File: common.rules

package info (click to toggle)
polymake 4.14-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 35,888 kB
  • sloc: cpp: 168,933; perl: 43,407; javascript: 31,575; ansic: 3,007; java: 2,654; python: 632; sh: 268; xml: 117; makefile: 61
file content (695 lines) | stat: -rw-r--r-- 22,555 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
#  Copyright (c) 1997-2024
#  Ewgenij Gawrilow, Michael Joswig, and the polymake team
#  Technische Universität Berlin, Germany
#  https://polymake.org
#
#  This program is free software; you can redistribute it and/or modify it
#  under the terms of the GNU General Public License as published by the
#  Free Software Foundation; either version 2, or (at your option) any
#  later version: http://www.gnu.org/licenses/gpl.txt.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#-------------------------------------------------------------------------------

INCLUDE
   morse_matching.rules

# convert Int {+1,0,-1} to Bool {true,false,undef} to capture heuristical approaches
sub ternary_to_bool($) {
  my ($truth_value)=@_;
  if ($truth_value>=0) { # arrived at a decision
    return $truth_value;
  } else {
    return undef; # heuristics unsuccessful
  }
}

object SimplicialComplex {

rule FACETS, VERTEX_INDICES, N_VERTICES : INPUT_FACES {
   faces_to_facets($this, $this->INPUT_FACES);
}

rule FACETS : HASSE_DIAGRAM.ADJACENCY, HASSE_DIAGRAM.DECORATION, HASSE_DIAGRAM.INVERSE_RANK_MAP, HASSE_DIAGRAM.TOP_NODE, HASSE_DIAGRAM.BOTTOM_NODE {
   $this->FACETS=facets_from_hasse_diagram($this->HASSE_DIAGRAM);
}

rule PURE, DIM : FACETS {
    my $n=$this->FACETS->size;
    my $pure=1; # let's be optimistic
    my $sz=0;   # simplicial complex may be empty
    if ($n) {
	$sz=$this->FACETS->[0]->size;
	for (my $i=1; $i<$n; ++$i) {
	    my $s=$this->FACETS->[$i]->size();
	    $pure= 0 if $sz!=$s;
	    assign_max($sz,$s);
	}
    }
    $this->PURE= $pure;
    $this->DIM=  $sz-1;
}
weight 1.10;

rule N_FACETS : FACETS {
   $this->N_FACETS=$this->FACETS->size();
}
weight 0.1;

rule N_MINIMAL_NON_FACES : MINIMAL_NON_FACES {
   $this->N_MINIMAL_NON_FACES=$this->MINIMAL_NON_FACES->rows();
}
weight 0.1;

rule DIM : FACETS {
   $this->DIM=$this->FACETS->[0]->size()-1;
}
precondition : PURE;
weight 0.1;

rule GRAPH.ADJACENCY : FACETS {
   $this->GRAPH->ADJACENCY=vertex_graph($this->FACETS);
}
weight 2.10;

rule DUAL_GRAPH.ADJACENCY : FACETS {
   $this->DUAL_GRAPH->ADJACENCY=dual_graph($this->FACETS);
}

rule GRAPH.NODE_LABELS = VERTEX_LABELS;

# methods for backward compatibility

# @category Combinatorics
# Degrees of the vertices in the [[GRAPH]].
# @return Array<Int>
user_method VERTEX_DEGREES = GRAPH.NODE_DEGREES;

# @category Topology
# True if the [[GRAPH]] is a connected graph.
# @return Bool
user_method CONNECTED = GRAPH.CONNECTED;

# @category Topology
# True if the [[DUAL_GRAPH]] is a connected graph.
# @return Bool
user_method DUAL_CONNECTED = DUAL_GRAPH.CONNECTED;

# @category Combinatorics
# The connected components of the [[GRAPH]], encoded as node sets. 
# @return Set<Set<Int>>
user_method CONNECTED_COMPONENTS = GRAPH.CONNECTED_COMPONENTS;

# @category Combinatorics
# The connected components of the [[DUAL_GRAPH]], encoded as node sets. 
# @return Set<Set<Int>>
user_method DUAL_CONNECTED_COMPONENTS = DUAL_GRAPH.DUAL_CONNECTED_COMPONENTS;

# @category Topology
# Number of connected components of the [[GRAPH]].
# @return Int
user_method N_CONNECTED_COMPONENTS = GRAPH.N_CONNECTED_COMPONENTS;

# @category Combinatorics
# The maximal cliques of the [[GRAPH]], encoded as node sets.
# @return Set<Set<Int>>
user_method MAX_CLIQUES = GRAPH.MAX_CLIQUES;

# @category Combinatorics
# The maximal cliques of the [[DUAL_GRAPH]], encoded as node sets.
# @return Set<Set<Int>>
user_method DUAL_MAX_CLIQUES = DUAL_GRAPH.MAX_CLIQUES;

# @category Combinatorics
# Node connectivity of the [[GRAPH]], that is, the minimal number of nodes to be removed from the graph such that the result is disconnected.
# @return Int
user_method CONNECTIVITY = GRAPH.CONNECTIVITY;

# @category Combinatorics
# Node connectivity of the [[DUAL_GRAPH]]. Dual to [[CONNECTIVITY]].
# @return Set<Set<Int>>
user_method DUAL_CONNECTIVITY = DUAL_GRAPH.CONNECTIVITY;

# @category Combinatorics
# True if [[GRAPH]] is a __bipartite__. 
# @return Bool
user_method BIPARTITE = GRAPH.BIPARTITE;

# @category Combinatorics
# True if [[DUAL_GRAPH]] is a __bipartite__.
# @return Bool
user_method DUAL_BIPARTITE = DUAL_GRAPH.BIPARTITE;

# @category Combinatorics
# Difference of the black and white nodes if the [[GRAPH]] is [[BIPARTITE]]. Otherwise -1.
# @return Int
user_method GRAPH_SIGNATURE = GRAPH.SIGNATURE;

# @category Combinatorics
# Difference of the black and white nodes if the [[DUAL_GRAPH]] is [[BIPARTITE]]. Otherwise -1. 
# @return Int
user_method DUAL_GRAPH_SIGNATURE = DUAL_GRAPH.SIGNATURE;


rule FOLDABLE : PROJ_ORBITS, DIM {
    $this->FOLDABLE = ($this->PROJ_ORBITS->size() == $this->DIM+1);
}
precondition : DUAL_GRAPH.CONNECTED;
weight 0.1;

rule F_VECTOR : FACETS, DIM, PURE {
  $this->F_VECTOR=f_vector($this->FACETS,$this->DIM,$this->PURE);
}
weight 3.20;

rule H_VECTOR : F_VECTOR {
  $this->H_VECTOR=h_vector($this->F_VECTOR);
}
weight 1.00;

rule SHELLING : H_VECTOR {
  $this->SHELLING=shelling($this);
}
precondition : PURE;
weight 5.00;

rule SHELLABLE : SHELLING {
  my @shell = @{$this->SHELLING};
  my $firstface = $shell[0];
  $this->SHELLABLE=@$firstface != 0;
}
precondition : PURE;

rule F_VECTOR, F2_VECTOR : HASSE_DIAGRAM.ADJACENCY, HASSE_DIAGRAM.DECORATION, HASSE_DIAGRAM.INVERSE_RANK_MAP, HASSE_DIAGRAM.TOP_NODE, HASSE_DIAGRAM.BOTTOM_NODE {
   $this->F2_VECTOR=f2_vector($this->HASSE_DIAGRAM);
   $this->F_VECTOR=$this->F2_VECTOR->diagonal;
}

rule EULER_CHARACTERISTIC : F_VECTOR {
   my $euler_char = -1;
   my $sign = 1;
   my $d = $this->F_VECTOR->size();
   for (my $i=0; $i<$d; ++$i) {
       my $f=$this->F_VECTOR->[$i];
       $euler_char += $sign*$f;
       $sign = -$sign
   }
   $this->EULER_CHARACTERISTIC=$euler_char;
}
weight 0.40;

rule N_VERTICES : FACETS {
   my $n=0;
   foreach my $f (@{$this->FACETS}) {
      assign_max($n, $f->[-1]+1) if @$f;
   }
   $this->N_VERTICES=$n;
}
weight 1.10;


rule default.homology: HOMOLOGY : FACETS {
   $this->HOMOLOGY=homology($this->FACETS, 0);
}
weight 4.10;
precondition : DIM { $this->DIM>=0 }

rule default.homology: COHOMOLOGY : FACETS {
   $this->COHOMOLOGY=homology($this->FACETS, 1);
}
weight 4.10;
precondition : DIM { $this->DIM>=0 }

rule default.homology: HOMOLOGY, CYCLES : FACETS {
   ($this->HOMOLOGY, $this->CYCLES) = homology_and_cycles($this->FACETS, 0);
}
weight 4.50;
precondition : DIM { $this->DIM>=0 }

rule default.homology: COHOMOLOGY, COCYCLES : FACETS {
   ($this->COHOMOLOGY, $this->COCYCLES) = homology_and_cycles($this->FACETS, 1);
}
weight 4.50;
precondition : DIM { $this->DIM>=0 }

rule INTERSECTION_FORM : CYCLES, COCYCLES {
   intersection_form($this);
}

rule STIEFEL_WHITNEY : FACETS {
   $this->STIEFEL_WHITNEY=stiefel_whitney($this->FACETS);
}
precondition : CLOSED_PSEUDO_MANIFOLD;
weight 5.10;

rule ODD_SUBCOMPLEX.FACETS : FACETS {
   odd_complex($this);
}
precondition : PURE;
weight 3.10;

rule ODD_SUBCOMPLEX.INPUT_FACES : FACETS, BOUNDARY.FACETS, BOUNDARY.VERTEX_MAP {
   odd_complex_of_manifold($this);
}
precondition : MANIFOLD;
weight 2.10;

rule SURFACE : DIM, GRAPH.CONNECTED, MANIFOLD {
   $this->SURFACE= $this->GRAPH->CONNECTED && $this->MANIFOLD && $this->DIM==2;
}
weight 0.1;

rule GENUS : ORIENTED_PSEUDO_MANIFOLD, EULER_CHARACTERISTIC {
  my $euler_char = $this->EULER_CHARACTERISTIC;
  if ($this->ORIENTED_PSEUDO_MANIFOLD) {
    $this->GENUS = (1-$euler_char)/2;
  } else {
    $this->GENUS = 1-$euler_char;
  }
}
precondition : SURFACE;
precondition : CLOSED_PSEUDO_MANIFOLD;
weight 0.20;

rule MANIFOLD : { $this->MANIFOLD=1; }
precondition : BALL;
weight 0.1;

rule MANIFOLD : { $this->MANIFOLD=1; }
precondition : SPHERE;
weight 0.1;

# deterministic
rule MANIFOLD : FACETS, DIM, N_VERTICES {
   $this->MANIFOLD=ternary_to_bool(is_manifold($this));
}
precondition : PURE;
precondition : DIM { $this->DIM < 4 }
weight 4.10;

# heuristics
rule MANIFOLD : HASSE_DIAGRAM.ADJACENCY, HASSE_DIAGRAM.DECORATION, HASSE_DIAGRAM.INVERSE_RANK_MAP, HASSE_DIAGRAM.TOP_NODE, HASSE_DIAGRAM.BOTTOM_NODE, CLOSED_PSEUDO_MANIFOLD {
   $this->MANIFOLD=ternary_to_bool(is_manifold_h($this));
}
precondition : PSEUDO_MANIFOLD;
weight 4.50;

rule PSEUDO_MANIFOLD : {  $this->PSEUDO_MANIFOLD=1; }
precondition : MANIFOLD;
weight 0.1;

rule PSEUDO_MANIFOLD : {  $this->PSEUDO_MANIFOLD=1; }
precondition : CLOSED_PSEUDO_MANIFOLD;
weight 0.1;

rule PSEUDO_MANIFOLD : {  $this->PSEUDO_MANIFOLD=1; }
precondition : ORIENTED_PSEUDO_MANIFOLD;
weight 0.1;

rule PSEUDO_MANIFOLD : HASSE_DIAGRAM.ADJACENCY, HASSE_DIAGRAM.DECORATION, HASSE_DIAGRAM.INVERSE_RANK_MAP, HASSE_DIAGRAM.TOP_NODE, HASSE_DIAGRAM.BOTTOM_NODE {
   is_pseudo_manifold($this);
}
precondition : PURE;
precondition : DIM {
	$this->DIM >= 1;
}
weight 1.50;

rule PSEUDO_MANIFOLD : {
	$this->PSEUDO_MANIFOLD = 1; 
}
precondition : DIM {
	$this->DIM == 0;
}

rule MANIFOLD, PSEUDO_MANIFOLD : {
   $this->MANIFOLD=0;
   $this->PSEUDO_MANIFOLD=0;
}
precondition : !PURE;
weight 0.1;

rule CLOSED_PSEUDO_MANIFOLD : HASSE_DIAGRAM.ADJACENCY, HASSE_DIAGRAM.DECORATION, HASSE_DIAGRAM.INVERSE_RANK_MAP, HASSE_DIAGRAM.TOP_NODE, HASSE_DIAGRAM.BOTTOM_NODE {
   is_closed_pseudo_manifold($this);
}
precondition : PURE;
precondition : DIM {
	$this->DIM >= 1;
}
weight 1.50;

rule CLOSED_PSEUDO_MANIFOLD : {
	$this->CLOSED_PSEUDO_MANIFOLD = 1; 
}
precondition : DIM {
	$this->DIM == 0;
}
weight 0.1;

rule CLOSED_PSEUDO_MANIFOLD : {
   $this->CLOSED_PSEUDO_MANIFOLD=0;
}
precondition : !PURE;
weight 0.1;

rule ORIENTED_PSEUDO_MANIFOLD, ORIENTATION : FACETS, CYCLES {
    my $c = $this->CYCLES;
    my $faces =        $c->[$c->size()-1]->faces;
    my $coeff_matrix = $c->[$c->size()-1]->coeffs;
    if ($coeff_matrix->rows != 1) {
	$this->ORIENTED_PSEUDO_MANIFOLD = 0;
    } else {
	$this->ORIENTED_PSEUDO_MANIFOLD = 1;
	my $iof = new Map<Set<Int>,Int>;
	my $max_index=0;
	foreach my $f (@{$this->FACETS}) {
	    $iof->{$f} = $max_index++;
	}
	my $row = $coeff_matrix->[0];
	my $orientation = new Array<Int>($this->FACETS->size());
	foreach my $face_idx (0..$faces->size()-1) {
	    $orientation->[$iof->{$faces->[$face_idx]}] = $row->[$face_idx];
	}
	$this->ORIENTATION = $orientation;
    }
}
precondition : CLOSED_PSEUDO_MANIFOLD;
weight 1.00;

rule ORIENTED_PSEUDO_MANIFOLD, ORIENTATION : FACETS, N_VERTICES, BOUNDARY {
    my $n = $this->N_VERTICES;
    my $cc = $this->BOUNDARY->DUAL_GRAPH->CONNECTED_COMPONENTS;

    # add all existing facets to a list
    my @facets;
    my $iof = new Map<Set<Int>,Int>;
    my $max_index=0;
    foreach my $f (@{$this->FACETS}) {
	my $fcopy = new Set<Int>($f);
	push @facets, $fcopy;
	$iof->{$fcopy} = $max_index++;
    }

    # introduce a new cone point for each connected component of the boundary,
    # and add the cones over the boundary to the list
    my $boundary_vertex_map = $this->BOUNDARY->VERTEX_MAP;
    my $new_verts = new Set<Int>;
    foreach my $cp_number (0..$cc->rows-1) {
	$new_verts += $n + $cp_number;
	foreach my $dual_nodes ($cc->[$cp_number]) {
	    foreach my $node (@{$dual_nodes}) {
		my $f = new Set<Int>(map { $boundary_vertex_map->[$_] } @{$this->BOUNDARY->FACETS->[$node]});
		$f += $n + $cp_number;  # add the new cone point
		push @facets, $f;
	    }
	}
    }

    # take a top homology cycle of this new complex, and restrict it
    my $c = new SimplicialComplex(FACETS=>\@facets)->CYCLES;
    my $faces =        $c->[$c->size()-1]->faces;
    my $coeff_matrix = $c->[$c->size()-1]->coeffs;
    if ($coeff_matrix->rows != 1) {
	$this->ORIENTED_PSEUDO_MANIFOLD = 0;
    } else {
	$this->ORIENTED_PSEUDO_MANIFOLD = 1;
	my $row = $coeff_matrix->[0];
	my $orientation = new Array<Int>($this->FACETS->size());
	foreach my $face_idx (0..$faces->size()-1) {
	    if (($new_verts * $faces->[$face_idx])->size() == 0) {
		$orientation->[$iof->{$faces->[$face_idx]}] = $row->[$face_idx];
	    }
	}
	$this->ORIENTATION = $orientation;
    }
}
precondition : PSEUDO_MANIFOLD && !CLOSED_PSEUDO_MANIFOLD;
weight 1.50;

rule LABELED_FACETS : N_VERTICES, FACETS {
    my $facets = $this->FACETS;
    my $labels = new Array<String>;
    if (defined (my $vertex_labels = $this->lookup("VERTEX_LABELS"))) {
	$labels = $vertex_labels;
    } else {
	$labels = new Array<String>(map { "$_" } (0..$this->N_VERTICES-1));
    }
    $this->LABELED_FACETS(temporary) = labeled_output($labels, $facets, $facets->size());
}

rule LABELED_ORIENTATION : N_VERTICES, FACETS, ORIENTATION {
    my $facets = $this->FACETS;
    my $orientation = $this->ORIENTATION;
    my $labels = new Array<String>;
    if (defined (my $vertex_labels = $this->lookup("VERTEX_LABELS"))) {
	$labels = $vertex_labels;
    } else {
	$labels = new Array<String>(map { "$_" } (0..$this->N_VERTICES-1));
    }
    my $max_label_length=0;
    foreach my $l(@{$labels}) {
	assign_max($max_label_length, length($l));
    }
    my @labeled_orientations;
    foreach my $i (0..$orientation->size()-1) {
	my $lop = "[";
	my $first = 1;
	foreach my $v (@{$facets->[$i]}) {
	    if ($first == 1) {
		$first = 0;
	    } else {
		$lop .= " " unless $max_label_length == 1;
	    }
	    $lop .= $labels->[$v];
	}
	$lop .= "]" . (($orientation->[$i] == 1) ? "+" : "-");
	push @labeled_orientations, $lop;
    }
    $this->LABELED_ORIENTATION(temporary) = \@labeled_orientations;
}


rule BALL : FACETS, DIM, N_VERTICES, HASSE_DIAGRAM.ADJACENCY, HASSE_DIAGRAM.DECORATION, HASSE_DIAGRAM.INVERSE_RANK_MAP, HASSE_DIAGRAM.TOP_NODE, HASSE_DIAGRAM.BOTTOM_NODE {
   $this->BALL=ternary_to_bool(is_ball_or_sphere($this,0));
}
precondition : PSEUDO_MANIFOLD;
precondition : !CLOSED_PSEUDO_MANIFOLD;
weight 4.10;

rule BALL : {
   $this->BALL=0;
}
precondition : CLOSED_PSEUDO_MANIFOLD;
weight 0.1;

rule SPHERE : FACETS, DIM, N_VERTICES, HASSE_DIAGRAM.ADJACENCY, HASSE_DIAGRAM.DECORATION, HASSE_DIAGRAM.INVERSE_RANK_MAP, HASSE_DIAGRAM.TOP_NODE, HASSE_DIAGRAM.BOTTOM_NODE {
   $this->SPHERE=ternary_to_bool(is_ball_or_sphere($this,1));
}
precondition : CLOSED_PSEUDO_MANIFOLD;
weight 4.10;

rule SPHERE : {
   $this->SPHERE=0;
}
precondition : !CLOSED_PSEUDO_MANIFOLD;
weight 0.1;


rule HASSE_DIAGRAM.ADJACENCY, HASSE_DIAGRAM.DECORATION, HASSE_DIAGRAM.INVERSE_RANK_MAP, HASSE_DIAGRAM.TOP_NODE, HASSE_DIAGRAM.BOTTOM_NODE : FACETS {
   $this->HASSE_DIAGRAM = hasse_diagram($this);
}
weight 4.10;


rule MINIMAL_NON_FACES : HASSE_DIAGRAM.ADJACENCY, HASSE_DIAGRAM.DECORATION, HASSE_DIAGRAM.INVERSE_RANK_MAP, HASSE_DIAGRAM.TOP_NODE, HASSE_DIAGRAM.BOTTOM_NODE {
   $this->MINIMAL_NON_FACES=minimal_non_faces($this->HASSE_DIAGRAM);
}
weight 4.10;
precondition : DIM { $this->DIM <= 10; }
# this is not really a strict precondition for the algorithm
# it used to be implemented as a dynamic weight but those don't work as expected (#7)
# and this causes the lawler client to run for some medium sized (5-dim) examples where it
# is a lot slower than the one via the hasse-diagram


# This implements an old algorithm described by Lawler:
# "Covering problems: duality relations and a new method of solution"
# SIAM J. Appl. Math., Vol. 14, No. 5, 1966
#
# See also Chapter 2 of "Hypergraphs", C. Berge, North-Holland, Amsterdam, 1989

rule MINIMAL_NON_FACES : FACETS, DIM, N_VERTICES {
   my $mnf = lawler_minimal_non_faces($this->FACETS, $this->N_VERTICES);
   $this->MINIMAL_NON_FACES = new IncidenceMatrix($mnf->size > 0 ? @$mnf : 0, $this->N_VERTICES);
}
weight 4.10;
precondition : DIM { $this->DIM > 10; }
# this is not really a strict precondition for the algorithm
# it used to be implemented as a dynamic weight but those don't work as expected (#7)
# and this causes the lawler client to run for some medium sized (5-dim) examples where it
# is a lot slower than the one via the hasse-diagram


rule LOCALLY_STRONGLY_CONNECTED : {
   $this->LOCALLY_STRONGLY_CONNECTED=1;
}
precondition : MANIFOLD;
weight 0.1;

rule LOCALLY_STRONGLY_CONNECTED : HASSE_DIAGRAM.ADJACENCY, HASSE_DIAGRAM.DECORATION, HASSE_DIAGRAM.INVERSE_RANK_MAP, HASSE_DIAGRAM.TOP_NODE, HASSE_DIAGRAM.BOTTOM_NODE {
   $this->LOCALLY_STRONGLY_CONNECTED=is_locally_strongly_connected($this);
}
weight 2.10;

#compute boundary complex
rule BOUNDARY.FACETS, BOUNDARY.VERTEX_MAP : HASSE_DIAGRAM.ADJACENCY, HASSE_DIAGRAM.DECORATION, HASSE_DIAGRAM.INVERSE_RANK_MAP, HASSE_DIAGRAM.TOP_NODE, HASSE_DIAGRAM.BOTTOM_NODE {
   ($this->BOUNDARY->FACETS, $this->BOUNDARY->VERTEX_MAP) =  boundary_of_pseudo_manifold($this);
}
precondition : PSEUDO_MANIFOLD;
weight 1.10;

rule VERTEX_LABELS : N_VERTICES {
   my @labels = (0..$this->N_VERTICES-1);
   $this->VERTEX_LABELS="@labels";
}
weight 0.10;

rule PROJ_ORBITS, PROJ_DICTIONARY : N_VERTICES, FACETS, DUAL_GRAPH.ADJACENCY {
   ($this->PROJ_ORBITS, $this->PROJ_DICTIONARY)=projectivities($this);
}
precondition : DUAL_GRAPH.CONNECTED;
weight 1.10;


}

# @category Topology
declare property_type Cell : c++ (include => "polymake/topaz/Filtration.h") {

   # Construct a filtration cell.
   # @param Int deg Filtration degree of the cell.
   # @param Int dim Dimension of the cell.
   # @param Int idx Row number of the cell in the boundary matrix belonging to the Filtration.
   method construct(*, *, *) : c++;

   operator @eq : c++;
}

# @category Topology
# A filtration of chain complexes.
# @tparam MatrixType
declare property_type Filtration<MatrixType> : c++ (include => "polymake/topaz/Filtration.h") {

   # Construct a Filtration.
   # @param Array<Cell> C An array containing all cells in the filtration.
   # @param Array<MatrixType> bd The boundary matrices of the last frame of the filtration, indexed by dimension.
   # @optional Bool s Indicates whether the cell array is already sorted by degree first and dimension second, default: false
   method construct(Array<Cell>, Array<MatrixType>; $=false) : c++;

   # Construct a Filtration from a HasseDiagram and an integer array.
   # @param Lattice The last frame of the filtration.
   # @param Array<Int> degs The degrees of the simplices in the input complex.
   #                        Indexing after sorting them first by dimension, second lexicographically (like in the HasseDiagram)
   method construct(Lattice<BasicDecoration>, Array<Int>) : c++;

   operator @eq : c++;

   # Returns the dimension of the maximal cells in the last frame of the filtration.
   # @return Int
   user_method dim() : c++;

   # Returns the number of frames in of the filtration.
   # @return Int
   user_method n_frames() : c++;

   # Returns the number of cells in the last frame of the filtration.
   # @return Int
   user_method n_cells() : c++;

   # Returns the cells of the filtration, given as array of 3-tuples containing degree, dimension and
   # boundary matrix row number of the cell.
   # @return Array<Cell>
   user_method cells() : c++;

   # Returns the d-boundary matrix of the t-th frame of the filtration.
   # @param Int d
   # @param Int t
   user_method boundary_matrix(Int, Int) : c++;
}

# @category Topology
# A finite chain complex, represented as its boundary matrices.
# Check out the tutorial on the polymake homepage for examples on constructing ChainComplexes and computing their homology.
#
# @example You can create a new ChainComplex by passing the Array of differential matrices (as maps via _left_ multiplication):
# > $cc = new ChainComplex(new Array<SparseMatrix<Integer>>([[[2,0]]]));
#
# Note that this creates a ChainComplex consisting three differential matrices -- the trivial zeroth and last ones
# are omitted in the constructor.
#
# You can look at the boundary matrices:
# > print $cc->boundary_matrix(1);
# | 2 0
#
# The functions ''homology'', ''homology_and_cycles'' and ''betti_numbers'' can be used to analyse your complex.
# > print homology($cc,0);
# | ({(2 1)} 1)
# | ({} 0)
# @tparam MatrixType The type of the differential matrices. default: SparseMatrix<Integer>
declare property_type ChainComplex<MatrixType = SparseMatrix<Integer>> : c++ (include => "polymake/topaz/ChainComplex.h") {

   # Construct a Chain Complex.
   # @param Array<MatrixType> bd The boundary matrices of the chain complex, NOT including the trivial zeroth and last matrices. Indexed by dimension. The matrices are maps via left multiplication.
   # @optional Bool sanity_check Indicates whether to test if the input matrices' dimensions match and the maps satisfy the differential condition. default: 0
   method construct(Array<MatrixType>; $=0) : c++;

   operator @eq : c++;

   # Returns the number of non-empty modules in the complex.
   # @return Int
   user_method dim() : c++;

   # Returns the d-boundary matrix of the chain complex.
   # @param Int d
   # @return MatrixType
   user_method boundary_matrix(*) : c++;
}

# @category Producing a new simplicial complex from others
# Computes the __barycentric subdivision__ of //complex//.
# @param SimplicialComplex complex
# @option String pin_hasse_section default: HASSE_DIAGRAM
# @option String label_section default: VERTEX_LABELS
# @option String coord_section default: VERTICES
# @option Bool geometric_realization set to 1 to obtain a [[GeometricSimplicialComplex]], default: 0
# @return SimplicialComplex (or [[GeometricSimplicialComplex]])
# @example To subdivide a triangle into six new triangles, do this:
# > $b = barycentric_subdivision(simplex(2));
user_function barycentric_subdivision($ { relabel => 1, pin_hasse_section=>"HASSE_DIAGRAM", label_section=>"VERTEX_LABELS", geometric_realization=>0, coord_section=>"VERTICES"}) {
    barycentric_subdivision_impl(@_);
}

# @category Producing a new simplicial complex from others
# Computes the //k//-th __barycentric subdivision__ of //complex// by iteratively calling [[barycentric_subdivision]].
# @param SimplicialComplex complex
# @param Int k
# @option String pin_hasse_section default: HASSE_DIAGRAM
# @option String label_section default: VERTEX_LABELS
# @option String coord_section default: VERTICES
# @option Bool geometric_realization set to 1 to obtain a [[GeometricSimplicialComplex]], default: 0
# @return SimplicialComplex (or [[GeometricSimplicialComplex]])
# @example The following applies barycentric subdivision to the triangle twice.
# > $b = iterated_barycentric_subdivision(simplex(2), 2);
# > print $b -> F_VECTOR;
# | 25 60 36
user_function iterated_barycentric_subdivision(SimplicialComplex $ { relabel => 1, pin_hasse_section=>"HASSE_DIAGRAM", label_section=>"VERTEX_LABELS", geometric_realization=>0, coord_section=>"VERTICES"}) {
  iterated_barycentric_subdivision_impl(@_);
}

# Local Variables:
# mode: perl
# c-basic-offset:3
# End: