File: visual.rules

package info (click to toggle)
polymake 4.14-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 35,888 kB
  • sloc: cpp: 168,933; perl: 43,407; javascript: 31,575; ansic: 3,007; java: 2,654; python: 632; sh: 268; xml: 117; makefile: 61
file content (568 lines) | stat: -rw-r--r-- 23,527 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
#  Copyright (c) 1997-2024
#  Ewgenij Gawrilow, Michael Joswig, and the polymake team
#  Technische Universität Berlin, Germany
#  https://polymake.org
#
#  This program is free software; you can redistribute it and/or modify it
#  under the terms of the GNU General Public License as published by the
#  Free Software Foundation; either version 2, or (at your option) any
#  later version: http://www.gnu.org/licenses/gpl.txt.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#-------------------------------------------------------------------------------


# @topic objects/Visual::Polytope
# @category Visualization
# Visualization of a polytope as a graph (if 1d), or as a solid object (if 2d or 3d),
# or as a Schlegel diagram (4d).
# @super Visual::Container
# @relates objects/Polytope

package Visual::Polytope;

use Polymake::Struct (
   [ '@ISA' => 'Container' ],
   [ '$Polytope' => '#%', default => 'undef' ],
);

# where to keep the view transformation matrix etc.
method representative { $_[0]->Polytope }

method basis_solid { $_[0]->elements->[0] }

method add_faces {
   my $self=shift;
   my %to_merge;
   while (my ($face, $decor)=splice @_, 0, 2) {
      my $f=0;
      foreach my $facet (@{$self->Polytope->VERTICES_IN_FACETS}) {
         my $rel=incl($facet,$face);
         if ($rel==0) {
            my $has_facet_decor;
            foreach my $decor_key (grep { /^Facet/ } keys %$decor) {
               $to_merge{$decor_key}->{$f}=$decor->{$decor_key};
               $has_facet_decor=1;
            }
            last if $has_facet_decor;
         }
         if ($rel!=2) {
            foreach my $decor_key (grep { /^Vertex/ } keys %$decor) {
               $to_merge{$decor_key}->{$_}=$decor->{$decor_key} for @$face;
            }
            last;
         }
         ++$f;
      }
   }
   basis_solid($self)->merge(%to_merge);
}

##########################################################################################
#
# LP-related supplements

# Illustrate the behavior of a linear objective function on the polytope.
# Draw the facets contained in [[MAXIMAL_FACE]] and [[MINIMAL_FACE]] in distinct colors.
# @param LinearProgram lp a LinearProgram object attached to the polytope.
# @option [complete color] Color min minimal face decoration (default: yellow vertices and/or facets)
# @option [complete color] Color max maximal face decoration (default: red vertices and/or facets)
# @return Visual::Polytope
# @example Attaches a linear program to the threedimensional cube and displays the minimal/maximal faces in a different color, choosing purple instead of the default red for the maximal face
# > $p = cube(3);
# > $p->LP = new LinearProgram(LINEAR_OBJECTIVE=>[0,1,0,0]);
# > $p->VISUAL->MIN_MAX_FACE(max=>"purple");

user_method MIN_MAX_FACE(; LinearProgram { min => $Visual::Color::min, max => $Visual::Color::max }) {
   my ($self, $lp, $decor)=@_;
   if (defined $lp) {
      if ($lp->parent != $self->Polytope) {
         croak("LinearProgram object does not belong to this Polytope");
      }
   } else {
      $lp=$self->Polytope->LP;
   }
   foreach (values %$decor) {
      unless (is_like_hash($_)) {
         my $c = get_RGB($_);
         $_ = { VertexColor => $c, FacetColor => $c };
      }
   }

   $self->add_faces($lp->MINIMAL_FACE, $decor->{min}, $lp->MAXIMAL_FACE, $decor->{max});
   visualize($self);
}


# Illustrate the behavior of a linear objective function on the polytope.
# Color the vertices according to the values of the objective function.
# @param LinearProgram lp a LinearProgram object attached to the polytope
# @option [complete color] Color min minimal vertex color (default: yellow)
# @option [complete color] Color max maximal vertex color (default: red)
# @return Visual::Polytope
# @example Attaches a linear program to the threedimensional cube and displays the minimal/maximal vertices in a different color, choosing purple instead of the default red for the maximal vertices
# > $p = cube(3);
# > $p->LP = new LinearProgram(LINEAR_OBJECTIVE=>[0,1,0,0]);
# > $p->VISUAL->VERTEX_COLORS(max=>"purple");

user_method VERTEX_COLORS(; LinearProgram { min => $Visual::Color::min, max => $Visual::Color::max }) {
   my ($self, $lp, $decor)=@_;
   if (defined $lp) {
      if ($lp->parent != $self->Polytope) {
         croak("LinearProgram object does not belong to this Polytope");
      }
   } else {
      $lp=$self->Polytope->LP;
   }
   $_=get_RGB($_) for values %$decor;
   $self->basis_solid->VertexColor=vertex_colors($self->Polytope, $lp, $decor);
   visualize($self);
}


# Illustrate the behavior of a linear objective function on the polytope.
# Superpose the drawing with the directed graph induced by the objective function.
# @param LinearProgram lp a Linear Program object attached to the polytope
# @return Visual::Polytope
# @example Attaches a linear program to the 3-dimensional cube and visualizes the directed graph, giving the cube a blue facet color
# > $p = cube(3);
# > $p->LP = new LinearProgram(LINEAR_OBJECTIVE=>[0,0,0,1]);
# > $p->VISUAL(FacetColor=>"blue")->DIRECTED_GRAPH;

user_method DIRECTED_GRAPH(; LinearProgram) {
   my ($self, $lp)=@_;
   if (defined $lp) {
      if ($lp->parent != $self->Polytope) {
         croak("LinearProgram object does not belong to this Polytope");
      }
   } else {
      $lp=$self->Polytope->LP;
   }
   $self->basis_solid->EdgeStyle="hidden";
   push @{$self->elements},
        new Visual::Graph( Name => "GRAPH directed with LP " . $lp->name,
                           Graph => $lp->DIRECTED_GRAPH,
                           Coord => $self->basis_solid->Vertices,
                           NodeStyle => "hidden",
                         );
   visualize($self);
}

##########################################################################################
#
#  Triangulation as supplement


# Add the triangulation to the drawing.  
#
# You may specify any triangulation of the current polytope.
# Per default, the [[Cone::TRIANGULATION|TRIANGULATION]] property is taken.
# (Currently there is only one possible alternative triangulation: [[Cone::TRIANGULATION_INT|TRIANGULATION_INT]]).
#
# **Hint:** Use the method __Method -> Effect -> Explode Group of Geometries__
# of [[wiki:external_software#JavaView|JavaView]] for better insight in the internal structure.
# @param Array<Set<Int>> t facets of the triangulation
# @options %Visual::Polygons::decorations
# @return Visual::Polytope
# @example Displays a triangulation of the threedimensional cube. Facets are made transparent and vertices are hidden.
# > cube(3)->VISUAL->TRIANGULATION(FacetTransparency=>0.7,VertexStyle=>"hidden");

user_method TRIANGULATION(; $=$_[0]->Polytope->TRIANGULATION->FACETS, %Visual::Polygons::decorations) {
   my ($self, $TR, $decor)=@_;
   my $d=$self->Polytope->CONE_AMBIENT_DIM-1;
   if ($d > 3) {
      die "don't know how to visualize the triangulation of a $d-d polytope\n";
   }

   my $skeleton=$self->basis_solid;
   $skeleton->VertexStyle="hidden";
   $skeleton->FacetStyle="hidden";

   my $vertex_labels= delete $decor->{VertexLabels};
   if ($vertex_labels ne "hidden") {
      $vertex_labels=$skeleton->VertexLabels;
   } else {
      undef $vertex_labels;
   }
   my $Points=$skeleton->Vertices;
   my $Signs=triang_sign($TR, $self->Polytope->VERTICES);

   $self->Name="Triangulation of ".$self->Polytope->name;
   push @{$self->elements}, [ $self->Polytope->VisualSimplices($TR,$Points,$Signs,$vertex_labels,$decor) ];

   visualize($self);
}

# Draw the edges of the [[Visual::Polytope::TRIANGULATION_BOUNDARY|TRIANGULATION_BOUNDARY]].
# The facets are made transparent.
# @options %Visual::Graph::decorations
# @return Visual::Polytope
# @example Displays the boundary triangulation of the threedimensional cube.
# > cube(3)->VISUAL->TRIANGULATION_BOUNDARY;
# @example For a slightly different visualization of essentially the same:
# > cube(3)->TRIANGULATION->BOUNDARY->VISUAL;

user_method TRIANGULATION_BOUNDARY(%Visual::Graph::decorations) {
   my ($self, $decor)=@_;
   my $P=$self->basis_solid;
   $P->FacetTransparency ||= 0.5;
   $P->EdgeThickness ||= 1;
   $self->Name="Triangulation Boundary of ".$self->Polytope->name;
   my $graph = new graph::Graph(ADJACENCY =>  $self->Polytope->TRIANGULATION->BOUNDARY->GRAPH->ADJACENCY - $self->Polytope->GRAPH->ADJACENCY);
   push @{$self->elements},
        new Visual::Graph( Name => $self->Polytope->name."-inner-edges",
                           Graph => $graph,
                           Coord => $P->Vertices,
                           NodeStyle => "hidden",
                           EdgeThickness => 0.5,
                           $decor
                         );
   visualize($self);
}

# ATTENTION: A similar function for PointConfiguration was deleted, on purpose!
# Beware of the role of points in the triangulation which are not in the boundary.

##################################################################################################

object Polytope {

my @simplex_faces_3d=([ [0,2,1], [0,1,3], [0,3,2], [1,2,3] ],   # +
                      [ [0,1,2], [0,3,1], [0,2,3], [1,3,2] ]);  # -
my @simplex_faces_2d=([ [0,1,2] ],      # +
                      [ [0,2,1] ]);     # -
my @simplex_neighbor_faces=([ [2,3,1], [0,3,2], [1,3,0], [0,2,1] ],     # +
                            [ [1,3,2], [2,3,0], [0,3,1], [1,2,0] ]);    # -

# utility for visualization methods: converts an array of simplices to an array of Visual::Polygons
method VisualSimplices {
   my ($self, $Simplices, $Points, $Signs, $vertex_labels, $decor)=@_;
   my $d=$Points->cols;
   my $simplex_faces=  $d==3 ? \@simplex_faces_3d : \@simplex_faces_2d;

   my $i=0;
   map {
      my $s=(1-$Signs->[$i++])/2;               # 0: positive, 1: negative
      my @face=@$_;
      new Visual::Polygons( Name => $self->name."-{@face}",
			    Vertices => $Points->minor($_,All),
			    VertexLabels => $vertex_labels && sub { $vertex_labels->($face[$_[0]]) },
			    Facets => $simplex_faces->[$s],
			    $d==3 ? (FacetNeighbors => $simplex_neighbor_faces[$s]) : (),
			    NEdges => $d==3? 6 : 3,
			    $decor
			  );
   } @$Simplices;
}

sub apply_bounding_facets($;$) {
   my ($this,$bbox) = @_; # Polytope object, Matrix
   my $bounded=$this->type->construct->($this->name."_bounded", INEQUALITIES => $this->FACETS / $bbox, EQUATIONS=>$this->AFFINE_HULL);
   if (!$bounded->BOUNDED) {
      die "apply_bounding_facets: Invalid bounding facets! There is an unbounded object.";
   }
   return $bounded;
}

sub map_to_deco {
   my ($map,$mapkeys,$deco,$default) = @_;
   # deco should be defined and not "hidden" (as long as not all backends handle "hidden" or undef returns of this specific code decor) 
   my @new_array;
   if (is_code($deco)) {
      @new_array=map { exists($map->{$_}) ? $deco->($map->{$_}) : $default } @$mapkeys;
   } elsif (is_like_array($deco)) {
      @new_array=map { exists($map->{$_}) ? $deco->[$map->{$_}] : $default } @$mapkeys;
   } elsif (is_like_hash($deco)) {
      @new_array=map { exists($map->{$_}) ? $deco->{$map->{$_}} : $default } @$mapkeys;
   } else {
      @new_array=map { exists($map->{$_}) ? $deco : $default } @$mapkeys;
   }
   return \@new_array;
}

sub convert_this_decor_to_bounded_decor {
   my ($this,$bounded,$decor) = @_;
   # this assumes that the user treats VertexDecor according to $this->VERTICES
   # TODO?: VertexDecor for far points is currently thrown away. There are also cases of polytopes with lineality that even throw away bounded VERTICES and its decor
   # In general the current visualization alters quite some combinatorics, which can be counterintuitive especially for new polymake users
   # a more combinatorically friendly visualization could be a (common) bounding sphere
   # and the distribution of decor of far points in $this->VERTICES to all intersections (of edges containing it) with the bounding box/sphere
   # this could be an attempt to visualize combinatorics of rays and lineality space
   # TODO?: this sub does not work for labels separated by spaces, 
   # like in the old code, we ask for $bounded->FACETS before $bounded->VERTICES in order to trigger "cdd.convex_hull.canon : FACETS, LINEAR_SPAN :
   # INEQUALITIES" in a prefer("lrs") environment otherwise we get a different permutation of VERTICES and FACETS 
   my $facet_map=new Map<Vector<Scalar>, Int>;
   my $j = 0;
   $facet_map->{$_}=$j++ for @{$this->FACETS};
   
   if ($bounded->CONE_DIM==4) {
      # mark artificial facets 
      my $fc = $decor->{FacetColor} // $Visual::Color::facets;
      $decor->{FacetColor} = map_to_deco($facet_map,\@{$bounded->FACETS},$fc,$Visual::Color::cutoff);
      
      my $fl = $decor->{FacetLabels};
      if (defined ($fl) && $fl !~ $Visual::hidden_re) {
         $decor->{FacetLabels} = map_to_deco($facet_map,\@{$bounded->FACETS},$fl," ");
      }
   }

   my $vertex_map=new Map<Vector<Scalar>, Int>;
   my $i = 0;
   $vertex_map->{$_}=$i++ for @{$this->VERTICES};
   
   my $vl = $decor->{VertexLabels};
   if ($vl !~ $Visual::hidden_re) {
      if (defined($vl)) {
         $decor->{VertexLabels} = map_to_deco($vertex_map,\@{$bounded->VERTICES},$vl," ");
      } else {
         # we provide labels if they're undefined in decor and VERTEX_LABELS
         my @newarray = map { $vertex_map->{$_} // " " } @{$bounded->VERTICES};
         $decor->{VertexLabels} = \@newarray;
      }
   }

   my $vt = $decor->{VertexThickness} // 1;
   $decor->{VertexThickness} = map_to_deco($vertex_map,\@{$bounded->VERTICES},$vt,0) if ($vt);

   my $vc = $decor->{VertexColor};
   if (defined ($vc)) {
      $decor->{VertexColor} = map_to_deco($vertex_map,\@{$bounded->VERTICES},$vc,$Visual::Color::cutoff);
   }
}

# @category Visualization
# Visualize a polytope as a graph (if 1d), or as a solid object (if 2d or 3d),
# or as a Schlegel diagram (4d).
# @options %Visual::Polygons::decorations
# @options %Visual::Wire::decorations
# @options %Visual::PointSet::decorations
# @options %geometric_options
# @return Visual::Polytope

user_method VISUAL(%Visual::Polygons::decorations, %geometric_options) : CONE_DIM {
   my ($this, $decor, $geom)=@_;
   my $P=new Visual::PointSet( Name => $this->name,
                               Points => Visual::transform_float(dehomogenize(convert_to<Float>($this->VERTICES)),$geom->{Transformation},$geom->{Offset}),
                               PointLabels => $this->lookup("VERTEX_LABELS"),
                               $decor
                             );
   visualize($P);
}
precondition : CONE_DIM { $this->CONE_DIM==1 }
precondition : CONE_AMBIENT_DIM { $this->CONE_AMBIENT_DIM<=4 }


# @hide
user_method VISUAL(%Visual::Polygons::decorations, %geometric_options) : CONE_DIM {
   my ($this, $decor, $geom)=@_;
   my $G=$this->GRAPH->VISUAL(Name=>$this->name, Coord=>Visual::transform_float(dehomogenize(convert_to<Float>($this->VERTICES)),$geom->{Transformation},$geom->{Offset}), $decor);
   visualize( new Visual::Polytope(Name => $this->name, Polytope => $this, $G) );
}
precondition : CONE_DIM { $this->CONE_DIM==2 }
precondition : CONE_AMBIENT_DIM { $this->CONE_AMBIENT_DIM<=4 }
precondition : BOUNDED;

# @hide
user_method VISUAL(%Visual::Polygons::decorations, %geometric_options) : VERTICES, VIF_CYCLIC_NORMAL {
   my ($this, $decor, $geom)=@_;
   $decor->{VertexLabels} //= $this->lookup("VERTEX_LABELS");
   my $to_vis=$this;
   $decor->{FacetLabels} //= $this->lookup("FACET_LABELS") // "hidden" if ($this->CONE_DIM==4);

   
   # we also allow to bound BOUNDED polytopes
   my $bbox = $geom->{BoundingFacets};
   if (defined($bbox)) {
      my $offsets = $this->VERTICES*transpose($bbox);
      OUTER: foreach my $row (@$offsets) {
         foreach my $entry (@$row) {
            if ($entry < 0) {
               #only apply bounding facets if they have an effect
               $to_vis = apply_bounding_facets($this,$geom->{BoundingFacets});
               convert_this_decor_to_bounded_decor($this,$to_vis,$decor);
               last outer;
            }
         }
      }
   }
   # visual boundings should not alter CONE_DIM (use the full_dim option in polytope::bounding_[box]_facets)
   my $vis = $this->CONE_DIM==3
       ? new Visual::Polygon( Name => $to_vis->name,
                              Vertices => Visual::transform_float(dehomogenize(convert_to<Float>($to_vis->VERTICES)),$geom->{Transformation},$geom->{Offset}),
                              Facet => $to_vis->VIF_CYCLIC_NORMAL->[0],
                              NEdges => $to_vis->N_EDGES,
                              $decor
       )
       : new Visual::Polygons( Name => $to_vis->name,
                               Vertices => Visual::transform_float(dehomogenize(convert_to<Float>($to_vis->VERTICES)),$geom->{Transformation},$geom->{Offset}),
                               Facets => $to_vis->VIF_CYCLIC_NORMAL,
                               FacetNormals => Visual::transform_float_facets(convert_to<Float>($to_vis->FACETS),$geom->{Transformation},$geom->{Offset}),
                               FacetNeighbors => $to_vis->NEIGHBOR_FACETS_CYCLIC_NORMAL,
                               Closed => 1,
                               NEdges => $to_vis->N_EDGES,
                               $decor
       );
   visualize( new Visual::Polytope(Name => $this->name, Polytope => $this, $vis));
}
precondition : CONE_DIM { $this->CONE_DIM>=3 }
precondition : CONE_AMBIENT_DIM { $this->CONE_AMBIENT_DIM<=4 }
precondition : BOUNDED;


# @hide @notest
user_method VISUAL(%Visual::Polygons::decorations) : CONE_AMBIENT_DIM {
   my ($this, $decor)=@_;
   $this->SCHLEGEL({},{},$decor);
}
precondition : CONE_DIM { $this->CONE_DIM==5 }
precondition : CONE_AMBIENT_DIM { $this->CONE_AMBIENT_DIM==5 }
precondition : BOUNDED;


# @hide
user_method VISUAL(%Visual::Polygons::decorations, %geometric_options) : CONE_DIM {
   my ($this, $decor, $geom)=@_;
   # if no facets are specified we simply make a box
   # the surplus of 6/5 for the bounding box is just a random choice
   # we delete the bbox from $geom so that it doesn't get applied a second time in $bounded->VISUAL
   my $bbox = delete $geom->{BoundingFacets} // bounding_box_facets($this->VERTICES, surplus_k=>6/5, fulldim=>1);
   my $bounded = apply_bounding_facets($this,$bbox);
   $decor->{VertexLabels} //= $this->lookup("VERTEX_LABELS"); 
   $decor->{FacetLabels} //= $this->lookup("FACET_LABELS") // "hidden" if ($this->CONE_DIM==4);
   convert_this_decor_to_bounded_decor($this,$bounded,$decor);
	visualize($bounded->VISUAL($decor, $geom));
}
precondition : CONE_AMBIENT_DIM { $this->CONE_AMBIENT_DIM<=4 }
precondition : !BOUNDED;


# @hide
user_method VISUAL(%geometric_options) : FEASIBLE {
   croak("Cannot visualize an empty polytope\n");
}
precondition : !FEASIBLE;

# @hide
user_method VISUAL(%geometric_options) : CONE_AMBIENT_DIM {
   croak("Cannot visualize polytope with ambient dimension >= 5\n");
}
precondition : CONE_AMBIENT_DIM { $this->CONE_AMBIENT_DIM >= 6 }


# @category Visualization
# Visualize the dual polytope as a solid 3-d object. The polytope must be [[BOUNDED]] and [[CENTERED]].
# @options %Visual::Polygons::decorations
# @options %geometric_options
# @return Visual::Object

user_method VISUAL_DUAL(%Visual::Polygons::decorations, %geometric_options) : FACETS, FTV_CYCLIC_NORMAL {
   my ($this, $decor, $geom)=@_;
   my $P= $this->CONE_AMBIENT_DIM==3
          ? new Visual::Polygon( Name => "dual of ".$this->name,
				 Vertices => Visual::transform_float(dehomogenize(convert_to<Float>($this->FACETS)),$geom->{Transformation},$geom->{Offset}),
				 VertexLabels => $this->lookup("FACET_LABELS"),
				 Facet => $this->FTV_CYCLIC_NORMAL->[0],
				 NEdges => $this->N_EDGES,
				 $decor,
			       )
	  : new Visual::Polygons( Name => "dual of ".$this->name,
				  Vertices => Visual::transform_float(dehomogenize(convert_to<Float>($this->FACETS)),$geom->{Transformation},$geom->{Offset}),
				  VertexLabels => $this->lookup("FACET_LABELS"),
				  Facets => $this->FTV_CYCLIC_NORMAL,
                                  FacetNormals => Visual::transform_float_facets(convert_to<Float>($this->VERTICES),$geom->{Transformation},$geom->{Offset}),
				  FacetNeighbors => $this->NEIGHBOR_VERTICES_CYCLIC_NORMAL,
				  FacetLabels => $this->lookup("VERTEX_LABELS") || "hidden",
				  Closed => 1,
				  NEdges => $this->N_EDGES,
				  $decor,
				);
   visualize($P);
}
precondition : CONE_AMBIENT_DIM { $this->CONE_AMBIENT_DIM==3 || $this->CONE_AMBIENT_DIM==4 }
precondition : BOUNDED;
precondition : CENTERED;

}

# @topic objects/Visual::Cone
# @category Visualization
# Visualization of a Cone as a graph (if 1d), or as a solid object (if 2d or 3d)
# @super Visual::Container
# @relates objects/Polytope

package Visual::Cone;
use Polymake::Struct (
   [ '@ISA' => 'Container' ],
   [ '$Cone' => '#%' ],
);

object Cone {

# @category Visualization
# Visualizes the cone, intersected with the unit ball.
# @options %Visual::Polygons::decorations
# @options %geometric_options_linear
# @return Visual::Cone

user_method VISUAL(%Visual::Polygons::decorations, %geometric_options_linear, {CutOff => $Visual::Color::cutoff}, {BoundingFacets => undef}) : RAYS, LINEALITY_SPACE {
   my ($this,$decor,$geom,$cutoff_decor, $bb)=@_;
   $decor->{VertexStyle} ||= "hidden";
   $cutoff_decor=$cutoff_decor->{CutOff};
   my $cutoff_decor3d=$cutoff_decor;
   my $cutoff_decor2d=$cutoff_decor;
   unless (is_hash($cutoff_decor)) {
     $cutoff_decor3d={ FacetColor => $cutoff_decor };
     $cutoff_decor2d={ EdgeColor => $cutoff_decor };
   }
   my $d=$this->RAYS->cols;
   my $rays=normalized(convert_to<Float>($this->RAYS));
   my $lineality = convert_to<Float>($this->LINEALITY_SPACE);
   if(!(defined $bb->{BoundingFacets})) {
       my $bbox = $lineality->rows > 0 ?
           polytope::bounding_box_facets<Float>(ones_vector<Float>() | $rays, surplus_k=>6/5, fulldim=>1)
           : undef;
       $bb->{BoundingFacets} = $bbox;
   }
   my $zero=new Vector<Float>($d);
   my @cells_visual = ();

   my $all_ones=ones_vector<Float>($this->N_RAYS+1);
   my $v= $all_ones | ($rays / $zero);

   my $ftv=new IncidenceMatrix($this->FACETS_THRU_RAYS->rows()+1,$this->N_RAYS+1);
   $ftv->minor(~[$this->FACETS_THRU_RAYS->rows()],~[$this->RAYS->rows()])=$this->FACETS_THRU_RAYS;
   for(my $j=0; $j < $ftv->rows()-1;++$j){
       $ftv->row($j) += $this->RAYS->rows();
   }
   $ftv->row($this->FACETS_THRU_RAYS->rows()) += new Set(0..$this->RAYS->rows()-1);

   my $p=new polytope::Polytope<Float>(VERTICES => $v, LINEALITY_SPACE => zero_vector<Float>() | $lineality, FACETS_THRU_VERTICES=>$ftv);
   
   my $pv= ($lineality->rows > 0 && $this->CONE_DIM > 1) ?
      $p->VISUAL( $decor , $geom, BoundingFacets=>$bb->{BoundingFacets} ) :
      $p->VISUAL( $decor , $geom);
   my (@cutoff_attrs);
   my $dim=$p->DIM;
   if ($dim==3) {
     while (my @kv=each %$cutoff_decor3d) {
       my ($attr, $value)=@kv;
       push @cutoff_attrs, $attr, sub { $_[0] < $p->FACETS->rows && $p->FACETS->[shift]->[0] ? $value : undef };
     }
   }
   $pv->basis_solid->merge(@cutoff_attrs);
   
   visualize(new Visual::Cone( Name => "fan:".$this->name,
                               Cone => $this,
                                  $pv));
}

}

# Local Variables:
# mode: perl
# cperl-indent-level:3
# indent-tabs-mode:nil
# End: