->VECTORS);
}
weight 1.10;
}
# @category Combinatorics
# Convert [[CIRCUITS]] or [[COCIRCUITS]] to a 0/+1/-1 matrix, with one row for each circuit/cocircuit,
# and as many columns as there are VECTORs/POINTS.
# @param Set<Pair<Set<Int>,Set<Int>>> co/circuits a set of circuits or cocircuits
# @return SparseMatrix<Rational>
user_function circuits2matrix(Set<Pair<Set<Int>,Set<Int>>>) {
my $circuits = shift;
my $m = $circuits->size();
my $n = 0;
my $mat = new SparseMatrix($m, $n+1);
my $i=0;
for (my $e=entire($circuits); $e; ++$e, $i++) {
if ($$e->first->size()) {
$n = max($n, $$e->first->back());
}
if ($$e->second->size()) {
$n = max($n, $$e->second->back());
}
$mat->resize($m, $n+1);
for (my $pos = entire($$e->first); $pos; ++$pos) {
$mat->[$i]->[$$pos] = 1;
}
for (my $neg = entire($$e->second); $neg; ++$neg) {
$mat->[$i]->[$$neg] = -1;
}
}
return $mat;
}
# @category Combinatorics
# Contract a vector configuration //C// along a specified vector //v//.
# @param VectorConfiguration C
# @param Int v index of the vector to contract
user_function contraction(VectorConfiguration $) {
my ($vc, $index) = @_;
my $vcc = new Matrix($vc->VECTORS);
my $vcm = new Matrix($vc->VECTORS->minor([$index], All));
project_to_orthogonal_complement($vcc, $vcm);
my @labels = @{$vc->LABELS};
splice @labels, $index, 1;
return new VectorConfiguration(VECTORS => $vcc->minor(~[$index],All), LABELS => "@labels");
}
# @category Combinatorics
# Delete a specified vector //v// from a vector configuration //C//.
# @param VectorConfiguration C
# @param Int v index of the vector to delete
user_function deletion(VectorConfiguration $) {
my ($vc, $index) = @_;
my @labels = @{$vc->LABELS};
splice @labels, $index, 1;
return new VectorConfiguration(VECTORS => $vc->VECTORS->minor(~[$index],All), LABELS => "@labels");
}
# @category Producing a vector configuration
# Orthogonally project a vector configuration to a coordinate subspace.
#
# The subspace the VectorConfiguration //P// is projected on is given by indices in the set //indices//.
# The option //revert// inverts the coordinate list.
# @tparam Scalar coordinate type
# @param VectorConfiguration P
# @param Array<Int> indices
# @option Bool revert inverts the coordinate list
# @return VectorConfiguration
user_function projection<Scalar>(VectorConfiguration<Scalar>; $=[ ], { revert=>0 }) {
my ($P, $indices, $options) = @_;
projection_vectorconfiguration_impl($P, $indices, $options);
}
# @category Producing a vector configuration
# Orthogonally project a vector configuration to a coordinate subspace such that redundant columns are omitted,
# i.e., the projection becomes full-dimensional without changing the combinatorial type.
# @tparam Scalar coordinate type
# @param VectorConfiguration P
# @option Bool no_labels Do not copy [[VERTEX_LABELS]] to the projection. default: 0
# @return VectorConfiguration
user_function project_full<Scalar>(VectorConfiguration<Scalar>; {no_labels=>0}) {
projection(@_);
}
# @category Producing a vector configuration
# Project a vector configuration V to the subspace with a given basis B and express the result in that basis.
# A boolean flag make_affine (by default undef) determines whether the resulting coordinates acquire an extra leading '1'.
# The return type is a VectorConfiguration, unless
# (i) P is a PointConfiguration,
# (ii) the first column of B is zero,
# (iii) make_affine is not 0,
# in which case it is a PointConfiguration.
# The return type depends on the input:
# (1) If V is a VectorConfiguration, the result is also a VectorConfiguration.
# (2a) If V is a PointConfiguration and all rows in B start with a 0, the result is a PointConfiguration.
# If, furthermore, make_affine is undef, it is set to 1.
# (2b) If V is a PointConfiguration and some row of B has a non-zero first entry, the result is a VectorConfiguration.
# The reasoning here is that B having a zero first column or not influences the hyperplane at infinity.
# @tparam Scalar coordinate type
# @param VectorConfiguration V
# @param Matrix B a matrix whose rows contain the basis of the image space
# @option Bool make_affine. If undef (default), apply the above reasoning. If 1 (0), unconditionally (don't) add leading 1's.
# @return VectorConfiguration or PointConfiguration
user_function project_to<Scalar>(VectorConfiguration<Scalar> Matrix<Scalar>; { make_affine=>undef }) {
my ($v,$B,$options) = @_;
my $proj = $v->VECTORS * transpose($B);
my $make_affine = $options->{make_affine};
my $first_col_zero = ($B->col(0) == zero_vector<Scalar>($B->rows));
if ($v->isa("PointConfiguration") && $first_col_zero && $make_affine eq undef) {
$make_affine = 1;
}
if ($make_affine eq 1) {
$proj = ones_vector<Scalar>() | $proj;
}
my $ret;
if ($v->isa("PointConfiguration") && $first_col_zero) {
$ret = new PointConfiguration<Scalar>(POINTS=>$proj);
} else {
$ret = new VectorConfiguration<Scalar>(VECTORS=>$proj);
}
if (defined (my $labels = $v->lookup("LABELS"))) {
$ret->LABELS = $labels;
}
return $ret;
}
# @category Producing a vector configuration
# Project a Polytope or Cone to the subspace with a given basis, and express the result in that basis
# A boolean flag make_affine (by default undef) determines whether the resulting coordinates acquire an extra leading '1'.
# The return type is a Cone, unless
# (i) P is a Polytope,
# (ii) the first column of B is zero,
# (iii) make_affine is not 0,
# in which case it is a Polytope.
# If make_affine is undef and (ii) is true, make_affine is set to 1.
# The reasoning here is that B having a zero first column or not influences the hyperplane at infinity.
# @tparam Scalar coordinate type
# @param Cone C
# @param Matrix B a matrix whose rows contain the basis of the image space
# @return Cone or Polytope
user_function project_to<Scalar>(Cone<Scalar> Matrix<Scalar>; { make_affine=>undef }) {
my ($v,$B, $options) = @_;
my $proj = $v->give("RAYS | INPUT_RAYS") * transpose($B);
my $make_affine = $options->{make_affine};
my $first_col_zero = ($B->col(0) == zero_vector<Scalar>($B->rows));
if ($make_affine eq undef && $first_col_zero) {
$make_affine = 1;
}
if ($make_affine eq 1) {
$proj = ones_vector<Scalar>() | $proj;
}
my $ret;
if ($v->isa("Polytope") && $first_col_zero && $make_affine != 0) {
$ret = new Polytope<Scalar>(POINTS=>$proj);
} else {
$ret = new Cone<Scalar>(INPUT_RAYS=>remove_zero_rows($proj));
}
if (defined (my $labels = $v->lookup("RAY_LABELS|INPUT_RAY_LABELS"))) {
$ret->INPUT_RAY_LABELS = $labels;
}
return $ret;
}
# @category Producing a vector configuration
# Project a vector configuration V along the subspace with the given basis B.
# The result is still expressed in the original ambient basis.
# If V is a PointConfiguration and the first column of B is zero, the result is a PointConfiguration, else a VectorConfiguration.
# @tparam Scalar coordinate type
# @param VectorConfiguration V
# @param Matrix B a matrix whose rows contain the basis of the space to be projected out
# @return VectorConfiguration
user_function project_out<Scalar>(VectorConfiguration<Scalar> Matrix<Scalar>) {
my ($v,$B) = @_;
my $O = new Matrix<Scalar>($B);
orthogonalize_subspace($O);
my $V = new Matrix<Scalar>($v->VECTORS);
project_to_orthogonal_complement($V, $O);
my $first_col_zero = ($B->col(0) == zero_vector<Scalar>($B->rows));
my $ret;
if ($v->isa("PointConfiguration") && $first_col_zero) {
$ret = new PointConfiguration<Scalar>(POINTS=>$V);
} else {
$ret = new VectorConfiguration<Scalar>(VECTORS=>$V);
}
if (defined (my $labels = $v->lookup("LABELS"))) {
$ret->LABELS = $labels;
}
return $ret;
}
# @category Producing a vector configuration
# Project a Cone C along the subspace with the given basis B
# The result is still expressed in the original ambient basis.
# If V is a Polytope and the first column of B is zero, the result is a Polytope, else a Cone.
# @tparam Scalar coordinate type
# @param Cone C
# @param Matrix B a matrix whose rows contain the basis of the space to be projected out
# @return Cone
user_function project_out<Scalar>(Cone<Scalar> Matrix<Scalar>) {
my ($v,$B) = @_;
my $O = new Matrix<Scalar>($B);
orthogonalize_subspace($O);
my $V = new Matrix<Scalar>($v->give("RAYS|INPUT_RAYS"));
project_to_orthogonal_complement($V, $O);
my $first_col_zero = ($B->col(0) == zero_vector<Scalar>($B->rows));
my $ret;
if ($v->isa("Polytope") && $first_col_zero) {
$ret = new Polytope<Scalar>(POINTS=>$V);
} else {
$ret = new Cone<Scalar>(INPUT_RAYS=>$V);
}
if (defined (my $labels = $v->lookup("RAY_LABELS|INPUT_RAY_LABELS"))) {
$ret->INPUT_RAY_LABELS = $labels;
}
return $ret;
}
# @category Producing a vector configuration
# Construct a new vector configuration that projects to a given array of vector configurations
# If the n vector configurations are d_1, d_2, ..., d_n-dimensional and all have m vectors,
# the resulting vector configuration is (d_1+...+d_n)-dimensional, has m vectors, and
# the projection to the i-th d_i coordinates gives the i-th input vector configuration.
# @tparam Scalar coordinate type
# @param Array<VectorConfiguration> P_Array
# @return VectorConfiguration
user_function projection_preimage<Scalar>(VectorConfiguration<Scalar> +) {
my $a = new Array<VectorConfiguration<Scalar>>(@_);
projection_preimage_impl($a);
}
# @category Producing a vector configuration
# Construct the free sum of two vector configurations.
#
# @param VectorConfiguration P1
# @param VectorConfiguration P2
# @option Bool force_centered if the input polytopes must be centered. Defaults to true.
# @option Bool no_coordinates produces a pure combinatorial description. Defaults to false.
# @return VectorConfiguration
user_function free_sum<Scalar>(VectorConfiguration<Scalar> VectorConfiguration<Scalar>; { force_centered=>1, no_coordinates=>0 }) {
my ($P1, $P2, $options) = @_;
if (!$P1->isa("PointConfiguration") && $P2->isa("PointConfiguration") ||
!$P2->isa("PointConfiguration") && $P1->isa("PointConfiguration")) {
die "free_sum: cannot mix point and vector configurations";
}
my $first_coord = ($P1->isa("PointConfiguration") ? 1 : 0);
free_sum_impl($P1, $P2, "VECTOR", "AFFINE_HULL", $first_coord, $options);
}
# Local Variables:
# mode: perl
# c-basic-offset:4
# End:
|