File: cone.rules

package info (click to toggle)
polymake 4.14-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 35,888 kB
  • sloc: cpp: 168,933; perl: 43,407; javascript: 31,575; ansic: 3,007; java: 2,654; python: 632; sh: 268; xml: 117; makefile: 61
file content (136 lines) | stat: -rw-r--r-- 4,576 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#  Copyright (c) 1997-2024
#  Ewgenij Gawrilow, Michael Joswig, and the polymake team
#  Technische Universität Berlin, Germany
#  https://polymake.org
#
#  This program is free software; you can redistribute it and/or modify it
#  under the terms of the GNU General Public License as published by the
#  Free Software Foundation; either version 2, or (at your option) any
#  later version: http://www.gnu.org/licenses/gpl.txt.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#-------------------------------------------------------------------------------


# @Category Combinatorics
object Polytope {

	#rule PSEUDOVERTEX_LABELS : PSEUDOVERTEX_COVECTORS {
	#	$this->PSEUDOVERTEX_LABELS(temporary)=[ map { join("", @$_) } @{$this->PSEUDOVERTEX_COVECTORS} ];
	#}

	rule PROJECTIVE_AMBIENT_DIM : POINTS {
		$this->PROJECTIVE_AMBIENT_DIM=$this->POINTS->cols-1;
	}
	weight 0.1;

	rule PROJECTIVE_AMBIENT_DIM : DOME.VERTICES {
    $this->PROJECTIVE_AMBIENT_DIM=$this->DOME->VERTICES->cols-2;
	}
	weight 0.1;


	# checking feasibility via a tropical linear program 
	rule FEASIBLE, VALID_POINT  : INEQUALITIES {
    my $feasibility_pair = H_trop_input_feasible($this);
    $this->VALID_POINT = $feasibility_pair->first;
    $this->FEASIBLE = $feasibility_pair->second;
	}
	weight 3.1;
	
	# A Polytope defined by a non-empty set of [[VERTICES]] or [[POINTS]] is always [[FEASIBLE]].
	rule FEASIBLE, VALID_POINT : VERTICES | POINTS {
    my $p=$this->give("VERTICES | POINTS");
    if ($p->rows > 0) {
      $this->VALID_POINT(temporary) = $p->row(0);
    }
    $this->FEASIBLE = $this->give("VERTICES | POINTS")->rows > 0;
	}
	weight 0.1;

	rule VERTICES : INEQUALITIES {
    $this->VERTICES = V_trop_input($this);
	}
	weight 6.10;

	rule VERTICES, VERTICES_IN_POINTS : POINTS {
		discard_non_vertices($this);
	}
	weight 1.20;

	rule ENVELOPE.INEQUALITIES, ENVELOPE.EQUATIONS : POINTS {
		$this->ENVELOPE = envelope($this->POINTS);
	}

	rule DOME.INEQUALITIES, DOME.FEASIBLE, DOME.BOUNDED : POINTS {
		$this->DOME = dome_hyperplane_arrangement($this->POINTS);
	}

  rule DOME.MAXIMAL_COVECTOR_CELLS : DOME.VERTICES, DOME.VERTICES_IN_FACETS, DOME.FAR_FACE {
    my $dome = $this->DOME;
    my $V = $dome->VERTICES;
    my $vif = new Set<Set<Int>>(rows($dome->VERTICES_IN_FACETS));
    my $ff = $dome->FAR_FACE;

    $dome->MAXIMAL_COVECTOR_CELLS = new IncidenceMatrix($vif - $ff);
  }

  rule PSEUDOVERTICES : DOME.VERTICES, DOME.FAR_FACE {
    my $V = $this->DOME->VERTICES;
    $this->PSEUDOVERTICES = $V->minor(~$this->DOME->FAR_FACE, ~scalar2set(0));
  }

	rule PSEUDOVERTEX_COVECTORS : PSEUDOVERTICES, POINTS {
		$this->PSEUDOVERTEX_COVECTORS = covectors($this->PSEUDOVERTICES, $this->POINTS);
	}
	weight 1.10;

	rule PSEUDOVERTEX_COARSE_COVECTORS : PSEUDOVERTICES, POINTS {
		$this->PSEUDOVERTEX_COARSE_COVECTORS=coarse_covectors($this->PSEUDOVERTICES, $this->POINTS);
	}
	weight 1.10;

  rule DOME.TROPICAL_POLYTOPE_VERTICES : DOME.VERTEX_COVECTORS {
    my $pv = new Set();
    for (my $i=0; $i < $this->DOME->VERTEX_COVECTORS->size; $i++) {
       $pv += $i
       if (0 == grep {$_->size==0} @{rows($this->DOME->VERTEX_COVECTORS->[$i])});
    }
    $this->DOME->TROPICAL_POLYTOPE_VERTICES = $pv;
  }

   rule TORUS_COVECTOR_DECOMPOSITION, MAXIMAL_COVECTORS : POINTS, DOME.VERTICES, DOME.VERTEX_COVECTORS, DOME.MAXIMAL_COVECTOR_CELLS, POLYTOPE_COVECTOR_DECOMPOSITION {
      compute_covector_decomposition($this, compute_only_tropical_span=>0);
   }
   weight 6.10;

	rule POLYTOPE_COVECTOR_DECOMPOSITION, DOME.TROPICAL_SPAN_MAXIMAL_COVECTOR_CELLS, POLYTOPE_MAXIMAL_COVECTORS : POINTS, DOME.VERTICES, DOME.VERTEX_COVECTORS, DOME.MAXIMAL_COVECTOR_CELLS {
		compute_covector_decomposition($this, compute_only_tropical_span=>1);
	}
	weight 6.10;

	rule MAXIMAL_COVECTORS : DOME.MAXIMAL_COVECTOR_CELLS, DOME.VERTICES, POINTS {
		compute_maximal_covectors($this);
	}
	weight 2.10;

	rule DOME.VERTEX_COVECTORS : DOME.VERTICES, POINTS {
		$this->DOME->VERTEX_COVECTORS = covectors_of_scalar_vertices($this->DOME->VERTICES, $this->POINTS);
	}
	weight 1.10;

   
  # In case [[VERTICES]] are known but [[POINTS]] are not, we set [[POINTS]] = [[VERTICES]].
  # This allows to visualize a Polytope that was initialized via [[INEQUALIES]] with its coarsets [[POLYTOPE_COVECTOR_DECOMPOSITION]]. 
  rule POINTS = VERTICES;

}


# Local Variables:
# mode: perl
# c-basic-offset:3
# End: