1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
|
/* Copyright (c) 1997-2024
Ewgenij Gawrilow, Michael Joswig, and the polymake team
Technische Universität Berlin, Germany
https://polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#pragma once
#include "polymake/Matrix.h"
#include "polymake/graph/Lattice.h"
#include "polymake/graph/Decoration.h"
#include "polymake/Set.h"
#include "polymake/PowerSet.h"
#include "polymake/Map.h"
#include "polymake/linalg.h"
#include "polymake/PowerSet.h"
#include "polymake/hash_set"
namespace polymake { namespace topaz {
// is 0 a vertex of the configuration? Return its index if found, else -1
// the return value is shifted if necessary
template <typename Scalar>
Int index_of_zero(const Matrix<Scalar>& vertices,
bool homogeneous = true,
Int index_shift = 0)
{
SparseVector<Scalar> the_zero(vertices.cols());
if (homogeneous)
the_zero[0] = one_value<Scalar>();
for (Int zero_index = 0; zero_index < vertices.rows(); ++zero_index) {
if (vertices.row(zero_index) == the_zero)
return zero_index + index_shift;
}
return -1;
}
template <typename Scalar>
Set<Set<Int>> star_of_zero_impl(const Matrix<Scalar>& vertices,
const Array<Set<Int>>& facets,
bool homogeneous = true)
{
const Int ioz = index_of_zero(vertices, homogeneous);
Set<Set<Int>> star_of_zero;
for (const auto& f : facets)
if (f.contains(ioz))
star_of_zero += f;
if (star_of_zero.empty()) { // find a simplex containing 0
for (const auto& f : facets) {
// solve T(V) lambda = 0
const Vector<Scalar> coeffs = homogeneous
? lin_solve(T(vertices.minor(f, All)), unit_vector<Scalar>(vertices.cols(), 0))
: lin_solve(ones_vector<Scalar>() / T(vertices.minor(f, All)), unit_vector<Scalar>(vertices.cols()+1, 0));
if (accumulate(coeffs, operations::min()) >= 0) { // the origin is a nonnegative linear combination of the vertices
star_of_zero += f;
}
}
}
return star_of_zero;
}
template <typename HDType>
Map<Set<Int>, std::vector<Int>> links_of_ridges(const HDType& HD)
{
Map<Set<Int>, std::vector<Int>> link_of;
for (const auto r : HD.nodes_of_rank(HD.rank()-2)) {
for (const auto f : HD.out_adjacent_nodes(r)) {
link_of[HD.face(r)].push_back((HD.face(f)-HD.face(r)).front());
}
}
return link_of;
}
// Quickly calculate the boundary of a simplicial ball
template <typename Container>
Set<Set<Int>> boundary_of(const Container& ball)
{
Set<Set<Int>> boundary;
for (const auto& b : ball) {
for (auto rit = entire(all_subsets_less_1(b)); !rit.at_end(); ++rit) {
if (boundary.contains(*rit)) // if we see a ridge for the second time, it's not in the boundary
boundary -= *rit;
else
boundary += *rit;
}
}
return boundary;
}
// this function takes a facet F and glues it around the boundary of
// the ball defined by the WEB. It creates a new simplicial complex
// which contains all the facets indicated by WEB.
// implemented in sum_triangulation.cc
void glue_facet(const Set<Int>& _F,
const Array<Int>& F_vertex_indices,
const Array<Set<Int>>& facets,
const Array<Int>& facets_vertex_indices,
const Set<Int>& web,
Int shift,
bool shift_facet,
std::vector<Set<Int>>& result);
template <typename Scalar>
BigObject sum_triangulation_impl(BigObject p_in,
BigObject q_in,
const IncidenceMatrix<> webOfStars_in,
OptionSet options)
{
const Matrix<Scalar>
pVert = p_in.give("COORDINATES"),
qVert = q_in.give("COORDINATES");
const Array<Set<Int>>
facetsP = p_in.give("FACETS"),
facetsQ = q_in.give("FACETS");
Map<Set<Int>, Int> index_of;
Int facet_index(0);
for (const auto& r : facetsQ)
index_of[r] = facet_index++;
const bool origin_first = options["origin_first"];
Array<Int> pVertexIndices, qVertexIndices;
if (!(p_in.lookup("VERTEX_INDICES") >> pVertexIndices)) {
pVertexIndices = sequence(0, pVert.rows());
}
if (!(q_in.lookup("VERTEX_INDICES") >> qVertexIndices)) {
qVertexIndices = sequence(0, qVert.rows());
}
const Set<Set<Int>> star_Q_0 = star_of_zero_impl(qVert, facetsQ, false);
Set<Int> indices_of_star_Q_0;
for (const auto& s : star_Q_0)
indices_of_star_Q_0 += index_of[s];
// make sure webOfStars has the right dimensions (fill with 0s if needed)
IncidenceMatrix<> webOfStars;
if (webOfStars_in.rows()) {
webOfStars = webOfStars_in;
webOfStars.resize(facetsP.size(), facetsQ.size());
} else {
webOfStars = IncidenceMatrix<>(facetsP.size(), facetsQ.size());
for (auto rit = entire(rows(webOfStars)); !rit.at_end(); ++rit)
*rit = indices_of_star_Q_0;
}
std::vector<Set<Int>> output_list;
bool is_P_sum(true);
// build simplices from p_in to q_in
// according to WEB
for (Int i = 0; i < facetsP.size(); ++i) {
const Set<Int>&
F(facetsP[i]),
web(webOfStars.row(i));
if (web.empty()) {
is_P_sum = false; // if it were a P-sum-triangulation, web wouldn't be empty
continue;
}
glue_facet(F, pVertexIndices, facetsQ, qVertexIndices, web, pVert.rows(), false, output_list);
}
// build simplices from q_in to p_in
// deduce the web in the other direction by using WEB
// compatibility tells us that the inverse web function is
// invert(transpose(web))
const IncidenceMatrix<> negatedWebOfStars(~webOfStars);
for (Int i = 0; i < facetsQ.size(); ++i) {
const Set<Int>& F = facetsQ[i];
const Set<Int>& web = negatedWebOfStars.col(i);
if (web.empty()) {
// if it is a Q-sum-triangulation this wouldn't happen
if (!is_P_sum) throw std::runtime_error("sum_triangulation: web of stars do not belong to a compatible pair");
continue;
}
glue_facet(F, qVertexIndices, facetsP, pVertexIndices, web, pVert.rows(), true, output_list);
}
Matrix<Scalar> sumVert = (pVert | zero_matrix<Scalar>(pVert.rows(), qVert.cols())) /
(zero_matrix<Scalar>(qVert.rows(), pVert.cols()) | qVert);
IncidenceMatrix<> output_facets(output_list);
output_facets.resize(output_facets.rows(), pVert.rows()+qVert.rows());
const Int
p_zero_index(index_of_zero(pVert, false)),
q_zero_index(index_of_zero(qVert, false, pVert.rows()));
// Take care of the origin
if (!origin_first) {
Int zero_index = is_P_sum ? q_zero_index : p_zero_index;
if (zero_index != -1) {
sumVert = sumVert.minor(~scalar2set(zero_index), All);
output_facets = output_facets.minor(All, ~scalar2set(zero_index));
}
} else {
Set<Int> ball_of_zero;
if (q_zero_index != -1) {
sumVert = sumVert.minor(~scalar2set(q_zero_index), All);
if (!is_P_sum) ball_of_zero = Set<Int>(output_facets.col(q_zero_index));
output_facets = output_facets.minor(All, ~scalar2set(q_zero_index));
}
if (p_zero_index != -1) {
sumVert = sumVert.minor(~scalar2set(p_zero_index), All);
if (is_P_sum) ball_of_zero = Set<Int>(output_facets.col(p_zero_index));
output_facets = output_facets.minor(All, ~scalar2set(p_zero_index));
}
sumVert = zero_vector<Scalar>() / sumVert;
output_facets = ball_of_zero | output_facets;
}
BigObject pSumTri("topaz::GeometricSimplicialComplex", mlist<Scalar>(),
"COORDINATES", sumVert,
"INPUT_FACES", rows(output_facets));
pSumTri.set_description() << "a P sum triangulation of " << p_in.name() << " and " << q_in.name() << "." << endl;
return pSumTri;
}
// implemented in web_of_stars.cc
IncidenceMatrix<> web_of_stars(const Array<Int>& poset_hom,
const Array<Set<Set<Int>>>& star_shaped_balls,
const Array<Set<Int>>& simplices);
} }
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|