1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
/* Copyright (c) 1997-2024
Ewgenij Gawrilow, Michael Joswig, and the polymake team
Technische Universität Berlin, Germany
https://polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#pragma once
#include "polymake/client.h"
#include "polymake/Graph.h"
#include "polymake/Set.h"
#include "polymake/Vector.h"
#include "polymake/Matrix.h"
#include "polymake/graph/graph_iterators.h"
#include "polymake/graph/DoublyConnectedEdgeList.h"
#include "polymake/topaz/DomeVolumeVisitor.h"
#include <cmath>
namespace polymake { namespace topaz {
class CoveringTriangulationVisitor : public graph::NodeVisitor<> {
public:
// A decorated edge consists of the half edge index and a matrix for the two decorating horocycles.
using DecoratedEdge = std::pair<Int, Matrix<Rational>>;
// Each DecoratedEdge that appears in the BFS will get an unique index via this map.
using EdgeMap = Map<Int, DecoratedEdge>;
using DoublyConnectedEdgeList = graph::dcel::DoublyConnectedEdgeList;
using HalfEdge = graph::dcel::HalfEdge;
private:
// The graph we want to iterate through, build during iterating.
// Part of the dual spanning tree of the triangulation of the universal covering H^2.
Graph<Directed>& dual_tree;
// The triangulation of the surface.
DoublyConnectedEdgeList& dcel;
const Vector<Rational> angleVec;
// A map from the node-indices from the dual_tree to a pair (half edge , horocycles [[p_tail,q_tail],[p_head,q_head]]).
EdgeMap edge_map;
// The vertices of the triangulation.
std::vector<Vector<Rational>> points;
// Mapping horocycles to their positions in points
Map<Vector<Rational>, Int> vertex_map;
// The number of nodes in the dual graph.
const Int num_nodes_depth;
// The triangles of the triangulation, triplets of corresponding indices.
Array<Set<Int>> triangles;
Int curr_num_nodes;
// count of the nodes that were visited already.
Int num_visited;
public:
// This is needed for the BFS-iterator to not just stop in depth one.
static constexpr bool visit_all_edges = true;
/*
The CTV is initialized with the given graph G (usually only one node for the first half edge 0 / first triangle (0,0->next,0->next->next) ),
the triangulation dcel (containing the lambda lengths of the edges),
the position of the first half edge via two horocycles [[p_1,q_1] , [p_2,q_2]]
and the depth we want to visit the dual tree.
*/
CoveringTriangulationVisitor(Graph<Directed>& G, DoublyConnectedEdgeList& dcel_, const Matrix<Rational>& first_halfedge_horo, Int dual_tree_depth)
: dual_tree(G)
, dcel(dcel_)
, angleVec(dcel.angleVector())
, num_nodes_depth(3*((1L << dual_tree_depth)-1)+1)
, triangles(num_nodes_depth)
, curr_num_nodes(0)
, num_visited(0)
{
layFirstEdge(first_halfedge_horo);
}
Int numVisited() const { return num_visited; }
bool operator()(Int n)
{
return operator()(n, n);
}
bool operator()(Int n_from, Int n_to)
{
if (visited.contains(n_to)) return false;
/*
The node n_to was not visited yet, therefore the corresponding triangle (its known halfedge) did not contribute to the GKZ vector.
We extract the known half edge as well as the two known horocycles from the edge_map.
Then we compute the position of the third horocycle, and put two new adjacent triangles (half edges) in the queue.
*/
const DecoratedEdge& edge_pair = edge_map[n_to];
Vector<Rational> horo_u = edge_pair.second[0];
Vector<Rational> horo_v = edge_pair.second[1];
const HalfEdge* uv = dcel.getHalfEdge(edge_pair.first);
const HalfEdge* vw = uv->getNext();
const HalfEdge* wu = vw->getNext();
const Rational& lambda_uv = uv->getLength();
const Rational& lambda_vw = vw->getLength();
const Rational& lambda_wu = wu->getLength();
Int u_id = dcel.getVertexId(wu->getHead());
Int v_id = dcel.getVertexId(uv->getHead());
Int w_id = dcel.getVertexId(vw->getHead());
Vector<Rational> horo_w = thirdHorocycle(horo_u, horo_v, lambda_uv, lambda_vw, lambda_wu);
Rational u_scaling = 1 / angleVec[u_id];
Rational v_scaling = 1 / angleVec[v_id];
Rational w_scaling = 1 / angleVec[w_id];
addVertex(horo_w, w_scaling);
triangles[n_to] = Set<Int>{ vertex_map[horo_u], vertex_map[horo_v], vertex_map[horo_w] };
if (dual_tree.nodes() < num_nodes_depth) {
const HalfEdge* wv = vw->getTwin();
const HalfEdge* uw = wu->getTwin();
// Add the two new half edges to the queue, update the edge_map and the dual_tree.
// Note that we change the sign of the second horocycle (head of wv and uw) since we want to guarantee a positive determinant.
const Matrix<Rational> M_wv = vector2row(horo_w) / -horo_v;
const Matrix<Rational> M_uw = vector2row(horo_u) / -horo_w;
const Int wv_node_id = dual_tree.add_node();
dual_tree.add_edge(n_to, wv_node_id);
edge_map[wv_node_id] = DecoratedEdge(dcel.getHalfEdgeId(wv), M_wv);
const Int uw_node_id = dual_tree.add_node();
dual_tree.add_edge(n_to, uw_node_id);
edge_map[uw_node_id] = DecoratedEdge(dcel.getHalfEdgeId(uw), M_uw);
curr_num_nodes += 2;
}
visited += n_to;
++num_visited;
return true;
}
/*
Apply the map {horocycles in H^2} -> {vertices at Klein boundary}, horovector = [p,q] |-> v = 1/(p^2+q^2) [ q^2-p^2 , 2pq ].
The vertex v becomes a new row of the matrix points.
The vertex map at [p,q] is set to the the index of the row v stands in (with index shift due to counting from 0)
*/
void addVertex(const Vector<Rational>& horo_vector, const Rational& scaling)
{
const Rational& p = horo_vector[0];
const Rational& q = horo_vector[1];
const Rational a = p*p + q*q;
const Vector<Rational> v{ (q*q - p*p)/a, 2*p*q/a, scaling/(a*a) };
vertex_map[ horo_vector ] = points.size();
vertex_map[ -horo_vector ] = points.size();
points.push_back(v);
}
// Lay out the first half edge (index=0) in H^2, according to the input of the two horocycles (two rows of the matrix first_halfedge_horo).
void layFirstEdge(const Matrix<Rational>& horo_matrix)
{
addVertex(horo_matrix[0], 1/angleVec[0]);
addVertex(horo_matrix[1], 1/angleVec[1]);
edge_map[0] = DecoratedEdge(0, horo_matrix);
const Matrix<Rational> M_twin_edge = vector2row(horo_matrix[1]) / -horo_matrix[0];
const Int new_node_id = dual_tree.add_node();
dual_tree.add_edge(0, new_node_id);
edge_map[new_node_id] = DecoratedEdge(1, M_twin_edge);
curr_num_nodes += 2;
}
Matrix<Rational> getPoints() const
{
return Matrix<Rational>(points);
}
const Array<Set<Int>>& getTriangles() const
{
return triangles;
}
}; // end class covering triangulation volume visitor
class CoveringBuilder {
Graph<Directed> dual_tree; // part of the dual tree of the triangulation
Int cur_depth;
graph::BFSiterator< Graph<Directed>, graph::VisitorTag<CoveringTriangulationVisitor> > bfs_it;
public:
// construct from a dcel and the horo matrix of the first edge
CoveringBuilder(graph::DoublyConnectedEdgeList& dcel, const Matrix<Rational>& first_halfedge_horo, Int depth_in)
: dual_tree(1) //start with a one-node graph
, cur_depth(depth_in)
, bfs_it(dual_tree, CoveringTriangulationVisitor(dual_tree, dcel, first_halfedge_horo, depth_in), nodes(dual_tree).front())
{}
Int getDepth() const { return cur_depth; }
// get the covering triangulation up to a given depth
BigObject computeCoveringTriangulation()
{
Int num_nodes = 3*(pow(2, cur_depth)-1)+1; //number of nodes of a binary tree with ternary root of given depth
while (bfs_it.node_visitor().numVisited() < num_nodes) {
++bfs_it;
}
Matrix<Rational> points = ones_vector<Rational>() | bfs_it.node_visitor().getPoints();
Array<Set<Int>> triangles = bfs_it.node_visitor().getTriangles();
return BigObject("fan::PolyhedralComplex<Rational>",
"POINTS", points,
"INPUT_POLYTOPES", triangles);
}
};
} }
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|