File: visual.rules

package info (click to toggle)
polymake 4.14-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 35,888 kB
  • sloc: cpp: 168,933; perl: 43,407; javascript: 31,575; ansic: 3,007; java: 2,654; python: 632; sh: 268; xml: 117; makefile: 61
file content (131 lines) | stat: -rw-r--r-- 4,890 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#  Copyright (c) 1997-2024
#  Ewgenij Gawrilow, Michael Joswig, and the polymake team
#  Technische Universität Berlin, Germany
#  https://polymake.org
#
#  This program is free software; you can redistribute it and/or modify it
#  under the terms of the GNU General Public License as published by the
#  Free Software Foundation; either version 2, or (at your option) any
#  later version: http://www.gnu.org/licenses/gpl.txt.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#-------------------------------------------------------------------------------

package Visual::Color;

# default color for the finite [[POINTS]] of a tropical polytope
custom $polytopegenerators = "255 255 0";

package Visual::TropicalPolytope;

use Polymake::Struct (
   [ '@ISA' => 'Container' ],
   [ '$Polytope' => '#%' ],
);

options %decorations = (
   %Visual::Polygons::decorations,

   # Flexible<Int> The visualization is always in affine coordinates. This chooses the chart.
   Chart => 0,

   # [complete color] Flexible<Color> color of the finite [[POINTS]] of a polytope
   GeneratorColor => $Visual::Color::polytopegenerators,

   # [complete color] Flexible<Color> color of the finite [[PSEUDOVERTICES]] of a polytope
   PseudovertexColor => $Visual::Color::vertices,
   
   # String Labels of [[PSEUDOVERTICES]] of a polytope
   PseudovertexLabels => 'hidden',        
   
   # Flexible<Float> Thickness of [[PSEUDOVERTICES]] of a tropical polytope
   PseudovertexThickness => undef,
);

object Polytope {

# creates an array of colors to distinguish generators and
# pseudo-vertices of a tropical polytope
sub pseudovertex_colors($$$$) {
   my ($points, $pseudovertices, $p_color, $pv_color) = @_;
   my $indices = points_in_pseudovertices($points, $pseudovertices);
   map { $indices->contains($_) ? $pv_color : $p_color } (0..$pseudovertices->rows()-1);
}

# @category Visualization
# Visualize the subdivision of the polytope induced by [[POINTS]].
# @options %Visual::TropicalPolytope::decorations
# @return fan::Visual::PolyhedralFan

user_method VISUAL(%Visual::TropicalPolytope::decorations) {
   my ($this, $decor) = @_;

   my $chart = delete $decor->{Chart};

   my $used_pvs = new Set<Int>();
   for my $i (0 .. $this->DOME->TROPICAL_SPAN_MAXIMAL_COVECTOR_CELLS->rows()-1) {
      $used_pvs += $this->DOME->TROPICAL_SPAN_MAXIMAL_COVECTOR_CELLS->row($i);
   }

   my $vertices = new Matrix<Scalar>($this->DOME->VERTICES->minor($used_pvs,All));
   canonicalize_vertices_to_leading_zero($vertices);
   my $cells = $this->DOME->TROPICAL_SPAN_MAXIMAL_COVECTOR_CELLS->minor(All, $used_pvs);

   # the order is crucial here
   my @pseudovertex_colors = pseudovertex_colors($this->POINTS, $vertices, delete $decor->{PseudovertexColor}, delete $decor->{GeneratorColor});
   foreach (keys %$decor) {
      $decor->{s/Pseudovertex/Vertex/r} = delete $decor->{$_};
   }
   my @codedecor = Visual::get_code_decor_keys($decor, "Vertex");
   $decor = scalar(@codedecor) ? Visual::decor_subset($decor,$used_pvs,\@codedecor) : $decor;

   $vertices = tdehomog($vertices,$chart);

   my $p = new fan::PolyhedralComplex(VERTICES=>$vertices, MAXIMAL_POLYTOPES=>$cells);
   $p->VISUAL(VertexColor => \@pseudovertex_colors, $decor);
}


# @category Visualization
# Visualize the subdivision of the torus induced by [[POINTS]].
# @options %Visual::TropicalPolytope::decorations
# @return fan::Visual::PolyhedralFan
user_method VISUAL_SUBDIVISION(%Visual::TropicalPolytope::decorations) {
   my ($this, $decor) = @_;

   my $chart = delete $decor->{"Chart"};

   my $dome_rays = new Matrix<Scalar>($this->DOME->VERTICES);
   canonicalize_vertices_to_leading_zero($dome_rays);
   my @pseudovertex_colors = pseudovertex_colors($this->POINTS, $dome_rays, delete $decor->{PseudovertexColor}, delete $decor->{GeneratorColor});
   foreach (keys %$decor) {
      $decor->{s/Pseudovertex/Vertex/r} = delete $decor->{$_};
   }

   my $vertices = tdehomog($this->DOME->VERTICES, $chart);
   my $cells = $this->DOME->MAXIMAL_COVECTOR_CELLS;
   my $p = new fan::PolyhedralComplex(VERTICES=>$vertices, MAXIMAL_POLYTOPES=>$cells);
   $p->VISUAL(VertexColor => \@pseudovertex_colors, $decor);
}


# @category Visualization
# Visualize the arrangement of hyperplanes with apices in the [[POINTS]] of the tropical polytope.
# @return fan::Visual::PolyhedralFan
user_method VISUAL_HYPERPLANE_ARRANGEMENT(%Visual::Polygons::decorations) : VERTICES, PROJECTIVE_AMBIENT_DIM {
   my ($this, $decor) = @_;
   points2hypersurface($this->POINTS)->VISUAL($decor);
}
precondition : PROJECTIVE_AMBIENT_DIM { $this->PROJECTIVE_AMBIENT_DIM<=3 }

}


# Local Variables:
# mode: perl
# cperl-indent-level:3
# indent-tabs-mode:nil
# End: