1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
|
# Copyright (c) 1997-2024
# Ewgenij Gawrilow, Michael Joswig, and the polymake team
# Technische Universität Berlin, Germany
# https://polymake.org
#
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 2, or (at your option) any
# later version: http://www.gnu.org/licenses/gpl.txt.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#-------------------------------------------------------------------------------
# @category Topology
#
# A finitely generated abelian group is encoded as a sequence ( { (t<sub>1</sub> m<sub>1</sub>) ... (t<sub>n</sub> m<sub>n</sub>) } f) of non-negative integers,
# with t<sub>1</sub> > t<sub>2</sub> > ... > t<sub>n</sub> > 1, plus an extra non-negative integer f.
#
# That group is isomorphic to (Z/t<sub>1</sub>)<sup>m<sub>1</sub></sup> × ... × (Z/t<sub>n</sub>)<sup>m<sub>n</sub></sup> × Z<sup>f</sup>,
# where Z<sup>0</sup> is the trivial group.
#
# @field List<Pair<Scalar, Int>> torsion list of Z-groups
# @field Int betti_number the number //f//
# @tparam Scalar integer type of torsion coefficients
declare property_type HomologyGroup<Scalar> : c++ (include => "polymake/topaz/HomologyComplex.h");
# @category Topology
#
# A group is encoded as a pair of an integer matrix and a vector of faces.
# The elements of the group can be obtained by symbolic multiplication of both.
#
# @field SparseMatrix<Scalar> coeff the integer matrix
# @field Array<Set<Int>> faces the faces
# @tparam Scalar integer type of matrix elements
declare property_type CycleGroup<Scalar> : c++ (include => "polymake/topaz/HomologyComplex.h");
# @category Topology
#
# Parity and signature of the intersection form of a closed oriented 4k-manifold.
# See [[INTERSECTION_FORM]].
declare property_type IntersectionForm : c++ (include => "polymake/topaz/IntersectionForm.h");
object SimplicialComplex {
# permuting the vertices
permutation VertexPerm : PermBase ;
# @category Input property
# Any description of the faces of a simplicial complex with vertices v_0 < v_1 < v_2 < ... arbitrary. Redundant faces allowed.
property INPUT_FACES : Array<Set> {
# for testing purposes, properties are equivalent regardless of the order
sub equal {
my ($hf1, $hf2)=map { new HashSet<Set>($_) } @_;
$hf1==$hf2;
}
}
# @category Combinatorics
# Indices of the vertices from [[INPUT_FACES]]. That is, the map i \mapsto v_i.
# Used for embeddings of subcomplexes.
property VERTEX_INDICES : Array<Int>;
# @category Visualization
# Labels of the vertices.
property VERTEX_LABELS : Array<String>;
rule VERTEX_LABELS : VertexPerm.VERTEX_LABELS, VertexPerm.PERMUTATION {
$this->VERTEX_LABELS=permuted($this->VertexPerm->VERTEX_LABELS, $this->VertexPerm->PERMUTATION);
}
weight 1.10;
# @category Combinatorics
# Find the vertices by given labels.
# @param String label ... vertex labels
# @return Set<Int> vertex indices
user_method labeled_vertices {
my $this=shift;
if (defined (my $labels=$this->lookup("VERTEX_LABELS"))) {
new Set([ find_labels($labels, @_) ]);
} else {
die "No VERTEX_LABELS stored in this complex";
}
}
# @category Combinatorics
# Output the boundary matrix of dimension __d__. Indexing is according to
# the face indices in the HASSE_DIAGRAM of the complex.
# The matrix is a map via multiplying it to a vector from the __left__.
# Beware, this computes the whole face lattice of your complex, which is expensive.
# @param Int d Dimension of the boundary matrix.
# @return SparseMatrix<Integer>
# @example This prints the boundary matrix of the 3-simplex:
# > print simplex(3)->boundary_matrix(1);
# | -1 1 0 0
# | -1 0 1 0
# | 0 -1 1 0
# | -1 0 0 1
# | 0 -1 0 1
# | 0 0 -1 1
# The output can be interpreted like this: the zeroth column of the matrix corresponds
# to the facet with index 0, which contains the edges with indices 0,1 and 3.
user_method boundary_matrix {
return boundary_matrix_cpp(@_);
}
# @category Combinatorics
# Number of vertices.
property N_VERTICES : Int;
# @category Combinatorics
# Faces which are maximal with respect to inclusion, encoded as their ordered set of vertices.
# The vertices must be numbered 0, ..., n-1.
property FACETS : Array<Set>;
rule FACETS : VertexPerm.FACETS, VertexPerm.PERMUTATION {
$this->FACETS=permuted_elements($this->VertexPerm->FACETS, $this->VertexPerm->PERMUTATION);
}
weight 1.20;
# permuting the [[FACETS]]
permutation FacetPerm : PermBase;
rule FacetPerm.PERMUTATION : FacetPerm.FACETS, FACETS {
$this->FacetPerm->PERMUTATION = find_permutation($this->FacetPerm->FACETS, $this->FACETS)
// die "no permutation";
}
rule FACETS : FacetPerm.FACETS, FacetPerm.PERMUTATION {
$this->FACETS = permuted($this->FacetPerm->FACETS, $this->FacetPerm->PERMUTATION);
}
weight 1.10;
# @category Combinatorics
# Number of [[FACETS]].
property N_FACETS : Int;
# @category Combinatorics
# Inclusion minimal non-faces (vertex subsets which are not faces of the simplicial complex).
property MINIMAL_NON_FACES : IncidenceMatrix;
rule MINIMAL_NON_FACES : VertexPerm.MINIMAL_NON_FACES, VertexPerm.PERMUTATION {
$this->MINIMAL_NON_FACES=permuted_cols($this->VertexPerm->MINIMAL_NON_FACES, $this->VertexPerm->PERMUTATION);
}
weight 1.20;
# @category Combinatorics
# Number of [[MINIMAL_NON_FACES]].
property N_MINIMAL_NON_FACES : Int;
# @category Combinatorics
# Maximal dimension of the [[FACETS]], where the dimension of a facet is defined as
# the number of its vertices minus one.
property DIM : Int;
# @category Combinatorics
# A simplicial complex is __pure__ if all its facets have the same dimension.
property PURE : Bool;
# @category Combinatorics
# f<sub>k</sub> is the number of k-faces, for k = 0,... , d, where d is the dimension.
property F_VECTOR : Array<Int>;
# @category Combinatorics
# The h-vector of the simplicial complex.
property H_VECTOR : Array<Int>;
# @category Combinatorics
# f<sub>ik</sub> is the number of incident pairs of i-faces and k-faces; the main
# diagonal contains the [[F_VECTOR]].
property F2_VECTOR : Matrix<Int>;
# @category Combinatorics
# True if this is shellable.
property SHELLABLE : Bool;
# @category Combinatorics
# An ordered list of facets constituting a shelling.
property SHELLING : Array<Set>;
# @category Combinatorics
# True if this is constructible.
property CONSTRUCTIBLE : Bool;
# @category Combinatorics
# Subcomplex generated by faces of codimension 2 that are contained in an odd
# number of faces of codimension 1.
property ODD_SUBCOMPLEX : SimplicialComplex;
rule ODD_SUBCOMPLEX.VertexPerm.PERMUTATION = VertexPerm.PERMUTATION;
# @category Combinatorics
# True if [[GRAPH]] is ([[DIM]] + 1)-colorable.
property FOLDABLE : Bool;
# @category Topology
# Reduced Euler characteristic. Alternating sum of the [[F_VECTOR]] minus 1.
property EULER_CHARACTERISTIC : Int;
# @category Topology
# Reduced simplicial homology groups H<sub>0</sub>, ..., H<sub>d</sub> (integer coefficients), listed in increasing dimension order.
# See [[HomologyGroup]] for explanation of encoding of each group.
property HOMOLOGY : Array<HomologyGroup<Integer>>;
# @category Topology
# Reduced cohomology groups, listed in increasing codimension order.
# See [[HomologyGroup]] for explanation of encoding of each group.
property COHOMOLOGY : Array<HomologyGroup<Integer>>;
# @category Topology
# Representatives of cycle groups, listed in increasing dimension order.
# See [[CycleGroup]] for explanation of encoding of each group.
property CYCLES : Array<CycleGroup<Integer>>;
### FIXME: needs a client to permute since CycleGroup embedded c++ type
rule nonexistent : CYCLES : VertexPerm.CYCLES, VertexPerm.PERMUTATION;
# @category Topology
# Representatives of cocycle groups, listed in increasing codimension order.
# See [[CycleGroup]] for explanation of encoding of each group.
property COCYCLES : Array<CycleGroup<Integer>>;
### FIXME: needs a client to permute since CycleGroup embedded c++ type
rule nonexistent : COCYCLES : VertexPerm.COCYCLES, VertexPerm.PERMUTATION;
# @category Topology
#
# The integral quadratic form obtained from restricting the multiplication of the cohomology of a closed
# 4k-manifold to H^{2k} x H^{2k} -> H^{4k} = Z. As a quadratic form over the reals it is characterized
# by its dimension and its index of inertia (or, equivalenty, by the number of positive and negative ones
# in its canonical form). An integral quadratic form is even if it takes values in 2Z.
property INTERSECTION_FORM : IntersectionForm;
# @category Topology
# Mod 2 Stiefel-Whitney homology classes per dimension. Each cycle is represented as a set of simplices.
property STIEFEL_WHITNEY : Array<Set<Set<Int>>>;
### FIXME: could be done
rule nonexistent : STIEFEL_WHITNEY : VertexPerm.STIEFEL_WHITNEY, VertexPerm.PERMUTATION;
# @category Topology
# Determines if this is a compact simplicial manifold with boundary.
# Depends on heuristic [[SPHERE]] recognition.
# May be true or false or undef (if heuristic does not succeed).
property MANIFOLD : Bool;
# @category Topology
# True if this is a [[PURE]] simplicial complex with the property that each ridge is
# contained in either one or two facets.
property PSEUDO_MANIFOLD: Bool;
# @category Topology
# True if this is a [[PURE]] simplicial complex with the property that each ridge is
# contained in exactly two facets.
property CLOSED_PSEUDO_MANIFOLD : Bool;
# @category Topology
# True if this is a [[PSEUDO_MANIFOLD]] with top level homology isomorphic to Z.
property ORIENTED_PSEUDO_MANIFOLD : Bool;
# @category Topology
# An orientation of the facets of an [[ORIENTED_PSEUDO_MANIFOLD]], such that the induced orientations
# of a common ridge of two neighboring facets cancel each other out. Each facet is marked with //1//
# if the orientation agrees with the (chosen) orientation of the first facet, and is marked with //-1// otherwise.
property ORIENTATION : Array<Int>;
rule nonexistent : ORIENTATION : VertexPerm.ORIENTATION, VertexPerm.PERMUTATION;
rule ORIENTATION : FacetPerm.ORIENTATION, FacetPerm.PERMUTATION {
$this->ORIENTATION=permuted($this->FacetPerm->ORIENTATION, $this->VertexPerm->PERMUTATION);
}
weight 1.10;
# @category Topology
# A representation of the facets that prints them using the VERTEX_LABELS
property LABELED_FACETS : Array<String>;
# @category Topology
# A representation of the orientation that prints each facet using the VERTEX_LABELS, followed by its sign
property LABELED_ORIENTATION : Array<String>;
# @category Topology
# Determines if this is homeomorphic to a sphere.
# In general, this is undecidable; therefore, the implementation depends on heuristics.
# May be true or false or undef (if heuristic does not succeed).
property SPHERE : Bool;
# @category Topology
# Determines if this is homeomorphic to a ball.
# In general, this is undecidable; therefore, the implementation depends on heuristics.
# May be true or false or undef (if heuristic does not succeed).
# @example Simplicial Complex is a ball.
# > $b= new SimplicialComplex(INPUT_FACES=>[[0,1,2,3],[1,2,3,4]]);
# > print $b->BALL;
# | true
property BALL : Bool;
# @category Combinatorics
# The subcomplex consisting of all 1-faces.
property GRAPH : Graph;
rule GRAPH.NodePerm.PERMUTATION = VertexPerm.PERMUTATION;
# @category Combinatorics
# A coloring of the vertices.
property COLORING : Array<Int>;
rule COLORING : VertexPerm.COLORING, VertexPerm.PERMUTATION {
$this->COLORING=permuted($this->VertexPerm->COLORING, $this->VertexPerm->PERMUTATION);
}
weight 1.10;
# @category Combinatorics
# The graph of facet neighborhood.
# Two [[FACETS]] are neighbors if they share a (d-1)-dimensional face.
property DUAL_GRAPH : Graph {
property COLORING : NodeMap<Undirected,Int> : construct(ADJACENCY);
}
rule DUAL_GRAPH.NodePerm.PERMUTATION = FacetPerm.PERMUTATION;
# @category Combinatorics
# The face lattice of the simplical complex
# organized as a directed graph. Each node corresponds to some face
# of the simplical complex. It is represented as the list of vertices
# comprising the face. The outgoing arcs point to the containing faces
# of the next dimension. An artificial top node is added to represent
# the entire complex.
property HASSE_DIAGRAM : Lattice<BasicDecoration> {
user_method dim {
return shift->rank()-1;
}
user_method nodes_of_dim($) {
my ($this,$d) = @_;
return shift->nodes_of_rank($d+1);
}
user_method nodes_of_dim_range($,$) {
my ($this,$d1,$d2) = @_;
return shift->nodes_of_rank_range($d1+1,$d2+1);
}
}
# @category Topology
# True if this is a [[CONNECTED]] [[MANIFOLD]] of dimension 2.
property SURFACE : Bool;
# @category Topology
# The __genus__ of a surface.
property GENUS : Int;
# @category Topology
# True if the vertex star of each vertex is [[DUAL_CONNECTED]].
property LOCALLY_STRONGLY_CONNECTED : Bool;
#compute the VERTEX_MAP of a subcomplex given a permutation and the VertexPerm.VERTEX_MAP
sub compute_vertex_map_perm{
my ($perm, $perm_map) = (@_);
my $s = $perm_map->size();
my $map = new Array<Int>($s);
for(my $i = 0; $i < $s; ++$i){
$map->[$i] = $perm->[$perm_map->[$i]];
}
return $map;
}
# @category Combinatorics
# Codimension-1-faces of a [[PSEUDO_MANIFOLD]] which are contained in one facet only.
property BOUNDARY : self {
# @category Combinatorics
# Maps vertices of the boundary complex to the corresponding ones in the supercomplex
property VERTEX_MAP : Array<Int>;
}
rule BOUNDARY.VERTEX_MAP : VertexPerm.PERMUTATION, VertexPerm.BOUNDARY.VERTEX_MAP {
$this->BOUNDARY->VERTEX_MAP = compute_vertex_map_perm($this->VertexPerm->PERMUTATION, $this->VertexPerm->BOUNDARY->VERTEX_MAP);
}
# @category Topology
# One-dimensional subcomplex which forms a knot or link, i.e., a collection of pairwise disjoint cycles.
# Usually that complex is a 3-sphere or a 3-ball.
property KNOT : SimplicialComplex : multiple;
rule KNOT.FACETS : VertexPerm.KNOT.FACETS, VertexPerm.PERMUTATION {
$this->KNOT->FACETS = permuted_elements($this->VertexPerm->KNOT->FACETS, $this->VertexPerm->PERMUTATION);
}
weight 1.20;
# @category Combinatorics
# Orbit decomposition of the group of projectivities acting on the set of vertices of facet 0.
property PROJ_ORBITS : Set<Set<Int>>;
rule PROJ_ORBITS : VertexPerm.PROJ_ORBITS, VertexPerm.PERMUTATION {
$this->PROJ_ORBITS = permuted_elements($this->VertexPerm->PROJ_ORBITS, $this->VertexPerm->PERMUTATION);
}
weight 1.20;
# @category Combinatorics
# For each vertex the corresponding vertex of facet 0 with respect to the action of the group of projectivities.
property PROJ_DICTIONARY : Array<Int>;
rule nonexistent : PROJ_DICTIONARY : VertexPerm.PROJ_DICTIONARY, VertexPerm.PERMUTATION;
# @category Symmetry
# This can be any subgroup of the full combinatorial automorphism group.
property GROUP : group::Group : multiple;
# @category Combinatorics
# A collection A of k-sets of nonnegative integers is shifted if whenever S \in A and R is obtained from S by replacing an element with a smaller element, then R belongs to A.
# A simplicial complex is shifted if the (k-1)-faces form a shifted collection for all k.
# Kalai: Algebraic shifting, Adv. Stud. Pure Math. 33, Mathematical Society of Japan, Tokyo, 2002
property SHIFTED : Bool;
rule SHIFTED : HASSE_DIAGRAM {
$this->SHIFTED = is_shifted($this->HASSE_DIAGRAM);
}
}
# A geometric simplicial complex, i.e., a simplicial complex with a geometric realization.
# //Scalar// is the numeric data type used for the coordinates.
# @tparam Scalar default: [[Rational]]
declare object GeometricSimplicialComplex<Scalar=Rational> : SimplicialComplex {
# Coordinates for the vertices of the simplicial complex, such that the complex is
# embedded without crossings in some R<sup>e</sup>. Vector (x<sub>1</sub>, .... x<sub>e</sub>) represents a point
# in Euclidean e-space.
property COORDINATES : Matrix<Scalar>;
rule COORDINATES : VertexPerm.COORDINATES, VertexPerm.PERMUTATION {
$this->COORDINATES = permuted_rows($this->VertexPerm->COORDINATES, $this->VertexPerm->PERMUTATION);
}
weight 1.20;
# Dimension e of the space in which the [[COORDINATES]] of the complex is embedded.
property G_DIM : Int;
# Volume of a geometric simplicial complex.
property VOLUME : Scalar;
# A geometric simplicial complex is unimodular if all simplices have unit
# normalized volume. If the simplicial complex is lower dimensional, each
# simplex is considered in its affine hull.
#
# @example Unit square, triangulated.
# > $C = new GeometricSimplicialComplex(COORDINATES=>[[0,0],[1,0],[0,1],[1,1]], FACETS=>[[0,1,2],[1,2,3]]);
# > print $C->UNIMODULAR
# | true
property UNIMODULAR : Bool;
# Count how many simplices of a geometric simplicial complex are unimodular. If
# the simplicial complex is lower dimensional, each simplex is considered in
# its affine hull.
#
# @example Non-regular quadrangle, triangulated.
# > $C = new GeometricSimplicialComplex(COORDINATES=>[[0,0],[1,0],[0,1],[2,1]],FACETS=>[[0,1,2],[1,2,3]]);
# > print $C->N_UNIMODULAR
# | 1
property N_UNIMODULAR : Int;
# Signature of a geometric simplicial complex embedded in the integer lattice.
# Like [[DUAL_GRAPH_SIGNATURE]], but only simplices with odd normalized volume are counted.
property SIGNATURE : Int;
rule G_DIM : COORDINATES {
$this->G_DIM=$this->COORDINATES->cols;
}
weight 0.1;
rule SIGNATURE : DUAL_GRAPH.ADJACENCY, COORDINATES, FACETS {
$this->SIGNATURE=signature($this);
}
precondition : DIM, G_DIM {
$this->DIM==$this->G_DIM;
}
rule DUAL_GRAPH.BIPARTITE : SIGNATURE {
$this->DUAL_GRAPH->BIPARTITE = $this->SIGNATURE >= 0;
}
weight 0.1;
rule VOLUME : FACETS, COORDINATES, DIM {
$this->VOLUME=volume($this);
}
rule UNIMODULAR : FACETS, COORDINATES {
my $C = $this->COORDINATES;
my $n = $C->rows();
$this->UNIMODULAR=unimodular( ones_vector<Rational>($n)|$C, $this->FACETS, false );
}
rule N_UNIMODULAR : FACETS, COORDINATES {
my $C = $this->COORDINATES;
my $n = $C->rows();
$this->N_UNIMODULAR=n_unimodular( ones_vector<Rational>($n)|$C, $this->FACETS, false );
}
property BOUNDARY = override : self;
rule BOUNDARY.COORDINATES : COORDINATES, BOUNDARY.VERTEX_MAP {
$this->BOUNDARY->COORDINATES(temporary) = $this->COORDINATES->minor($this->BOUNDARY->VERTEX_MAP, All);
}
rule BOUNDARY.G_DIM = G_DIM;
}
# Local Variables:
# mode: perl
# cperl-indent-level:3
# indent-tabs-mode:nil
# End:
|