1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
|
/* Copyright (c) 1997-2024
Ewgenij Gawrilow, Michael Joswig, and the polymake team
Technische Universität Berlin, Germany
https://polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#pragma once
#include "polymake/internal/operations.h"
#include "polymake/ContainerUnion.h"
#include <array>
namespace pm {
namespace chains {
template <typename Indexes, typename Operation>
class Function;
template <size_t... Index, typename Operation>
class Function<std::index_sequence<Index...>, Operation> {
using fpointer = typename Operation::fpointer;
static constexpr size_t length = sizeof...(Index);
static const fpointer table[length];
public:
static fpointer get(int i) { return table[i]; }
};
template <size_t... Index, typename Operation>
const typename Function<std::index_sequence<Index...>, Operation>::fpointer
Function<std::index_sequence<Index...>, Operation>::table[] = { &Operation::template execute<Index>... };
template <typename IteratorList>
class Operations {
public:
using it_tuple = typename mlist2tuple<IteratorList>::type;
using reference = typename union_iterator_traits<IteratorList>::reference;
using pointer = typename union_iterator_traits<IteratorList>::pointer;
struct star {
using fpointer = reference (*)(const it_tuple&);
template <size_t i>
static reference execute(const it_tuple& its)
{
return *std::get<i>(its);
}
};
struct arrow {
using fpointer = pointer (*)(const it_tuple&);
template <size_t i>
static pointer execute(const it_tuple& its)
{
return std::get<i>(its).operator->();
}
};
struct incr {
using fpointer = bool (*)(it_tuple&);
template <size_t i>
static bool execute(it_tuple& its)
{
return (++std::get<i>(its)).at_end();
}
};
struct eq {
using fpointer = bool (*)(const it_tuple&, const it_tuple&);
template <size_t i>
static bool execute(const it_tuple& its, const it_tuple& other)
{
return std::get<i>(its) == std::get<i>(other);
}
};
struct at_end {
using fpointer = bool (*)(const it_tuple&);
template <size_t i>
static bool execute(const it_tuple& its)
{
return std::get<i>(its).at_end();
}
};
struct index {
using fpointer = Int (*)(const it_tuple&);
template <size_t i>
static Int execute(const it_tuple& its)
{
return std::get<i>(its).index();
}
};
};
template <typename IteratorList,
bool is_homogeneous=(mlist_length<typename mlist_remove_duplicates<IteratorList>::type>::value == 1)>
class iterator_store {
public:
using iterator_t = typename mlist_head<IteratorList>::type;
static constexpr size_t N = mlist_length<IteratorList>::value;
using it_tuple = std::array<iterator_t, N>;
it_tuple its;
using reference = typename iterator_traits<iterator_t>::reference;
using pointer = typename iterator_traits<iterator_t>::pointer;
using value_type = typename iterator_traits<iterator_t>::value_type;
template <typename... Iterator, typename=std::enable_if_t<sizeof...(Iterator)==N>>
explicit iterator_store(Iterator&&... it)
: its{ { std::forward<Iterator>(it)... } }
{}
iterator_store() = default;
iterator_store(const iterator_store&) = default;
iterator_store(iterator_store&&) = default;
iterator_store& operator= (const iterator_store&) = default;
template <typename IteratorList2, typename=std::enable_if_t<std::is_constructible<iterator_t, const typename mlist_head<IteratorList2>::type&>::value>>
iterator_store(const iterator_store<IteratorList2, is_homogeneous>& other)
: iterator_store(other, std::make_index_sequence<N>()) {}
template <typename IteratorList2, size_t... Index>
iterator_store(const iterator_store<IteratorList2, is_homogeneous>& other, std::index_sequence<Index...>)
: its{ other.its[Index]... }
{}
template <typename IteratorList2, typename=std::enable_if_t<std::is_assignable<iterator_t&, const typename mlist_head<IteratorList2>::type&>::value>>
iterator_store& operator= (const iterator_store<IteratorList2, is_homogeneous>& other)
{
std::copy(other.its.begin(), other.its.end(), its.begin());
return *this;
}
it_tuple& get_it_tuple() { return its; }
const it_tuple& get_it_tuple() const { return its; }
reference star(int i) const
{
return *its[i];
}
pointer arrow(int i) const
{
return its[i].operator->();
}
Int index(int i) const
{
return its[i].index();
}
bool incr(int i)
{
return (++its[i]).at_end();
}
bool eq(int i, const iterator_store& other) const
{
return its[i] == other.its[i];
}
bool at_end(int i) const
{
return its[i].at_end();
}
void rewind()
{
for (iterator_t& it : its) it.rewind();
}
};
template <typename IteratorList>
class iterator_store<IteratorList, false> {
public:
using it_tuple = typename mlist2tuple<IteratorList>::type;
it_tuple its;
static constexpr size_t N = mlist_length<IteratorList>::value;
using ops = Operations<IteratorList>;
template <typename Operation>
using functions = Function<std::make_index_sequence<N>, Operation>;
using reference = typename union_iterator_traits<IteratorList>::reference;
using pointer = typename union_iterator_traits<IteratorList>::pointer;
using value_type = typename union_iterator_traits<IteratorList>::value_type;
template <typename... Iterator, typename=std::enable_if_t<sizeof...(Iterator)==N>>
explicit iterator_store(Iterator&&... it)
: its(std::forward<Iterator>(it)...)
{}
iterator_store() = default;
iterator_store(const iterator_store&) = default;
iterator_store(iterator_store&&) = default;
iterator_store& operator= (const iterator_store&) = default;
template <typename IteratorList2, typename=std::enable_if_t<std::is_constructible<it_tuple, const typename mlist2tuple<IteratorList2>::type&>::value>>
iterator_store(const iterator_store<IteratorList2, false>& other)
: its(other.its) {}
template <typename IteratorList2, typename=std::enable_if_t<std::is_assignable<it_tuple&, const typename mlist2tuple<IteratorList2>::type&>::value>>
iterator_store& operator= (const iterator_store<IteratorList2, false>& other)
{
its = other.its;
return *this;
}
it_tuple& get_it_tuple() { return its; }
const it_tuple& get_it_tuple() const { return its; }
reference star(int i) const
{
return functions<typename ops::star>::get(i)(its);
}
pointer arrow(int i) const
{
return functions<typename ops::arrow>::get(i)(its);
}
Int index(int i) const
{
return functions<typename ops::index>::get(i)(its);
}
bool incr(int i)
{
return functions<typename ops::incr>::get(i)(its);
}
bool eq(int i, const iterator_store& other) const
{
return functions<typename ops::eq>::get(i)(its, other.its);
}
bool at_end(int i) const
{
return functions<typename ops::at_end>::get(i)(its);
}
void rewind()
{
foreach_in_tuple(its, [](auto& it) -> void { it.rewind(); });
}
};
template <typename T>
struct get_iterator {
using type = typename iterator_traits<T>::iterator;
};
template <typename T>
struct get_const_iterator {
using type = typename iterator_traits<T>::const_iterator;
};
}
template <typename IteratorList, bool is_indexed>
class iterator_chain
: protected chains::iterator_store<IteratorList> {
using base_t = chains::iterator_store<IteratorList>;
template <typename, bool> friend class iterator_chain;
protected:
int leg;
static constexpr size_t n_off = is_indexed ? mlist_length<IteratorList>::value : 0;
using offsets_t = std::array<Int, n_off>;
offsets_t index_offsets;
void valid_position()
{
while (!at_end() && base_t::at_end(leg)) ++leg;
}
public:
using iterator_category = forward_iterator_tag;
using typename base_t::value_type;
using typename base_t::reference;
using typename base_t::pointer;
using difference_type = ptrdiff_t;
using iterator = iterator_chain<typename mlist_transform_unary<IteratorList, chains::get_iterator>::type, is_indexed>;
using const_iterator = iterator_chain<typename mlist_transform_unary<IteratorList, chains::get_const_iterator>::type, is_indexed>;
iterator_chain()
: leg(mlist_length<IteratorList>::value) {}
template <typename... Iterator>
iterator_chain(int leg_arg, offsets_t&& offsets_arg, Iterator&&... it)
: base_t(std::forward<Iterator>(it)...)
, leg(leg_arg)
, index_offsets(offsets_arg)
{
valid_position();
}
template <typename... Iterator>
iterator_chain(int leg_arg, std::nullptr_t, Iterator&&... it)
: base_t(std::forward<Iterator>(it)...)
, leg(leg_arg)
{
valid_position();
}
iterator_chain(const iterator& other)
: base_t(other)
, leg(other.leg)
, index_offsets(other.index_offsets) {}
iterator_chain& operator= (const iterator& other)
{
base_t::operator=(other);
leg=other.leg;
index_offsets=other.index_offsets;
return *this;
}
typename base_t::reference operator* () const
{
return base_t::star(leg);
}
typename base_t::pointer operator-> () const
{
return base_t::arrow(leg);
}
iterator_chain& operator++ ()
{
if (base_t::incr(leg)) {
++leg;
valid_position();
}
return *this;
}
const iterator_chain operator++ (int) { iterator_chain copy=*this; operator++(); return copy; }
bool operator== (const iterator_chain& other) const
{
return leg==other.leg && (at_end() || base_t::eq(leg, other));
}
bool operator!= (const iterator_chain& other) const
{
return !operator==(other);
}
bool at_end() const
{
return leg == mlist_length<IteratorList>::value;
}
void rewind()
{
static_assert(check_iterator_feature<iterator_chain, rewindable>::value, "iterator is not rewindable");
base_t::rewind();
leg=0;
valid_position();
}
Int index() const
{
static_assert(is_indexed, "iterator is not indexed");
return base_t::index(leg) + index_offsets[leg];
}
using typename base_t::it_tuple;
int get_leg() const { return leg; }
const it_tuple& get_it_tuple() const { return base_t::get_it_tuple(); }
};
template <typename IteratorList, bool is_indexed, typename Feature>
struct check_iterator_feature<iterator_chain<IteratorList, is_indexed>, Feature>
: mlist_and<typename mlist_transform_binary<IteratorList, mrepeat<Feature>, check_iterator_feature>::type> {};
template <typename IteratorList, bool is_indexed>
struct check_iterator_feature<iterator_chain<IteratorList, is_indexed>, indexed>
: bool_constant<is_indexed> {};
template <typename IteratorList, bool is_indexed>
struct check_iterator_feature<iterator_chain<IteratorList, is_indexed>, contractable>
: std::false_type {};
template <typename ContainerList, bool enforce_const=false>
struct chain_const_helper {
static constexpr bool chain_is_const = enforce_const || mlist_or<typename mlist_transform_unary<ContainerList, is_effectively_const>::type>::value;
using type = std::conditional_t<chain_is_const, typename mlist_transform_unary<ContainerList, add_const>::type, ContainerList>;
};
template <typename Top, typename Params>
class container_chain_typebase : public manip_container_top<Top, Params> {
using base_t = manip_container_top<Top, Params>;
public:
using container_ref_list = typename mtagged_list_extract<Params, ContainerRefTag>::type;
using container_list = typename mlist_transform_unary<container_ref_list, deref>::type;
static constexpr bool
is_const = chain_const_helper<container_ref_list>::chain_is_const,
is_sparse = mlist_or<typename mlist_transform_binary<container_list, mrepeat<sparse>, check_container_feature>::type>::value,
all_sparse_compatible = mlist_and<typename mlist_transform_binary<container_list, mrepeat<sparse_compatible>, check_container_feature>::type>::value,
is_pure_sparse = mlist_and<typename mlist_transform_binary<container_list, mrepeat<pure_sparse>, check_container_feature>::type>::value;
using can_enforce_features = dense;
// either some containers are sparse (then the resulting iterator_chain is automatically indexed),
// or the whole chain should be made indexed (it is cheaper)
using cannot_enforce_features = mlist<indexed, provide_construction<rewindable, false>, provide_construction<end_sensitive, false> >;
using needed_features = typename mix_features<
typename base_t::expected_features,
std::conditional_t<is_sparse,
std::conditional_t<mlist_contains<typename base_t::expected_features, dense>::value,
mlist<indexed, end_sensitive>, sparse_compatible>,
end_sensitive>>::type;
static constexpr bool needs_indexed = all_sparse_compatible || mlist_contains<needed_features, indexed, absorbing_feature>::value;
template <typename T>
using get_category = typename container_traits<T>::category;
using iterator_list = typename mlist_transform_binary<container_ref_list, mrepeat<needed_features>, extract_iterator_with_features>::type;
using const_iterator_list = typename mlist_transform_binary<container_ref_list, mrepeat<needed_features>, extract_const_iterator_with_features>::type;
using iterator = iterator_chain<std::conditional_t<is_const, const_iterator_list, iterator_list>, needs_indexed>;
using const_iterator = iterator_chain<const_iterator_list, needs_indexed>;
using reference = typename iterator::reference;
using const_reference = typename const_iterator::reference;
using value_type = typename iterator::value_type;
using container_category = typename least_derived_class<typename mlist_concat<bidirectional_iterator_tag,
typename mlist_transform_unary<container_list, extract_category>::type>::type>::type;
static constexpr size_t chain_length = mlist_length<container_list>::value;
static constexpr auto tuple_indexes()
{
return std::make_index_sequence<chain_length>();
}
static constexpr auto reverse_tuple_indexes()
{
return make_reverse_index_sequence<chain_length>();
}
using typename base_t::manip_top_type;
template <typename Iterator, typename Creator, size_t... Index, typename OffsetsArg>
Iterator make_iterator(int leg_arg, const Creator& cr, std::index_sequence<Index...>, OffsetsArg&& offsets_arg)
{
using me_t = std::conditional_t<is_const, const manip_top_type&, manip_top_type&>;
me_t& me = this->manip_top();
return Iterator(leg_arg, std::forward<OffsetsArg>(offsets_arg), cr(me.get_container(size_constant<Index>()))...);
}
template <typename Iterator, typename Creator, size_t... Index, typename OffsetsArg>
Iterator make_iterator(int leg_arg, const Creator& cr, std::index_sequence<Index...>, OffsetsArg&& offsets_arg) const
{
const auto& me = this->manip_top();
return Iterator(leg_arg, std::forward<OffsetsArg>(offsets_arg), cr(me.get_container(size_constant<Index>()))...);
}
static constexpr auto make_begin()
{
return [](auto&& c) { return ensure(c, needed_features()).begin(); };
}
static constexpr auto make_end()
{
return [](auto&& c) { return ensure(c, needed_features()).end(); };
}
static constexpr auto make_rbegin()
{
return [](auto&& c) { return ensure(c, needed_features()).rbegin(); };
}
static constexpr auto make_rend()
{
return [](auto&& c) { return ensure(c, needed_features()).rend(); };
}
template <size_t... Index>
std::array<Int, chain_length> make_index_offsets(std::true_type, bool is_reverse, std::index_sequence<Index...>) const
{
Int off = 0;
const auto summator = [&off](Int i) ->Int { Int sum = off; off += i; return sum; };
std::array<Int, chain_length> offsets{ { summator(get_dim(this->manip_top().get_container(size_constant<Index>())))... } };
if (is_reverse) std::reverse(offsets.begin(), offsets.end());
return offsets;
}
template <typename... Args>
static constexpr std::nullptr_t make_index_offsets(std::false_type, Args&&... args)
{
return nullptr;
}
auto make_index_offsets(bool is_reverse) const
{
return make_index_offsets(bool_constant<needs_indexed>(), is_reverse, tuple_indexes());
}
};
template <typename Top, typename Params=typename Top::manipulator_params,
typename Category = typename container_chain_typebase<Top, Params>::container_category>
class container_chain_impl
: public container_chain_typebase<Top, Params> {
using base_t = container_chain_typebase<Top, Params>;
private:
static constexpr Int size_(size_constant<0>)
{
return 0;
}
static constexpr Int dim_(size_constant<0>)
{
return 0;
}
static constexpr bool empty_(size_constant<0>)
{
return true;
}
template <size_t i>
Int size_(size_constant<i>) const
{
return this->manip_top().get_container(size_constant<i-1>()).size() + size_(size_constant<i-1>());
}
template <size_t i>
Int dim_(size_constant<i>) const
{
return get_dim(this->manip_top().get_container(size_constant<i-1>())) + dim_(size_constant<i-1>());
}
template <size_t i>
bool empty_(size_constant<i>) const
{
return this->manip_top().get_container(size_constant<i-1>()).empty() && empty_(size_constant<i-1>());
}
public:
typedef container_chain_impl<Top, Params> manipulator_impl;
typedef Params manipulator_params;
using typename base_t::iterator;
using typename base_t::const_iterator;
template <typename FeatureCollector>
struct rebind_feature_collector {
typedef container_chain_impl<FeatureCollector, Params> type;
};
iterator begin()
{
return base_t::template make_iterator<iterator>(0, base_t::make_begin(), base_t::tuple_indexes(), base_t::make_index_offsets(false));
}
iterator end()
{
return base_t::template make_iterator<iterator>(base_t::chain_length, base_t::make_end(), base_t::tuple_indexes(), nullptr);
}
const_iterator begin() const
{
return base_t::template make_iterator<const_iterator>(0, base_t::make_begin(), base_t::tuple_indexes(), base_t::make_index_offsets(false));
}
const_iterator end() const
{
return base_t::template make_iterator<const_iterator>(base_t::chain_length, base_t::make_end(), base_t::tuple_indexes(), nullptr);
}
Int size() const
{
return size_(size_constant<base_t::chain_length>());
}
Int dim() const
{
return dim_(size_constant<base_t::chain_length>());
}
bool empty() const
{
return empty_(size_constant<base_t::chain_length>());
}
};
template <typename Top, typename Params>
class container_chain_impl<Top, Params, forward_iterator_tag>
: public container_chain_impl<Top, Params, input_iterator_tag> {
using base_t = container_chain_impl<Top, Params, input_iterator_tag>;
public:
using typename base_t::reference;
using typename base_t::const_reference;
private:
reference front_(size_constant<base_t::chain_length-1>)
{
return this->manip_top().get_container(size_constant<base_t::chain_length-1>()).front();
}
const_reference front_(size_constant<base_t::chain_length-1>) const
{
return this->manip_top().get_container(size_constant<base_t::chain_length-1>()).front();
}
template <size_t i>
reference front_(size_constant<i>)
{
auto& c = this->manip_top().get_container(size_constant<i>());
if (!c.empty()) return c.front();
return front_(size_constant<i+1>());
}
template <size_t i>
const_reference front_(size_constant<i>) const
{
const auto& c = this->manip_top().get_container(size_constant<i>());
if (!c.empty()) return c.front();
return front_(size_constant<i+1>());
}
public:
reference front()
{
return front_(size_constant<0>());
}
const_reference front() const
{
return front_(size_constant<0>());
}
};
template <typename Top, typename Params>
class container_chain_impl<Top, Params, bidirectional_iterator_tag>
: public container_chain_impl<Top, Params, forward_iterator_tag> {
using base_t = container_chain_impl<Top, Params, forward_iterator_tag>;
public:
using reverse_container_list = typename mlist_reverse<typename base_t::container_ref_list>::type;
using reverse_iterator_list = typename mlist_transform_binary<reverse_container_list,
mrepeat<typename base_t::needed_features>, extract_reverse_iterator_with_features>::type;
using const_reverse_iterator_list = typename mlist_transform_binary<reverse_container_list,
mrepeat<typename base_t::needed_features>, extract_const_reverse_iterator_with_features>::type;
using reverse_iterator = iterator_chain<std::conditional_t<base_t::is_const, const_reverse_iterator_list, reverse_iterator_list>, base_t::needs_indexed>;
using const_reverse_iterator = iterator_chain<const_reverse_iterator_list, base_t::needs_indexed>;
using typename base_t::reference;
using typename base_t::const_reference;
private:
reference back_(size_constant<0>)
{
return this->manip_top().get_container(size_constant<0>()).back();
}
const_reference back_(size_constant<0>) const
{
return this->manip_top().get_container(size_constant<0>()).back();
}
template <size_t i>
reference back_(size_constant<i>)
{
auto& c = this->manip_top().get_container(size_constant<i>());
if (!c.empty()) return c.back();
return back_(size_constant<i-1>());
}
template <size_t i>
const_reference back_(size_constant<i>) const
{
const auto& c = this->manip_top().get_container(size_constant<i>());
if (!c.empty()) return c.back();
return back_(size_constant<i-1>());
}
public:
reverse_iterator rbegin()
{
return base_t::template make_iterator<reverse_iterator>(0, base_t::make_rbegin(), base_t::reverse_tuple_indexes(), base_t::make_index_offsets(true));
}
reverse_iterator rend()
{
return base_t::template make_iterator<reverse_iterator>(base_t::chain_length, base_t::make_rend(), base_t::reverse_tuple_indexes(), nullptr);
}
const_reverse_iterator rbegin() const
{
return base_t::template make_iterator<const_reverse_iterator>(0, base_t::make_rbegin(), base_t::reverse_tuple_indexes(), base_t::make_index_offsets(true));
}
const_reverse_iterator rend() const
{
return base_t::template make_iterator<const_reverse_iterator>(base_t::chain_length, base_t::make_rend(), base_t::reverse_tuple_indexes(), nullptr);
}
reference back()
{
return back_(size_constant<base_t::chain_length-1>());
}
const_reference back() const
{
return back_(size_constant<base_t::chain_length-1>());
}
};
template <template <typename...> class Owner, typename... TailParams>
struct chain_arg_helper {
template <typename T>
using recognize = is_instance_of<pure_type_t<T>, Owner>;
template <typename T, typename=void>
struct extract_impl {
using type = T;
};
template <typename T>
struct extract_impl<T, std::enable_if_t<recognize<T>::value &&
std::is_same<typename mlist_tail<typename recognize<T>::params>::type, mlist<TailParams...>>::value>> {
using aliases = typename mlist_transform_unary<typename mget_template_parameter<pure_type_t<T>, 0>::type, make_alias>::type;
using type = typename mlist_transform_binary<aliases, mrepeat<T>, inherit_reference>::type;
};
template <typename T>
using extract = extract_impl<T>;
template <typename ContainerList, typename ArgList>
static constexpr bool allow(ContainerList, ArgList)
{
using flattened_args = typename mlist_flatten<typename mlist_transform_unary<ArgList, extract>::type>::type;
using alias_list = typename mlist_transform_unary<ContainerList, make_alias>::type;
return allow_args(alias_list(), flattened_args());
}
template <typename AliasList, typename ArgList>
static constexpr std::enable_if_t<mlist_length<AliasList>::value == mlist_length<ArgList>::value, bool>
allow_args(AliasList, ArgList)
{
return mlist_and< typename mlist_transform_binary<AliasList, ArgList, is_direct_constructible>::type >::value;
}
template <typename AliasList, typename ArgList>
static constexpr std::enable_if_t<mlist_length<AliasList>::value != mlist_length<ArgList>::value, bool>
allow_args(AliasList, ArgList)
{
return false;
}
template <typename T>
using count = int_constant<mlist_length<typename extract_impl<T>::type>::value>;
template <typename Count, typename CountList>
using add_count = mlist_concat<Count, typename mlist_transform_binary<CountList, mrepeat<Count>, madd>::type>;
template <typename ArgList, bool no_tuples>
struct matcher {
using type = std::true_type;
};
template <typename ArgList>
struct matcher<ArgList, false> {
using type = typename mlist_wrap<typename mlist_fold_transform<ArgList, count, add_count>::type>::type;
};
template <int length, typename ArgList>
static constexpr auto match(ArgList)
{
return typename matcher<ArgList, (length==mlist_length<ArgList>::value)>::type();
}
};
template <typename Elements>
class alias_tuple {
protected:
using alias_list = typename mlist_transform_unary<Elements, make_alias>::type;
using alias_store = typename mlist2tuple<alias_list>::type;
alias_store aliases;
// TODO: =delete
alias_tuple() = default;
alias_tuple(alias_tuple&&) = default;
alias_tuple(const alias_tuple&) = default;
template <template <typename...> class Owner, typename... TailParams, typename... Args>
alias_tuple(chain_arg_helper<Owner, TailParams...> helper, Args&&... args)
: alias_tuple(helper.template match<mlist_length<Elements>::value>(mlist<Args...>()), std::forward<Args>(args)...) {}
private:
template <typename... Args>
alias_tuple(std::true_type, Args&&... args)
: aliases(std::forward<Args>(args)...) {}
template <typename... Counts, typename... Args>
alias_tuple(mlist<Counts...>, Args&&... args)
: alias_tuple(typename index_sequence_for<Elements>::type(),
mlist<int_constant<0>, Counts...>(),
std::forward_as_tuple(std::forward<Args>(args)...)) {}
template <size_t... Index, typename Counts, typename... Args>
alias_tuple(std::index_sequence<Index...>, Counts, std::tuple<Args...>&& args)
: aliases(pick_arg<Index, Counts>(args)...) {}
template <int i, typename Counts, typename... Args>
static constexpr decltype(auto) pick_arg(std::tuple<Args...>& args)
{
using arg_finder = mlist_find_if<Counts, mis_greater, int_constant<i>>;
constexpr int offset = mlist_at<Counts, arg_finder::pos-1>::type::value;
constexpr bool arg_is_tuple = arg_finder::match::value > offset+1;
return pick_arg(std::get<arg_finder::pos-1>(std::move(args)), int_constant<(arg_is_tuple ? i-offset : -1)>());
}
template <typename Arg>
static constexpr decltype(auto) pick_arg(Arg&& arg, int_constant<-1>)
{
return std::forward<Arg>(arg);
}
template <typename Arg, int i>
static constexpr decltype(auto) pick_arg(Arg&& arg, int_constant<i>)
{
return std::forward<Arg>(arg).get_alias(size_constant<i>());
}
public:
template <size_t i>
decltype(auto) get_alias(size_constant<i>) &
{
return std::get<i>(aliases);
}
template <size_t i>
decltype(auto) get_alias(size_constant<i>) const &
{
return std::get<i>(aliases);
}
template <size_t i>
decltype(auto) get_alias(size_constant<i>) &&
{
return std::move(std::get<i>(aliases));
}
template <size_t i>
decltype(auto) get_container(size_constant<i>)
{
return *get_alias(size_constant<i>());
}
template <size_t i>
decltype(auto) get_container(size_constant<i>) const
{
return *get_alias(size_constant<i>());
}
template <typename T>
using get_lazy = bool_constant<object_traits<typename deref<T>::type>::is_lazy>;
static constexpr bool
is_lazy = mlist_or<typename mlist_transform_unary<Elements, get_lazy>::type>::value,
is_always_const = mlist_or<typename mlist_transform_unary<Elements, is_effectively_const>::type>::value;
};
template <template <typename...> class Owner, bool enforce_const=false, typename... TailParams>
struct chain_compose {
template <typename T>
using recognize = is_instance_of<pure_type_t<T>, Owner>;
template <typename T, typename=void>
struct extract_impl {
using type = T;
};
template <typename T>
struct extract_impl<T, std::enable_if_t<recognize<T>::value &&
std::is_same<typename mlist_tail<typename recognize<T>::params>::type, mlist<TailParams...>>::value>> {
using type = typename mlist_head<typename recognize<T>::params>::type;
};
template <typename T>
using extract = extract_impl<T>;
template <typename... T>
using component_list = typename mlist_flatten<typename mlist_transform_unary<typename mlist_wrap<T...>::type, extract>::type>::type;
template <typename... T>
using list = typename chain_const_helper<component_list<T...>, enforce_const>::type;
template <typename... T>
using with = Owner<list<T...>, TailParams...>;
};
template <typename ContainerList>
class ContainerChain
: public alias_tuple<ContainerList>
, public container_chain_impl< ContainerChain<ContainerList>,
mlist< ContainerRefTag<ContainerList> > > {
using arg_helper = chain_arg_helper<pm::ContainerChain>;
protected:
using alias_tuple<ContainerList>::alias_tuple;
public:
template <typename... Args, typename=std::enable_if_t<arg_helper::allow(ContainerList(), mlist<Args...>())>>
explicit ContainerChain(Args&&... args)
: alias_tuple<ContainerList>(arg_helper(), std::forward<Args>(args)...) {}
};
template <typename ContainerList>
struct spec_object_traits< ContainerChain<ContainerList> >
: spec_object_traits<is_container> {
static constexpr bool
is_temporary = true,
is_lazy = alias_tuple<ContainerList>::is_lazy,
is_always_const = alias_tuple<ContainerList>::is_always_const;
};
template <typename ContainerList>
struct check_container_feature<ContainerChain<ContainerList>, sparse>
: mlist_or<typename mlist_transform_binary<ContainerList, mrepeat<sparse>, check_container_ref_feature>::type> {};
template <typename ContainerList>
struct check_container_feature<ContainerChain<ContainerList>, pure_sparse>
: mlist_and<typename mlist_transform_binary<ContainerList, mrepeat<pure_sparse>, check_container_ref_feature>::type> {};
template <typename... Container>
auto concatenate(Container&&... c)
{
return typename chain_compose<ContainerChain>::template with<Container...>(std::forward<Container>(c)...);
}
template <typename IteratorList, typename Operation>
class tuple_transform_iterator
: protected chains::iterator_store<IteratorList> {
using base_t = chains::iterator_store<IteratorList>;
using typename base_t::it_tuple;
protected:
Operation op;
template <size_t... Index>
static decltype(auto) apply_op(const Operation& op, const it_tuple& t, std::index_sequence<Index...>)
{
return op(*(std::get<Index>(t))...);
}
public:
using iterator_category = typename union_iterator_traits<IteratorList>::iterator_category;
using difference_type = ptrdiff_t;
using iterator = tuple_transform_iterator<typename mlist_transform_unary<IteratorList, chains::get_iterator>::type, Operation>;
using const_iterator = tuple_transform_iterator<typename mlist_transform_unary<IteratorList, chains::get_const_iterator>::type, Operation>;
tuple_transform_iterator() = default;
template <typename... Iterator, typename=std::enable_if_t<std::is_constructible<base_t, Iterator...>::value>>
explicit tuple_transform_iterator(Iterator&&... args)
: base_t(std::forward<Iterator>(args)...) {}
template <typename... Iterator, typename=std::enable_if_t<std::is_constructible<base_t, Iterator...>::value>>
tuple_transform_iterator(const Operation& op_arg, Iterator&&... args)
: base_t(std::forward<Iterator>(args)...)
, op(op_arg) {}
tuple_transform_iterator(const iterator& other)
: base_t(other) {}
tuple_transform_iterator& operator= (const iterator& other)
{
base_t::operator=(other);
return *this;
}
using reference = decltype(apply_op(std::declval<const Operation&>(), std::declval<const it_tuple&>(), typename index_sequence_for<IteratorList>::type()));
using pointer = typename arrow_helper<reference>::pointer;
using value_type = pure_type_t<reference>;
reference operator* () const
{
return apply_op(op, base_t::get_it_tuple(), typename index_sequence_for<IteratorList>::type());
}
pointer operator-> () const
{
return arrow_helper<reference>::get(*this);
}
tuple_transform_iterator& operator++ ()
{
foreach_in_tuple(base_t::its, [](auto& it) ->void { ++it; });
return *this;
}
tuple_transform_iterator operator++ (int) { tuple_transform_iterator copy(*this); operator++(); return copy; }
tuple_transform_iterator& operator-- ()
{
static_assert(is_derived_from<iterator_category, std::bidirectional_iterator_tag>::value,
"decrement is not supported by all involved iterators");
foreach_in_tuple(base_t::get_it_tuple(), [](auto& it) ->void { --it; });
return *this;
}
tuple_transform_iterator operator-- (int) { tuple_transform_iterator copy(*this); operator--(); return copy; }
tuple_transform_iterator& operator+= (ptrdiff_t i)
{
static_assert(std::is_same<iterator_category, std::random_access_iterator_tag>::value,
"random access is not supported by all involved iterators");
foreach_in_tuple(base_t::get_it_tuple(), [i](auto& it) ->void { it+=i; });
return *this;
}
tuple_transform_iterator& operator-= (ptrdiff_t i)
{
static_assert(std::is_same<iterator_category, std::random_access_iterator_tag>::value,
"random access is not supported by all involved iterators");
foreach_in_tuple(base_t::get_it_tuple(), [i](auto& it) ->void { it-=i; });
return *this;
}
tuple_transform_iterator operator+ (ptrdiff_t i) const
{
tuple_transform_iterator copy(*this); return copy+=i;
}
tuple_transform_iterator operator- (ptrdiff_t i) const
{
tuple_transform_iterator copy(*this); return copy-=i;
}
friend tuple_transform_iterator operator+ (ptrdiff_t i, const tuple_transform_iterator& me)
{
return me+i;
}
ptrdiff_t operator- (const tuple_transform_iterator& other) const
{
constexpr int i = mlist_find_if<IteratorList, can_subtract_iterators>::pos;
static_assert(i>=0, "no random access");
return std::get<i>(base_t::get_it_tuple()) - std::get<i>(other.get_it_tuple());
}
bool at_end() const
{
constexpr int i = mlist_find_if<IteratorList, check_iterator_feature, end_sensitive>::pos;
return std::get<i>(base_t::get_it_tuple()).at_end();
}
Int index() const
{
constexpr int i = mlist_find_if<IteratorList, check_iterator_feature, indexed>::pos;
return std::get<i>(base_t::get_it_tuple()).index();
}
bool operator== (const tuple_transform_iterator& other) const
{
constexpr int i = mlist_find_if<IteratorList, mnegate_binary<check_iterator_feature>::template func, unlimited>::pos;
return std::get<i>(base_t::get_it_tuple()) == std::get<i>(other.get_it_tuple());
}
bool operator!= (const tuple_transform_iterator& other) const
{
return !operator==(other);
}
};
template <typename IteratorList, typename Operation, typename Feature>
struct check_iterator_feature< tuple_transform_iterator<IteratorList, Operation>, Feature>
: mlist_or< typename mlist_transform_binary<IteratorList, mrepeat<Feature>, check_iterator_feature>::type > {};
template <typename IteratorList, typename Operation>
struct check_iterator_feature< tuple_transform_iterator<IteratorList, Operation>, unlimited>
: mlist_and< typename mlist_transform_binary<IteratorList, mrepeat<unlimited>, check_iterator_feature>::type > {};
template <typename Top, typename Params>
class modified_container_tuple_typebase : public manip_container_top<Top, Params> {
using base_t = manip_container_top<Top, Params>;
public:
using container_ref_list = typename mtagged_list_extract<Params, ContainerRefTag>::type;
using container_list = typename mlist_transform_unary<container_ref_list, deref>::type;
using operation = typename mtagged_list_extract<Params, OperationTag>::type;
using raw_iterator_list = typename mlist_transform_unary<container_ref_list, extract_iterator>::type;
static constexpr int tuple_size = mlist_length<container_list>::value;
static constexpr auto tuple_indexes()
{
return std::make_index_sequence<tuple_size>();
}
using usual_or_features = mlist<end_sensitive, indexed>;
using typename base_t::expected_features;
using or_features = typename mlist_match_all<expected_features, usual_or_features, equivalent_features>::type;
using and_features = typename mlist_match_all<expected_features, usual_or_features, equivalent_features>::complement;
using missing_or_features = typename mlist_match_all<raw_iterator_list, or_features, check_iterator_feature>::complement2;
static constexpr size_t normal_it_pos = mlist_find_if<raw_iterator_list, mnegate_binary<check_iterator_feature>::template func, unlimited>::pos;
using needed_feature_list = typename mlist_concat< typename mreplicate< ExpectedFeaturesTag<and_features>, normal_it_pos>::type,
ExpectedFeaturesTag< typename mix_features<and_features, missing_or_features>::type >,
typename mreplicate< ExpectedFeaturesTag<and_features>, tuple_size-normal_it_pos-1>::type >::type;
using iterator_list = typename mlist_transform_binary<container_ref_list, needed_feature_list, extract_iterator_with_features>::type;
using const_iterator_list = typename mlist_transform_binary<container_ref_list, needed_feature_list, extract_const_iterator_with_features>::type;
using iterator = tuple_transform_iterator<iterator_list, operation>;
using const_iterator = tuple_transform_iterator<const_iterator_list, operation>;
using container_category = typename least_derived_class< typename mlist_transform_unary<container_list, extract_category>::type >::type;
using reference = typename iterator::reference;
using const_reference = typename const_iterator::reference;
using value_type = typename iterator::value_type;
};
template <typename Top, typename Params>
class reverse_modified_container_tuple_typebase {
using base_t = modified_container_tuple_typebase<Top, Params>;
public:
using reverse_iterator_list =
typename mlist_transform_binary<typename base_t::container_ref_list, typename base_t::needed_feature_list,
extract_reverse_iterator_with_features>::type;
using const_reverse_iterator_list =
typename mlist_transform_binary<typename base_t::container_ref_list, typename base_t::needed_feature_list,
extract_const_reverse_iterator_with_features>::type;
using reverse_iterator = tuple_transform_iterator<reverse_iterator_list, typename base_t::operation>;
using const_reverse_iterator = tuple_transform_iterator<const_reverse_iterator_list, typename base_t::operation>;
};
template <typename Top, typename Params=typename Top::manipulator_params,
typename Category=typename modified_container_tuple_typebase<Top, Params>::container_category>
class modified_container_tuple_impl
: public modified_container_tuple_typebase<Top, Params> {
using base_t = modified_container_tuple_typebase<Top, Params>;
public:
typedef modified_container_tuple_impl<Top, Params> manipulator_impl;
typedef Params manipulator_params;
using typename base_t::iterator;
using typename base_t::const_iterator;
template <typename FeatureCollector>
struct rebind_feature_collector {
typedef modified_container_tuple_impl<FeatureCollector, Params> type;
};
iterator begin()
{
return make_begin(base_t::tuple_indexes(), typename base_t::needed_feature_list());
}
iterator end()
{
return make_end(base_t::tuple_indexes(), typename base_t::needed_feature_list());
}
const_iterator begin() const
{
return make_begin(base_t::tuple_indexes(), typename base_t::needed_feature_list());
}
const_iterator end() const
{
return make_end(base_t::tuple_indexes(), typename base_t::needed_feature_list());
}
Int size() const
{
return this->manip_top().get_container(size_constant<base_t::normal_it_pos>()).size();
}
Int dim() const
{
return get_dim(this->manip_top().get_container(size_constant<base_t::normal_it_pos>()));
}
bool empty() const
{
return this->manip_top().get_container(size_constant<base_t::normal_it_pos>()).empty();
}
decltype(auto) front()
{
return make_front(base_t::tuple_indexes());
}
decltype(auto) front() const
{
return make_front(base_t::tuple_indexes());
}
private:
template <size_t... Index, typename... Features>
iterator make_begin(std::index_sequence<Index...>, mlist<Features...>)
{
return iterator(this->manip_top().get_operation(),
ensure(this->manip_top().get_container(size_constant<Index>()), muntag_t<Features>()).begin()...);
}
template <size_t... Index, typename... Features>
iterator make_end(std::index_sequence<Index...>, mlist<Features...>)
{
return iterator(this->manip_top().get_operation(),
ensure(this->manip_top().get_container(size_constant<Index>()), muntag_t<Features>()).end()...);
}
template <size_t... Index, typename... Features>
const_iterator make_begin(std::index_sequence<Index...>, mlist<Features...>) const
{
return const_iterator(this->manip_top().get_operation(),
ensure(this->manip_top().get_container(size_constant<Index>()), muntag_t<Features>()).begin()...);
}
template <size_t... Index, typename... Features>
const_iterator make_end(std::index_sequence<Index...>, mlist<Features...>) const
{
return const_iterator(this->manip_top().get_operation(),
ensure(this->manip_top().get_container(size_constant<Index>()), muntag_t<Features>()).end()...);
}
template <size_t... Index>
decltype(auto) make_front(std::index_sequence<Index...>)
{
return this->manip_top().get_operation()( this->manip_top().get_container(size_constant<Index>()).front()... );
}
template <size_t... Index>
decltype(auto) make_front(std::index_sequence<Index...>) const
{
return this->manip_top().get_operation()( this->manip_top().get_container(size_constant<Index>()).front()... );
}
};
template <typename Top, typename Params>
class modified_container_tuple_impl<Top, Params, std::bidirectional_iterator_tag>
: public modified_container_tuple_impl<Top, Params, std::forward_iterator_tag> {
using base_t = modified_container_tuple_impl<Top, Params, std::forward_iterator_tag>;
using rev_traits = reverse_modified_container_tuple_typebase<Top, Params>;
public:
using reverse_iterator = typename rev_traits::reverse_iterator;
using const_reverse_iterator = typename rev_traits::const_reverse_iterator;
reverse_iterator rbegin()
{
return make_rbegin(base_t::tuple_indexes(), typename base_t::needed_feature_list());
}
reverse_iterator rend()
{
return make_rend(base_t::tuple_indexes(), typename base_t::needed_feature_list());
}
const_reverse_iterator rbegin() const
{
return make_rbegin(base_t::tuple_indexes(), typename base_t::needed_feature_list());
}
const_reverse_iterator rend() const
{
return make_rend(base_t::tuple_indexes(), typename base_t::needed_feature_list());
}
decltype(auto) back()
{
return make_back(base_t::tuple_indexes());
}
decltype(auto) back() const
{
return make_back(base_t::tuple_indexes());
}
private:
template <size_t... Index, typename... Features>
reverse_iterator make_rbegin(std::index_sequence<Index...>, mlist<Features...>)
{
return reverse_iterator(this->manip_top().get_operation(),
ensure(this->manip_top().get_container(size_constant<Index>()), muntag_t<Features>()).rbegin()...);
}
template <size_t... Index, typename... Features>
reverse_iterator make_rend(std::index_sequence<Index...>, mlist<Features...>)
{
return reverse_iterator(this->manip_top().get_operation(),
ensure(this->manip_top().get_container(size_constant<Index>()), muntag_t<Features>()).rend()...);
}
template <size_t... Index, typename... Features>
const_reverse_iterator make_rbegin(std::index_sequence<Index...>, mlist<Features...>) const
{
return const_reverse_iterator(this->manip_top().get_operation(),
ensure(this->manip_top().get_container(size_constant<Index>()), muntag_t<Features>()).rbegin()...);
}
template <size_t... Index, typename... Features>
const_reverse_iterator make_rend(std::index_sequence<Index...>, mlist<Features...>) const
{
return const_reverse_iterator(this->manip_top().get_operation(),
ensure(this->manip_top().get_container(size_constant<Index>()), muntag_t<Features>()).rend()...);
}
template <size_t... Index>
decltype(auto) make_back(std::index_sequence<Index...>)
{
return this->manip_top().get_operation()( this->manip_top().get_container(size_constant<Index>()).back()... );
}
template <size_t... Index>
decltype(auto) make_back(std::index_sequence<Index...>) const
{
return this->manip_top().get_operation()( this->manip_top().get_container(size_constant<Index>()).back()... );
}
};
template <typename Top, typename Params>
class modified_container_tuple_impl<Top, Params, std::random_access_iterator_tag>
: public modified_container_tuple_impl<Top, Params, std::bidirectional_iterator_tag> {
using base_t = modified_container_tuple_impl<Top, Params, std::bidirectional_iterator_tag>;
public:
decltype(auto) operator[] (Int i)
{
return make_random(i, base_t::tuple_indexes());
}
decltype(auto) operator[] (Int i) const
{
return make_random(i, base_t::tuple_indexes());
}
private:
template <size_t... Index>
decltype(auto) make_random(Int i, std::index_sequence<Index...>)
{
return this->manip_top().get_operation()( this->manip_top().get_container(size_constant<Index>())[i]... );
}
template <size_t... Index>
decltype(auto) make_random(Int i, std::index_sequence<Index...>) const
{
return this->manip_top().get_operation()( this->manip_top().get_container(size_constant<Index>())[i]... );
}
};
namespace operations {
template <typename LeftRef, typename RightRef,
typename Discr=typename isomorphic_types<typename deref<LeftRef>::type, typename deref<RightRef>::type>::discriminant>
struct concat_impl;
template <typename LeftRef, typename RightRef>
struct concat : concat_impl<LeftRef, RightRef> {};
} // end namespace operations
} // end namespace pm
namespace polymake {
using pm::concatenate;
namespace operations {
typedef BuildBinary<pm::operations::concat> concat;
// to be used in Rows/Cols of BlockMatrix, where no hidden chains can ocur among the arguments
template <template <typename> class Result>
struct concat_tuple {
template <typename... Args>
auto operator() (Args&&... args) const
{
using list = typename pm::chain_const_helper<mlist<Args...>>::type;
return Result<list>(std::forward<Args>(args)...);
}
};
} }
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|