File: patchwork.h

package info (click to toggle)
polymake 4.14-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 35,888 kB
  • sloc: cpp: 168,933; perl: 43,407; javascript: 31,575; ansic: 3,007; java: 2,654; python: 632; sh: 268; xml: 117; makefile: 61
file content (463 lines) | stat: -rw-r--r-- 17,068 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
/* Copyright (c) 1997-2024
   Ewgenij Gawrilow, Michael Joswig, and the polymake team
   Technische Universität Berlin, Germany
   https://polymake.org

   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 2, or (at your option) any
   later version: http://www.gnu.org/licenses/gpl.txt.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
--------------------------------------------------------------------------------
*/

#pragma once
#include <polymake/GenericSet.h>
#include <polymake/Set.h>
#include <polymake/TropicalNumber.h>
#include <polymake/Matrix.h>
#include <polymake/IncidenceMatrix.h>
#include <polymake/Vector.h>
#include <polymake/Map.h>
#include <polymake/GF2.h>
#include <polymake/tropical/arithmetic.h>
#include <polymake/tropical/thomog.h>
#include <polymake/linalg.h>
#include <polymake/graph/Lattice.h>

#include <limits.h>

#ifndef POLYMAKE_TROPICAL_PATCHWORK_H
#define POLYMAKE_TROPICAL_PATCHWORK_H

namespace polymake { namespace tropical {

typedef unsigned long Binary;
typedef unsigned long Orthant;

// COMBINATORICS:

// rows correspond to facets of the hypersurface,
// columns to monomials,
// such that those are the monomials, where the 
// tropical polynomial is minimized/maximized
// by a point in the rel. interior of a facet
// (i.e., those correspond to the vertices of the
// respective dual edge in the dual subdivision)
template <typename Addition>
IncidenceMatrix<NonSymmetric> optimal_monomials(
      const Matrix<Int>&                      monomials,
      const Vector<TropicalNumber<Addition>>& coefficients,
      const IncidenceMatrix<NonSymmetric>&    facets,
      const Matrix<Rational>&                 vertices)
{
   const Int n_monoms = monomials.rows();
   const Int n_facets = facets.rows();

   // for each facet - compute a point in its relative interior
   Matrix<Rational> rel_int_points(n_facets, vertices.cols());
   for (Int r = 0; r < n_facets; ++r) {
      for (auto v = entire(facets.row(r)); !v.at_end(); ++v)
         rel_int_points.row(r) += vertices.row(*v);
      rel_int_points.row(r).dehomogenize();
   }
   rel_int_points = rel_int_points.minor(All, ~scalar2set(0));

   // for each facet - compute the monomials where the optimum is attained:
   IncidenceMatrix<NonSymmetric> opt(n_facets, n_monoms);
   for (Int c = 0; c < n_facets; ++c) {
      Vector<TropicalNumber<Addition>> substed{ monomials * rel_int_points[c] + Vector<Rational>(coefficients) };
      opt.row(c) = extreme_value_and_index<Addition>(substed).second;
   }

   return opt;
}

// Regarding 'orthant' as a 0/1-vector,
// and 'monomial' as an exponentvector,
// this computes orthant*monomial.
Int count_exponents(Orthant orthant, const Vector<Int>& monomial)
{
   Int result = 0;
   orthant <<= 1;
   for (Int index = 0; orthant != 0; orthant >>= 1, ++index) {
      if ((orthant & 1) != 0)
         result += monomial[index];
   }
   return result;
}

// symmetrize 'signs' to 'orthant'
Array<bool> signs_in_orthant(
      const Array<bool>& signs,
      const Matrix<Int>& monomials,
      const Orthant&     orthant)
{
   Array<bool> S(monomials.rows());
   for (Int m = 0; m < monomials.rows(); ++m)
     S[m] = ((count_exponents(orthant, monomials[m])%2 != 0) != signs[m]);
   return S;
}

// false iff all signs agree
inline
bool signs_differ(
      const Array<bool>& signs,
      const Set<Int>&    opt)
{
   if (signs.size() < 1)
      return true;
   auto tmp(entire(opt));
   const bool first_sign(signs[*tmp]);
   for (++tmp; !tmp.at_end(); ++tmp) {
      if (signs[*tmp] != first_sign)
         return true;
   }
   return false;
}

// The real phase structure induced by 'signs'.
// Rows correspond to facets of the tropical hypersurface,
// columns to orthants.
template <typename Addition>
IncidenceMatrix<NonSymmetric> real_phase(
      const Array<bool>&                      signs,
      const Matrix<Int>&                      monomials,
      const Vector<TropicalNumber<Addition>>& coefficients,
      const Matrix<Rational>&                 vertices,
      const IncidenceMatrix<NonSymmetric>&    facets)
{
   if (signs.size() != monomials.rows())
      throw std::runtime_error("dimension mismatch between signs and monomials");
   const Int n_facets             = facets.rows();
   const Int ambient_dim          = monomials.cols() - 1;
   const unsigned long n_orthants = 1UL << ambient_dim;

   const IncidenceMatrix<NonSymmetric> opt = optimal_monomials(monomials, coefficients, facets, vertices);

   IncidenceMatrix<NonSymmetric> ret_real_phase(n_facets, n_orthants);
   for (Orthant o = 0; o < n_orthants; ++o) {
      const Array<bool> S = signs_in_orthant(signs, monomials, o);
      for (Int f = 0; f < n_facets; ++f) {
         if (signs_differ(S, opt[f]))
            ret_real_phase(f, o) = true;
      }
   }

   return ret_real_phase;
}

// indices of those facets of the hypersurface present in orthant:
Set<Int> real_facets_in_orthant(
      const Orthant&                       orthant,
      const IncidenceMatrix<NonSymmetric>& facets,
      const Matrix<Int>&                   monomials,
      const Array<bool>&                   signs,
      const IncidenceMatrix<NonSymmetric>& opt)
{
   // sign distribution for this orthant:
   Array<bool> S = signs_in_orthant(signs, monomials, orthant);

   // facets for this orthand:
   Set<Int> real_facets;
   for (Int f = 0; f < facets.rows(); ++f)
      if (signs_differ(S, opt.row(f)))
         real_facets += f;

   return real_facets;
}

// indices of those facets of the hypersurface present in each orthant:
template <typename Addition>
IncidenceMatrix<NonSymmetric> real_facets(
      const Array<bool>&                      signs,
      const Matrix<Int>&                      monomials,
      const Vector<TropicalNumber<Addition>>& coefficients,
      const Matrix<Rational>&                 vertices,
      const IncidenceMatrix<NonSymmetric>&    facets)
{
   if (signs.size() != monomials.rows())
      throw std::runtime_error("dimension mismatch between signs and monomials");
   const Int dim = monomials.cols()-1;
   const unsigned long n_orthants = 1UL << dim;

   IncidenceMatrix<NonSymmetric> rfacets(n_orthants, facets.rows());
   IncidenceMatrix<NonSymmetric> opt = optimal_monomials(monomials, coefficients, facets, vertices);
   for (Orthant o = 0; o < n_orthants; ++o)
      rfacets[o] = real_facets_in_orthant(o, facets, monomials, signs, opt);

   return rfacets;
}

// REALIZATION:

// translate vertices into positive orthant (and dehomogenize):
template <typename Addition>
Matrix<Rational> move_to_positive(const Matrix<Rational>& vertices, const Set<Int>& far_vertices)
{
   Set<Int> finite_vertices = range(0, vertices.rows()-1)-far_vertices;
   Matrix<Rational> vertices_moved = (-Addition::orientation())*vertices.minor(All, range(2, vertices.cols()-1));
   for (Int c = 0; c < vertices_moved.cols(); ++c) {
      Rational min = std::numeric_limits<Rational>::infinity();
      for (auto r = entire(finite_vertices); !r.at_end(); r++) {
         if (vertices_moved[*r][c] < min)
            min = vertices_moved[*r][c];
      }
      for (auto r = entire(finite_vertices); !r.at_end(); r++)
         vertices_moved[*r][c] += 1 - min;
   }
   vertices_moved = vertices.col(0)|vertices_moved;
   return vertices_moved;
}

// find the max. cells in the dual subdivision which are dual to the vertices:
template <typename Addition>
IncidenceMatrix<NonSymmetric> dual_facets(
      const Matrix<Rational>&                 vertices,
      const Set<Int>&                         far_vertices,
      const Matrix<Int>&                      monomials,
      const Vector<TropicalNumber<Addition>>& coefficients)
{
   IncidenceMatrix<NonSymmetric> duals(vertices.rows(), monomials.rows());

   Matrix<Rational> sub = monomials*T(vertices.minor(All, ~scalar2set(0))) + repeat_col(Vector<Rational>(coefficients), vertices.rows());
   for (Int v = 0; v < sub.cols(); ++v) {
      if (!far_vertices.contains(v))
         duals.row(v) = (tropical::extreme_value_and_index<Addition>( Vector<TropicalNumber<Addition>>(sub.col(v)) )).second;
   }

   return duals;
}

// move vertices to barycenters of resp. facets in the dual subdivision:
template <typename Addition>
Matrix<Rational> move_to_bary(
      const Matrix<Rational>&                 vertices,
      const Matrix<Int>&                      monomials,
      const Vector<TropicalNumber<Addition>>& coefficients,
      const Set<Int>&                         far_vertices)
{
   Matrix<Rational> vertices_moved(vertices.rows(), vertices.cols()-2);
   IncidenceMatrix<NonSymmetric> duals = dual_facets(vertices, far_vertices, monomials, coefficients);

   for (Int v = 0; v < vertices_moved.rows(); ++v) {
      if (far_vertices.contains(v))
         vertices_moved.row(v) = (-Addition::orientation())*(vertices.row(v)).slice(range(2, vertices.cols()-1));
      else
         vertices_moved.row(v) = barycenter(Matrix<Rational>(monomials.minor(duals.row(v), ~scalar2set(0))));
   }

   return vertices.col(0)|vertices_moved;
}

// realize the real part of the hypersurface in IR^dim:
template <typename Addition>
BigObject real_part_realize(
      const Matrix<Int>&                               monomials,
      const Vector<TropicalNumber<Addition>>&          coefficients,
      const Matrix<Rational>&                          vertices,
      const IncidenceMatrix<NonSymmetric>&             cells,
      const Set<Int>& far_vertices,
      const IncidenceMatrix<NonSymmetric>& viro_cells,
      const std::string&                               method)
{
   const Int dim = monomials.cols()-1;
   const unsigned long n_orthants = 1UL << dim;
   const Int n_vertices = vertices.rows();

   // find far vertices pointing in coordinate direction:
   Set<Int> far_vertices_cd;
   for (auto i = entire(far_vertices); !i.at_end(); ++i) {
      if (support(vertices.row(*i)).size() == 1)
         far_vertices_cd += *i;
   }

   // dehomogenize and move vertices into positive orthant:
   Matrix<Rational> vertices_moved;
   if (method == "rigid")
      vertices_moved = move_to_positive<Addition>(vertices, far_vertices);
   else if (method == "uniform")
      vertices_moved = move_to_bary(vertices, monomials, coefficients, far_vertices);
   else
      throw std::runtime_error("Unknown realization method.");

   // build the complex:
   Matrix<Rational> points(0, vertices_moved.cols()-1);
   IncidenceMatrix<NonSymmetric> input_polytopes(0, n_vertices*n_orthants);
   Int current_row = 0; // ... of input_polytopes
   for (Orthant O = 0; O < n_orthants; ++O) {

      // reflect vertices to current orthant:
      Matrix<Rational> vertices_reflected(vertices_moved);
      for (Int i = 0; i < dim; ++i) {
         if (O & (1UL << i))
            vertices_reflected.col(i+1).negate();
      }
      points /= vertices_reflected;

      // build maximal cells:
      input_polytopes.resize(input_polytopes.rows() + viro_cells[O].size(), input_polytopes.cols());
      for (auto c = entire(viro_cells[O]); !c.at_end(); ++c, ++current_row) {

         // find orthants c meets (i.e. mirror current orthant along all combinations of coordinate direction rays in c):
         Set<Orthant> orthants = scalar2set(O);
         for (auto cd = entire(cells.row(*c)*far_vertices_cd); !cd.at_end(); ++cd) {
            Set<Int> tmp(orthants);
            for (auto o = entire(tmp); !o.at_end(); ++o) {
               Int index = *(support(vertices_reflected.row(*cd)).begin())-1;
               Orthant o_new = (*o)^(1UL << index);
               orthants += o_new;
            }
         }

         // build cell from all (incl. reflected) vertices:
         for (auto o = entire(orthants); !o.at_end(); o++) {
            for (auto v = entire(cells[*c]-far_vertices_cd); !v.at_end(); ++v)
               input_polytopes(current_row, n_vertices*(*o) + *v) = true;
         }
      }
   }

   return BigObject("fan::PolyhedralComplex<Rational>",
                    "POINTS", points,
                    "INPUT_POLYTOPES", input_polytopes);
}

// Z2 CHAIN COMPLEX:

// Whether orthants 'start' and 'dest' can "see" each other via coordinate 'directions'.
// This is the case iff, as sets, their symmetric difference is either
// contained in 'directions', or doesn't intersect it at all.
bool is_reachable(
      const Int     ambient_dim,
      const Orthant start,
      const Orthant dest,
      const Binary  directions)
{
   const bool foo = directions == (directions | (start ^ dest));
   return foo || (directions == (directions | (((~start)%(1<<(ambient_dim+1))) ^ dest)));
}

// The characteristic vector of a set of integers,
// encoded as a binary number.
Binary set2binary(const Set<Int>& directions)
{
   Binary binary = 0;
   for (auto i = entire(directions); !i.at_end(); ++i)
      binary = binary | (1<<(*i));
   return binary;
}

// Reachable orthants, from 'representative', within 'orthants', via 'directions'.
Set<Orthant> reachable(
      const Int           ambient_dim,
      const Orthant       representative,
      const Set<Orthant>& orthants,
      const Binary        directions)
{
   Set<Orthant> r = Set<Orthant>();
   for (auto o = entire(orthants); !o.at_end(); ++o) {
      if (is_reachable(ambient_dim, representative<<1, (*o)<<1, directions))
         r += *o;
   }
   return r;
}

// Z_2 chain complex of a patchworked hypersurface, build from its dual subdivision.
Array<SparseMatrix<GF2>> chain_complex_from_dualsub(
      const Array<bool>&                                     signs,
      const graph::Lattice<graph::lattice::BasicDecoration>& dual_hasse,
      const Matrix<Rational>&                                dual_vertices)
{
   const Int ambient_dim = dual_vertices.cols() - 2;
   const Int dim = ambient_dim - 1;
   const Int n_orthants  = 1<<ambient_dim;
   const Int n_nodes     = dual_hasse.nodes();
   const Matrix<Int> monoms = (Matrix<Int>)dual_vertices.minor(All,~scalar2set(0));

   // phase structure on nodes of the dual hasse diagram:
   IncidenceMatrix<NonSymmetric> dual_phase(n_nodes-1, n_orthants);
   for (Orthant o = 0; (Int)o < n_orthants; ++o) {
      const Array<bool> S = signs_in_orthant(signs, (Matrix<Int>)dual_vertices.minor(All,~scalar2set(0)), o);
      for (Int n = 1; n < n_nodes-1; ++n)
         if (signs_differ(S, dual_hasse.face(n)))
            dual_phase(n, o) = true;
   }

   // dual ray directions on nodes of the dual hasse diagram:
   Array<Set<Int>> directions(n_nodes);
   for (Int n = 1; n < n_nodes; ++n) {
      directions[n] = range(0,ambient_dim);
      for (auto v = entire(dual_hasse.face(n)); !v.at_end(); ++v)
         directions[n] -= support(monoms[*v]);
   }

   Array<SparseMatrix<GF2>> chain_complex(dim);

   for (Int d = dim; d > 0; d--) { // loop relevant dimensions

      Int rank = ambient_dim - d + 1;

      // boundary matrix for current dimension d:
      ListMatrix<SparseVector<GF2>> boundary;

      // loop hasse nodes of corresponding rank:
      for (auto F = entire(dual_hasse.nodes_of_rank(rank)); !F.at_end(); ++F) {

         // directions (as indizes) of rays in F:
         Binary F_directions = set2binary(directions[*F]);

         // orthants in which copies of F appear:
         Set<Orthant> F_o = (Set<Orthant>)(dual_phase[*F]);

         while (!F_o.empty()) { // 1 loop <=> 1 "connected" copy of F

            // orthants reachable from current "connected" copy of F
            Set<Orthant> F_r = reachable(ambient_dim, *entire(F_o), F_o, F_directions);

            // build boundary row for current "connected" copy of F:
            SparseVector<GF2> F_boundary(n_nodes * n_orthants);
            for (auto f = entire(dual_hasse.out_adjacent_nodes(*F)); !f.at_end(); ++f) {
               Set<Int> f_directions = directions[*f];
               Set<Orthant> f_o(F_r);
               while (!f_o.empty()) {
                  Orthant f_representative = *entire(f_o);
                  Set<Orthant> f_r = reachable(ambient_dim, f_representative, f_o, set2binary(f_directions));
                  F_boundary[(*f) * n_orthants + f_representative] = 1;
                  f_o -= f_r;
               }
            }

            // add boundary row of current "connected copy" to boundary matrix of current dimension:
            boundary /= F_boundary;

            // exclude already processed orthants from next loop:
            F_o -= F_r;

         }

      }

      // convert boundary to sparsematrix and remove empty columns:
      chain_complex[d-1] = SparseMatrix<GF2>(boundary);
      chain_complex[d-1].squeeze_cols();

   }

   return chain_complex;

}
} }

#endif

// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
// vim: set shiftwidth=3: