1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
|
/* Copyright (c) 1997-2024
Ewgenij Gawrilow, Michael Joswig, and the polymake team
Technische Universität Berlin, Germany
https://polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#pragma once
/** @file FacetList.h
@brief Implementation of pm::FacetList and ... classes
*/
#include "polymake/internal/sparse2d_ruler.h"
#include "polymake/internal/chunk_allocator.h"
#include "polymake/IncidenceMatrix.h"
#include "polymake/EmbeddedList.h"
#include "polymake/vector"
#include "polymake/list"
#include <cassert>
namespace pm {
class FacetList;
template <> class Cols<FacetList>;
namespace fl_internal {
class facet;
class vertex_list;
class lex_ordered_vertex_list;
class superset_iterator;
template <typename Iterator, bool check_range = true> class subset_iterator;
class Facet; class Table;
typedef Int facet_id_t;
}
template <>
struct spec_object_traits<fl_internal::facet>
: spec_object_traits<is_container> {
static const bool is_always_const=true;
static const IO_separator_kind IO_separator=IO_sep_inherit;
};
template <>
struct spec_object_traits<fl_internal::Facet>
: spec_object_traits<is_container> {
static const bool is_always_const=true;
typedef fl_internal::facet masquerade_for;
};
template <> struct spec_object_traits<fl_internal::vertex_list>
: spec_object_traits<is_container> {};
template <> struct spec_object_traits<fl_internal::lex_ordered_vertex_list>
: spec_object_traits<is_container> {};
namespace fl_internal {
// element of a facet
struct cell {
cell* head_cell; // apparent head cell contained in the facet structure
// links to neighbor cells in the same facet; =head_cell for the lowest/highest vertex
ptr_pair<cell> facet; // preceding vertex;
// links to other facets containing the same vertex:
// prev = facet added after this one - new facets are always pushed at the front of the column list
// next = facet added before this one
ptr_pair<cell> col;
// links to neighbor siblings in the prefix tree: facets containing same vertices up to here and differing in the next vertex
ptr_pair<cell> lex;
Int vertex; // vertex number = element of the facet
cell(cell* head_arg, Int vertex_arg)
: head_cell(head_arg)
, vertex(vertex_arg) {}
};
// iterator along a list of cells
template <ptr_pair<cell> cell::* links, bool _rev=false>
class cell_iterator
: public embedded_list_iterator<cell, links, true, _rev> {
public:
typedef cell_iterator iterator;
typedef cell_iterator const_iterator;
typedef embedded_list_iterator<cell, links, true, _rev> super;
cell_iterator() {}
cell_iterator(const cell* cur_arg, const cell* head_arg)
: super(cur_arg)
, head(head_arg)
{
assert(links == &cell::facet || !head_arg);
}
explicit cell_iterator(const cell* cur_arg)
: super(cur_arg)
, head(links == &cell::facet ? cur_arg->head_cell : nullptr) {}
iterator& operator++ ()
{
super::operator++();
return *this;
}
iterator& operator-- ()
{
super::operator--();
return *this;
}
const iterator operator++ (int) { iterator copy(*this); operator++(); return copy; }
const iterator operator-- (int) { iterator copy(*this); operator--(); return copy; }
bool at_end() const { return this->cur == head; }
Int index() const
{
return links == &cell::facet ? this->cur->vertex : get_facet()->get_id();
}
const facet* get_facet() const;
protected:
const cell* head; // apparent head cell of the facet or nullptr for vertical traversals
// move to another facet following the given link
// @return false if no cell exists in the given direction
bool down(ptr_pair<cell> cell::* vertical_links)
{
assert(links == &cell::facet && links != vertical_links);
const cell* next = (this->cur->*vertical_links).next;
if (!next) return false;
this->cur = next;
head = this->cur->head_cell;
return true;
}
template <ptr_pair<cell> cell::*, bool> friend class cell_iterator;
friend class facet;
friend class Table;
};
class facet {
public:
explicit facet(facet_id_t id_arg=facet_id_t(-1))
: cells(&cell::facet)
, size_(0)
, id(id_arg) {}
facet(const facet& l, chunk_allocator& al);
void unlink_cells(chunk_allocator& al);
cell* push_back(Int vertex, chunk_allocator& al);
typedef cell_iterator<&cell::facet, false> iterator;
typedef iterator const_iterator;
typedef cell_iterator<&cell::facet, true> reverse_iterator;
typedef reverse_iterator const_reverse_iterator;
typedef cell value_type;
typedef const cell& reference;
typedef reference const_reference;
iterator begin() const
{
return iterator(cells.next, head_cell());
}
iterator end() const
{
return iterator(head_cell(), head_cell());
}
reverse_iterator rbegin() const
{
return reverse_iterator(cells.prev, head_cell());
}
reverse_iterator rend() const
{
return reverse_iterator(head_cell(), head_cell());
}
Int size() const { return size_; }
bool empty() const { return size_ == 0; }
protected:
ptr_pair<facet> list_ptrs; // embedded list of all facets in FacetList
ptr_pair<cell> cells; // vertices comprising this facet
Int size_;
facet_id_t id;
const cell* head_cell() const
{
return reverse_cast(&cells, &cell::facet);
}
cell* head_cell()
{
return reverse_cast(&cells, &cell::facet);
}
public:
static const facet* from_head_cell(const cell* head)
{
return reverse_cast(&(head->facet), &facet::cells);
}
static const facet* from_cell(const cell* c)
{
return from_head_cell(c->head_cell);
}
facet_id_t get_id() const { return id; }
struct id2index {
typedef facet argument_type;
typedef Int result_type;
result_type operator() (const facet& f) const { return f.id; }
};
friend class Table;
friend class superset_iterator;
friend class fl_allocator;
private:
// deleted
facet(const facet&);
void operator= (const facet&);
};
template <ptr_pair<cell> cell::* links, bool _rev>
const facet* cell_iterator<links, _rev>::get_facet() const
{
return links == &cell::facet ? facet::from_head_cell(head) : facet::from_cell(this->cur);
}
class Facet
: public modified_container_impl< Facet,
mlist< HiddenTag<facet>,
OperationTag< BuildUnaryIt<operations::index2element> > > >,
public GenericSet<Facet, Int, operations::cmp> {
public:
operations::cmp get_comparator() const { return operations::cmp(); }
facet_id_t get_id() const { return this->hidden().get_id(); }
protected:
Facet();
~Facet();
};
// Iterator over facets containing a given vertex.
// The facets are visited in reverse chronological order.
class col_order_iterator
: public cell_iterator<&cell::col> {
typedef cell_iterator<&cell::col> super;
public:
typedef forward_iterator_tag iterator_category;
typedef Facet value_type;
typedef const Facet& reference;
typedef const Facet* pointer;
typedef col_order_iterator iterator;
typedef iterator const_iterator;
col_order_iterator(const cell* cur_arg = nullptr)
: super(cur_arg, nullptr) {}
reference operator* () const
{
return reinterpret_cast<reference>(*get_facet());
}
pointer operator-> () const { return &(operator*()); }
iterator& operator++ () { super::operator++(); return *this; }
const iterator operator++ (int) { iterator copy(*this); super::operator++(); return copy; }
};
//! Iterator over facets containing a given vertex as the lowest one.
//! Facets are visited in lexicographical order.
class lex_order_iterator {
protected:
typedef cell_iterator<&cell::lex> cit;
typedef std::list<cit> it_list;
it_list Q;
public:
typedef forward_iterator_tag iterator_category;
typedef Facet value_type;
typedef const Facet& reference;
typedef const Facet* pointer;
typedef ptrdiff_t difference_type;
typedef lex_order_iterator iterator;
typedef lex_order_iterator const_iterator;
lex_order_iterator(const cell* cur_arg = nullptr);
reference operator* () const
{
return reinterpret_cast<reference>(*Q.back().get_facet());
}
pointer operator-> () const { return &(operator*()); }
iterator& operator++ ();
const iterator operator++ (int) { iterator copy(*this); operator++(); return copy; }
bool at_end() const { return Q.empty(); }
bool operator== (const iterator& it) const { return Q==it.Q; }
bool operator!= (const iterator& it) const { return !operator==(it); }
Int index() const
{
return Q.back().index();
}
private:
void scan_facet(const cell* cur);
};
// Heads of lists of cells pertaining to a certain vertex
class vertex_list {
public:
explicit vertex_list(Int vertex_)
: vertex(vertex_)
, first_col(nullptr)
, first_lex(nullptr) {}
vertex_list(const vertex_list& l);
vertex_list(vertex_list&& l)
: vertex_list(l.vertex, std::move(l)) {}
vertex_list(Int vertex_, vertex_list&& l)
: vertex(vertex_)
, first_col(l.first_col)
, first_lex(l.first_lex)
{
if (first_col)
{
first_col->col.prev = col_head_cell();
l.first_col = nullptr;
}
if (first_lex)
{
first_lex->lex.prev = lex_head_cell();
l.first_lex = nullptr;
}
}
private:
// deleted
void operator=(const vertex_list&);
public:
typedef col_order_iterator iterator;
typedef iterator const_iterator;
typedef Facet value_type;
typedef const Facet& reference;
typedef reference const_reference;
iterator begin() const
{
return iterator(first_col);
}
iterator end() const
{
return iterator();
}
reference front() const
{
return reinterpret_cast<reference>(*facet::from_cell(first_col));
}
Int size() const
{
return count_it(begin());
}
bool empty() const
{
return !first_col;
}
protected:
Int vertex;
cell* first_col;
cell* first_lex;
cell* col_head_cell() const
{
return reverse_cast(reverse_cast(const_cast<cell**>(&first_col), &ptr_pair<cell>::next), &cell::col);
}
cell* lex_head_cell() const
{
return reverse_cast(reverse_cast(const_cast<cell**>(&first_lex), &ptr_pair<cell>::next), &cell::lex);
}
// helper class inserting cells of a new facet into all lists
class inserter {
private:
// deleted
inserter(const inserter&);
void operator=(const inserter&);
public:
inserter()
: first_old(nullptr)
, last_old(nullptr)
, first_new(nullptr)
, last_new(nullptr) {}
// @retval true if the fork point reached
bool push(vertex_list& column, cell* newc);
// the new facet ended up as a prefix of an existing one
bool new_facet_ended();
private:
void finalize();
// cells of an existing facet that equals the new one so far
cell* first_old; // target cell of the incoming arc of the prefix tree
cell* last_old; // highest vertex coinciding with the new facet
// cells of the new facet
cell* first_new; // of the same vertex as first_old
cell* last_new; // of the same vertex as last_old, that is, the new cell consumed last
};
// insert the cell at front of the column list
cell* push_front(cell* c)
{
if ((c->col.next=first_col) != nullptr)
first_col->col.prev=c;
c->col.prev=col_head_cell();
first_col=c;
return c;
}
friend class Table;
template <typename,bool> friend class subset_iterator;
};
// masquerade for vertex_list, exposing the facets in lexicographical order
class lex_ordered_vertex_list
: public vertex_list {
protected:
lex_ordered_vertex_list() = delete;
~lex_ordered_vertex_list() = delete;
lex_ordered_vertex_list(const lex_ordered_vertex_list&) = delete;
public:
typedef lex_order_iterator iterator;
typedef iterator const_iterator;
typedef Facet value_type;
typedef const Facet& reference;
typedef reference const_reference;
iterator begin() const
{
return iterator(first_lex);
}
iterator end() const
{
return iterator();
}
reference front() const
{
return reinterpret_cast<reference>(*facet::from_cell(first_lex));
}
Int size() const
{
return count_it(begin());
}
bool empty() const
{
return first_lex == nullptr;
}
};
typedef sparse2d::ruler<vertex_list> col_ruler;
class superset_iterator {
public:
typedef forward_iterator_tag iterator_category;
typedef facet value_type;
typedef const value_type& reference;
typedef const value_type* pointer;
typedef ptrdiff_t difference_type;
typedef superset_iterator iterator;
typedef iterator const_iterator;
protected:
typedef cell_iterator<&cell::col> it_type;
typedef std::list<it_type> it_list;
it_list its;
pointer cur;
Int its_size;
static const value_type empty_facet;
public:
superset_iterator() {}
template <typename TSet>
superset_iterator(col_ruler::const_iterator columns, const GenericSet<TSet>& f, bool show_empty_facet)
{
its_size = iterator_traits<typename TSet::const_iterator>::is_bidirectional
? f.top().size() : 0;
for (auto v = entire(f.top()); !v.at_end(); ++v) {
its.push_back(columns[*v].begin());
if (!iterator_traits<typename TSet::const_iterator>::is_bidirectional)
++its_size;
}
if (its_size != 0)
valid_position();
else
cur = show_empty_facet ? &empty_facet : nullptr;
}
reference operator* () const { return *cur; }
pointer operator-> () const { return cur; }
bool exact_match() const
{
return its_size == cur->size();
}
iterator& operator++ () { valid_position(); return *this; }
const iterator operator++ (int) { iterator copy(*this); operator++(); return copy; }
bool at_end() const { return cur == nullptr; }
bool operator== (const iterator& it) const { return cur == it.cur; }
bool operator!= (const iterator& it) const { return !operator==(it); }
Int index() const { return cur->get_id(); }
private:
void valid_position();
template <typename,bool> friend class subset_iterator;
};
template <typename TSet, bool check_range>
class subset_iterator {
public:
using iterator_category = forward_iterator_tag;
using value_type = facet;
using reference = const value_type&;
using pointer = const value_type*;
using difference_type = ptrdiff_t;
using iterator = subset_iterator;
using const_iterator = iterator;
protected:
using set_iterator = typename ensure_features<TSet, end_sensitive>::const_iterator;
using it_pair = std::pair<facet::iterator, set_iterator>;
using it_list = std::list<it_pair>;
col_ruler::const_iterator columns;
Int n_columns;
set_iterator start;
it_list Q;
pointer cur;
public:
subset_iterator() {}
subset_iterator(col_ruler::const_iterator columns_arg, const GenericSet<TSet>& f)
: columns(columns_arg)
, start(entire(f.top()))
{
assert(!check_range);
valid_position();
}
subset_iterator(col_ruler::const_iterator columns_arg, Int n_columns_arg, const GenericSet<TSet>& f)
: columns(columns_arg)
, n_columns(n_columns_arg)
, start(entire(f.top()))
{
valid_position();
}
reference operator* () const { return *cur; }
pointer operator-> () const { return cur; }
iterator& operator++ () { valid_position(); return *this; }
const iterator operator++ (int) { iterator copy(*this); operator++(); return copy; }
bool at_end() const { return !cur; }
bool operator== (const iterator& it) const { return cur==it.cur; }
bool operator!= (const iterator& it) const { return cur!=it.cur; }
bool operator== (const superset_iterator& it) const { return cur==it.cur; }
bool operator!= (const superset_iterator& it) const { return cur!=it.cur; }
Int index() const { return cur->get_id(); }
private:
void valid_position();
};
template <typename TSet, bool check_range>
void subset_iterator<TSet, check_range>::valid_position()
{
for (;;) {
while (!Q.empty()) {
it_pair itp = Q.back(); Q.pop_back();
bool match;
do {
if (itp.first->lex.next != nullptr) {
Q.push_back(it_pair(facet::iterator(itp.first->lex.next), itp.second));
}
if ((++itp.first).at_end()) {
cur = itp.first.get_facet();
return;
}
const Int vertex_of_facet = itp.first->vertex;
while ((match = !(++itp.second).at_end())) {
const Int vertex_of_query = *itp.second;
if (vertex_of_query >= vertex_of_facet) {
match = vertex_of_query == vertex_of_facet;
break;
}
}
} while (match);
}
for (;;) {
if (start.at_end() || check_range && *start >= n_columns) {
cur = nullptr;
return;
}
cell* first_lex = columns[*start].first_lex;
if (first_lex != nullptr) {
Q.push_back(it_pair(facet::iterator(first_lex), start));
++start;
break;
}
++start;
}
}
}
} // end namespace fl_internal;
template <ptr_pair<fl_internal::cell> fl_internal::cell::* links, bool _rev>
struct check_iterator_feature<fl_internal::cell_iterator<links, _rev>, end_sensitive> : std::true_type {};
template <ptr_pair<fl_internal::cell> fl_internal::cell::* links, bool _rev>
struct check_iterator_feature<fl_internal::cell_iterator<links, _rev>, indexed> : std::true_type {};
template <> struct check_iterator_feature<fl_internal::col_order_iterator, end_sensitive> : std::true_type {};
template <> struct check_iterator_feature<fl_internal::col_order_iterator, indexed> : std::true_type {};
template <> struct check_iterator_feature<fl_internal::lex_order_iterator, end_sensitive> : std::true_type {};
template <> struct check_iterator_feature<fl_internal::lex_order_iterator, indexed> : std::true_type {};
template <> struct check_iterator_feature<fl_internal::superset_iterator, end_sensitive> : std::true_type {};
template <> struct check_iterator_feature<fl_internal::superset_iterator, indexed> : std::true_type {};
template <typename TSet, bool check_range>
struct check_iterator_feature<fl_internal::subset_iterator<TSet, check_range>, end_sensitive> : std::true_type {};
template <typename TSet, bool check_range>
struct check_iterator_feature<fl_internal::subset_iterator<TSet, check_range>, indexed> : std::true_type {};
namespace fl_internal {
class Table {
public:
typedef facet value_type;
typedef const value_type& reference;
typedef reference const_reference;
typedef embedded_list_iterator<facet, &facet::list_ptrs, true, false> iterator;
typedef embedded_list_iterator<facet, &facet::list_ptrs, true, true> reverse_iterator;
typedef iterator const_iterator;
typedef reverse_iterator const_reverse_iterator;
explicit Table(size_t facet_size = sizeof(facet), Int n_vertices = 0);
Table(const Table& c);
private:
void operator= (const Table&) = delete;
public:
~Table() { col_ruler::destroy(columns); }
//! make the table look empty
void clear();
//! remove all facets, keep the allocated number of vertices
void clear_facets();
Int n_vertices() const { return columns->size(); }
iterator begin() const { return iterator(facets.next); }
iterator end() const { return iterator(end_facet()); }
reverse_iterator rbegin() const { return reverse_iterator(facets.prev); }
reverse_iterator rend() const { return reverse_iterator(end_facet()); }
template <typename IndexConsumer>
void squeeze(const IndexConsumer& ic)
{
Int new_vertex = 0;
for (auto column_it = columns->begin(), end = columns->end(); column_it != end; ++column_it) {
if (cell* c = column_it->first_col) {
const Int old_vertex = column_it->vertex;
if (old_vertex != new_vertex) {
do
c->vertex = new_vertex;
while ((c = c->col.next) != nullptr);
new(&column_it[new_vertex - old_vertex]) vertex_list(new_vertex, std::move(*column_it));
}
ic(old_vertex, new_vertex); ++new_vertex;
}
}
if (new_vertex < n_vertices()) columns=col_ruler::resize(columns, new_vertex, false);
if (next_id != size_) squeeze_ids();
}
template <typename Iterator>
Table(size_t facet_size, Iterator src, std::false_type)
: facet_alloc(facet_size)
, cell_alloc(sizeof(cell))
, facets(&facet::list_ptrs)
, columns(col_ruler::construct(0))
, size_(0)
, next_id(0)
{
for (; !src.at_end(); ++src)
insert(*src);
}
template <typename Iterator>
Table(size_t facet_size, Int n_vertices, Iterator src, std::false_type)
: facet_alloc(facet_size)
, cell_alloc(sizeof(cell))
, facets(&facet::list_ptrs)
, columns(col_ruler::construct(n_vertices))
, size_(0)
, next_id(0)
{
for (; !src.at_end(); ++src)
insert_from_it(entire_range(*src), new_id());
}
template <typename Iterator>
Table(size_t facet_size, Iterator src, std::true_type)
: facet_alloc(facet_size)
, cell_alloc(sizeof(cell))
, facets(&facet::list_ptrs)
, columns(col_ruler::construct(0))
, size_(0)
, next_id(0)
{
for (; !src.at_end(); ++src)
push_back(*src);
}
template <typename Iterator>
Table(size_t facet_size, Int n_vertices, Iterator src, std::true_type)
: facet_alloc(facet_size)
, cell_alloc(sizeof(cell))
, facets(&facet::list_ptrs)
, columns(col_ruler::construct(n_vertices))
, size_(0)
, next_id(0)
{
for (; !src.at_end(); ++src)
push_back_from_it(entire_range(*src));
}
const facet* end_facet() const
{
return reverse_cast(&facets, &facet::list_ptrs);
}
facet* end_facet()
{
return reverse_cast(&facets, &facet::list_ptrs);
}
class LexOrdered_helper
: public modified_container_impl< LexOrdered_helper,
mlist< ContainerTag< col_ruler >,
OperationTag< operations::reinterpret<lex_ordered_vertex_list> >,
HiddenTag< Table > > > {
public:
const col_ruler& get_container() const { return *hidden().columns; }
};
protected:
void push_back_new_facet(facet* f);
void push_back_facet(facet* f);
template <typename Iterator>
void insert_cells(facet* f, Iterator&& src)
{
vertex_list::inserter inserter;
Int v;
do {
if (src.at_end()) {
if (inserter.new_facet_ended()) return;
erase_facet(*f);
throw std::runtime_error("attempt to insert a duplicate or empty facet into FacetList");
}
v = *src; ++src;
if (std::is_same<typename iterator_traits<Iterator>::iterator_category, input_iterator_tag>::value)
extend_cols(v);
} while (!inserter.push((*columns)[v], f->push_back(v, cell_alloc)));
for (; !src.at_end(); ++src) {
v = *src;
if (std::is_same<typename iterator_traits<Iterator>::iterator_category, input_iterator_tag>::value)
extend_cols(v);
(*columns)[v].push_front(f->push_back(v, cell_alloc));
}
}
template <typename Iterator>
facet* insert_from_it(Iterator&& src, facet_id_t nid)
{
facet* f = new(facet_alloc.allocate()) facet(nid);
push_back_facet(f);
++size_;
insert_cells(f, std::move(src));
return f;
}
template <typename Iterator>
void push_back_from_it(Iterator&& src)
{
Int new_vertex = *src;
facet* f = new(facet_alloc.allocate()) facet(new_id());
cell* newc;
cell* lex_prev;
if ((*columns)[new_vertex].first_lex != nullptr) {
assert(facets.prev != end_facet());
facet::const_iterator prev_facet_it = facets.prev->begin();
assert(new_vertex == prev_facet_it->vertex);
push_back_facet(f);
do {
newc = (*columns)[new_vertex].push_front(f->push_back(new_vertex, cell_alloc));
lex_prev = const_cast<cell*>(prev_facet_it.cur);
++src; ++prev_facet_it;
if (prev_facet_it.at_end()) break;
assert(!src.at_end());
new_vertex = *src;
assert(new_vertex >= prev_facet_it->vertex);
} while (new_vertex == prev_facet_it->vertex);
} else {
push_back_facet(f);
lex_prev = (*columns)[new_vertex].lex_head_cell();
newc = (*columns)[new_vertex].push_front(f->push_back(new_vertex, cell_alloc));
}
newc->lex.prev = lex_prev;
lex_prev->lex.next = newc;
while (!(++src).at_end()) {
new_vertex = *src;
(*columns)[new_vertex].push_front(f->push_back(new_vertex, cell_alloc));
}
++size_;
}
public:
template <typename TSet>
const facet* find_facet(const GenericSet<TSet>& f) const
{
auto v_it = entire(f.top());
if (v_it.at_end()) return nullptr;
Int v = *v_it;
if (v >= n_vertices()) return nullptr;
const cell* c = (*columns)[v].first_lex;
if (!c) return nullptr;
for (facet::iterator cur(c); ;) {
++v_it; ++cur;
if (cur.at_end()) {
if (v_it.at_end())
return cur.get_facet();
else
break;
}
if (v_it.at_end()) break;
v = *v_it;
while (cur->vertex != v) {
if (cur->vertex > v) return nullptr;
--cur;
if (!cur.down(&cell::lex)) return nullptr;
++cur;
}
}
return nullptr;
}
template <typename TSet>
facet* insert(const GenericSet<TSet, Int, operations::cmp>& f)
{
extend_cols(f.top().back());
return insert_from_it(entire(f.top()), new_id());
}
template <typename TSet>
void push_back(const GenericSet<TSet, Int, operations::cmp>& f)
{
extend_cols(f.top().back());
push_back_from_it(entire(f.top()));
}
template <typename TSet>
Int erase(const GenericSet<TSet, Int, operations::cmp>& f)
{
const facet* fp = find_facet(f);
return fp ? (erase_facet(*fp), 1) : 0;
}
void erase_facet(const facet& f);
template <typename TSet>
superset_iterator findSupersets(const GenericSet<TSet, Int, operations::cmp>& f, bool show_empty_facet) const
{
return superset_iterator(columns->begin(), f, show_empty_facet);
}
template <typename TSet, bool check_range>
subset_iterator<TSet, check_range> findSubsets(const GenericSet<TSet, Int, operations::cmp>& f, bool_constant<check_range>) const
{
return subset_iterator<TSet, check_range>(columns->begin(), n_vertices(), f);
}
protected:
template <typename Iterator, typename Consumer, typename Model>
static void consume_erased(const Iterator& ss, Consumer& consumer, Model)
{
*consumer = reinterpret_cast<const Facet&>(*ss); ++consumer;
}
template <typename Iterator, typename Consumer>
static void consume_erased(const Iterator& ss, Consumer& consumer, is_scalar)
{
*consumer = ss.index(); ++consumer;
}
template <typename Iterator, typename Consumer>
static void consume_erased(const Iterator& ss, Consumer& consumer)
{
consume_erased(ss, consumer, typename object_traits<typename iterator_traits<Consumer>::value_type>::model());
}
template <typename Iterator, typename Data>
static void consume_erased(const Iterator&, black_hole<Data>&) {}
public:
template <typename TSet> static
Int back_or_nothing(const TSet& f)
{
auto last=entire<reversed>(f);
return last.at_end() ? -1 : *last;
}
template <typename TSet, typename Consumer>
Int eraseSubsets(const GenericSet<TSet, Int, operations::cmp>& f, Consumer consumer)
{
const Int orig_size = size_;
for (subset_iterator<TSet> ss = findSubsets(f, std::true_type()); !ss.at_end(); ++ss) {
consume_erased(ss, consumer);
erase_facet(*ss);
}
return orig_size - size_;
}
template <typename TSet, typename Consumer>
Int eraseSupersets(const GenericSet<TSet, Int, operations::cmp>& f, Consumer consumer)
{
if (back_or_nothing(f.top()) >= n_vertices()) {
return 0;
}
const Int orig_size = size_;
for (superset_iterator ss = findSupersets(f,false); !ss.at_end(); ++ss) {
consume_erased(ss, consumer);
erase_facet(*ss);
}
return orig_size - size_;
}
template <typename TSet, bool can_extend, typename Consumer>
facet* insertMax(const GenericSet<TSet, Int, operations::cmp>& f, Consumer consumer,
bool_constant<can_extend>)
{
Int v_last;
facet_id_t nid = new_id();
if (can_extend && (v_last = back_or_nothing(f.top())) >= n_vertices()) {
extend_cols(v_last);
} else {
superset_iterator ss = findSupersets(f, true);
if (!ss.at_end())
return nullptr;
}
for (subset_iterator<TSet, false> ss = findSubsets(f, std::false_type()); !ss.at_end(); ++ss) {
consume_erased(ss, consumer);
erase_facet(*ss);
}
return insert_from_it(entire(f.top()), nid);
}
template <typename TSet, bool can_extend, typename Consumer>
facet* insertMin(const GenericSet<TSet, Int, operations::cmp>& f, Consumer consumer,
bool_constant<can_extend>)
{
bool accept = false;
Int v_last;
facet_id_t nid = new_id();
if (can_extend && (v_last = back_or_nothing(f.top())) >= n_vertices()) {
extend_cols(v_last);
} else {
superset_iterator ss = findSupersets(f, true);
if (!ss.at_end()) {
if (ss.exact_match())
return nullptr;
do {
consume_erased(ss,consumer);
erase_facet(*ss);
accept = true;
} while (! (++ss).at_end());
}
}
if (!accept) {
subset_iterator<TSet, false> ss=findSubsets(f, std::false_type());
if (!ss.at_end())
return nullptr;
}
return insert_from_it(entire(f.top()), nid);
}
protected:
chunk_allocator facet_alloc;
chunk_allocator cell_alloc;
ptr_pair<facet> facets;
col_ruler* columns;
Int size_;
facet_id_t next_id;
void extend_cols(Int v)
{
if (v >= n_vertices())
columns=col_ruler::resize(columns, v+1);
}
facet_id_t new_id()
{
facet_id_t id=next_id;
if (++next_id == 0) {
id = squeeze_ids();
++next_id;
}
return id;
}
void skip_ids(Int amount)
{
next_id += amount;
}
facet_id_t squeeze_ids()
{
facet_id_t id = 0;
for (facet *f = facets.next, *fe = end_facet(); f != fe; f=f->list_ptrs.next, ++id)
f->id = id;
return next_id=id;
}
friend class pm::FacetList;
friend class pm::Cols<pm::FacetList>;
#if POLYMAKE_DEBUG
bool sanity_check() const;
#endif
};
} // end namespace fl_internal
template <>
class Cols<FacetList>
: public redirected_container< Cols<FacetList>,
mlist< ContainerTag< const fl_internal::col_ruler >,
HiddenTag< FacetList > > > {
protected:
~Cols();
public:
inline const container& get_container() const;
};
/** @class FacetList
This is a collection of sets of integral numbers from a closed contiguous
range [0..n-1], as one usually has to deal with when modeling simplicial
complexes and related mathematical objects. Thus we will refer to the
contained sets as @em facets, and to the set elements as @em vertices.
The class can efficiently maintain the property of all facets being
mutually inclusion-free, although this property is not mandatory,
it can be violated by the application if needed.
The primary design goal of this class is efficient search, insertion,
and removal of facets included in or including a given vertex set.
The data structure is a rectangular grid, similar to IncidenceMatrix,
interwoven with a forest of suffix trees, indexed with the vertex number.
This also provides the lexicographical facet ordering as a pleasant side
effect. The whole thing is attached to a smart pointer with @ref
refcounting "reference counting".
For complexity statements below we (ab-)use the term @em dimension
(abbreviated as @em dim) for the number of vertices in a facet.
Conversely, the @em degree (abbreviated as @em deg) of a vertex is the
number of facets containing it.
FacetList implements STL's reversible container interface. During the
iteration the facets appear in the chronological order, that is, as they
were added to the list. Unlike @c std::list, the size() method runs in
constant time.
The elements of the list (facets) are of type GenericSet and implement the
reversible container interface, too. However, there is no random access or
cheap existence checks for single vertices; facets have to be scanned
sequentially.
The iterators over the facet list have an additional method @c index()
retrieving the unique integer id assigned to each facet when it was
inserted into the FacetList. A new id is generated by each call to any of
the insert() methods, regardless whether the facet is eventually inserted
or discarded as being dependent. Using methods squeeze() and
skip_facet_id() you can affect the id generated for the next facet.
*/
class FacetList
: public modified_container_impl< FacetList,
mlist< ContainerTag< const fl_internal::Table >,
OperationTag< pair< operations::reinterpret<fl_internal::Facet>, fl_internal::facet::id2index> > > >
, public matrix_col_methods<FacetList> {
protected:
shared_object<fl_internal::Table, AliasHandlerTag<shared_alias_handler>> table;
friend FacetList& make_mutable_alias(FacetList& alias, FacetList& owner)
{
alias.table.make_mutable_alias(owner.table);
return alias;
}
public:
const container& get_container() const { return *table; }
/** @brief Create an empty list.
Allocate the internal data structures capable of handling sets of
vertices from the range [0 .. @a n_vertices-1] in advance. The vertex range can be
dynamically expanded later, by @c insert* and @c push_back %operations,
with reallocation costs O(@a n_vertices).
*/
explicit FacetList(Int n_vertices = 0)
: table(sizeof(fl_internal::facet), n_vertices) {}
template <typename Iterator>
explicit FacetList(Iterator&& src,
std::enable_if_t<assess_iterator<Iterator, check_iterator_feature, end_sensitive>::value &&
assess_iterator_value<Iterator, isomorphic_types, Set<Int>>::value,
void**> =nullptr)
: table(sizeof(fl_internal::facet), std::forward<Iterator>(src), std::false_type()) {}
/** @brief Initialize the facets from the input sequence.
The items obtained by dereferencing @a src must be sets of cardinals (of type GenericSet).
*/
template <typename Iterator>
FacetList(Iterator&& src, Iterator&& src_end)
: table(sizeof(fl_internal::facet), make_iterator_range(src, src_end), std::false_type()) {}
/** @brief As above, but avoiding reallocation during the construction.
The facets supplied by @a src may not contain vertices outside the range [0, @a n_vertices-1].
*/
template <typename Iterator>
FacetList(Int n_vertices, Iterator&& src,
std::enable_if_t<assess_iterator<Iterator, check_iterator_feature, end_sensitive>::value &&
assess_iterator_value<Iterator, isomorphic_types, Set<Int>>::value,
std::nullptr_t> = nullptr)
: table(sizeof(fl_internal::facet), n_vertices, std::forward<Iterator>(src), std::false_type()) {}
template <typename TSet>
FacetList(const GenericSet<TSet, fl_internal::Facet::persistent_type, operations::cmp>& ps)
: table(sizeof(fl_internal::facet), entire(ps.top()), std::true_type()) {}
template <typename TSet>
FacetList(Int n_vertices, const GenericSet<TSet, fl_internal::Facet::persistent_type, operations::cmp>& ps)
: table(sizeof(fl_internal::facet), n_vertices, entire(ps.top()), std::true_type()) {}
template <typename TMatrix>
FacetList(const GenericIncidenceMatrix<TMatrix>& m)
: table(sizeof(fl_internal::facet), m.cols(), entire(rows(m)), std::false_type()) {}
template <typename Container, typename=std::enable_if_t<isomorphic_to_container_of<Container, Set<Int>, is_set>::value>>
FacetList(const Container& src)
: table(sizeof(fl_internal::facet), entire(src), std::false_type()) {}
/// Swap the contents of two lists in a most efficient way.
void swap(FacetList& l) { table.swap(l.table); }
/// Make the list empty, release all allocated resources.
void clear() { table.apply(shared_clear()); }
/// Return number of facets in list.
Int size() const { return table->size_; }
/// True if empty.
bool empty() const { return table->size_==0; }
/// Returns the number of vertices.
Int n_vertices() const { return table->n_vertices(); }
/// Renumber the facet ids consequently, starting with 0, thus eliminating the gaps.
void squeeze()
{
table->squeeze(operations::binary_noop());
}
/// If you want to gather the old ids, pass a binary functor as @a index_consumer.
template <typename IndexConsumer>
void squeeze(const IndexConsumer& ic)
{
table->squeeze(ic);
}
/** @brief Make an artificial gap in the generated facet id sequence.
* The facet inserted next will have an id @a amount greater than it would have had without this call.
*/
void skip_facet_id(Int amount = 1) { table->skip_ids(amount); }
class LexOrdered
: public cascade_impl< LexOrdered,
mlist< ContainerTag< fl_internal::Table::LexOrdered_helper >,
CascadeDepth< int_constant<2> >,
HiddenTag< fl_internal::Table > > >,
public GenericSet< LexOrdered, fl_internal::Facet::persistent_type, operations::cmp> {
protected:
~LexOrdered();
};
/** Another view on the list, visiting the facets in lexicographical order.
* The result type is a @ref manipulation "masquerade reference" pointing to
* a GenericSet< GenericSet<Int> >.
*/
friend const LexOrdered& lex_ordered(const FacetList& c)
{
return reinterpret_cast<const LexOrdered&>(*c.table);
}
/** @brief Add a new facet without checking the inclusion relation to the existing facets.
*
* It is allowed to insert a new facet being a subset or superset of existing facets.
* However, insertion of an empty set or of a duplicate facet is forbidden.
*
* The operation costs are O(dim + deg).
*/
template <typename TSet>
iterator insert(const GenericSet<TSet, Int, operations::cmp>& f)
{
if (POLYMAKE_DEBUG || is_wary<TSet>()) {
if (f.top().empty())
throw std::runtime_error("FacetList::insert - empty facet");
}
return iterator(fl_internal::Table::iterator(table->insert(f)));
}
/** @brief Add a facet to the list with least efforts.
*
* This method is primarily thought of as an construction aid, if none of
* the explicit constructors above suites, and enables the use of the
* convenient std::back_inserter. The operation costs are O(dim).
*
* The given facet must be lexicographically greater than all facets added
* before. This can only be checked in debugging mode.
*/
template <typename TSet>
void push_back(const GenericSet<TSet, Int, operations::cmp>& f)
{
if (POLYMAKE_DEBUG || is_wary<TSet>()) {
if (f.top().empty())
throw std::runtime_error("FacetList::push_back - empty facet");
}
table->push_back(f);
}
/** @brief Find the facet equal to the given vertex set and remove it from the list.
*
* Returns 1 if a facet was removed or 0 if no matching facet was found.
*
* The operation costs are O(dim + deg).
*/
template <typename TSet>
Int erase(const GenericSet<TSet, Int, operations::cmp>& f)
{
return table->erase(f);
}
/// Remove the facet pointed to by the given iterator.
void erase(const iterator& where)
{
return table->erase_facet(reinterpret_cast<const fl_internal::facet&>(*where));
}
template <typename TSet>
iterator find(const GenericSet<TSet, Int, operations::cmp>& f) const
{
const fl_internal::facet* facet = table->find_facet(f);
return facet ? iterator(fl_internal::Table::iterator(facet)) : end();
}
typedef unary_transform_iterator<fl_internal::superset_iterator, operations::reinterpret<fl_internal::Facet> >
superset_iterator;
template <typename TSet>
superset_iterator findSupersets(const GenericSet<TSet, Int, operations::cmp>& f) const
{
return superset_iterator(table->findSupersets(f, false));
}
template <typename TSet>
class subset_iterator
: public unary_transform_iterator<fl_internal::subset_iterator<TSet>, operations::reinterpret<fl_internal::Facet> > {
typedef unary_transform_iterator<fl_internal::subset_iterator<TSet>, operations::reinterpret<fl_internal::Facet> > base_t;
public:
subset_iterator(const fl_internal::subset_iterator<TSet>& it) : base_t(it) {}
};
template <typename TSet>
subset_iterator<TSet> findSubsets(const GenericSet<TSet, Int, operations::cmp>& f) const
{
return subset_iterator<TSet>(table->findSubsets(f, std::true_type()));
}
/** @brief Erase all supersets of a given set.
@return the number of facets actually removed.
*/
template <typename TSet>
Int eraseSupersets(const GenericSet<TSet, Int, operations::cmp>& f)
{
return table->eraseSupersets(f, black_hole<Int>());
}
/** @brief Erase all supersets of a given set.
@param consumer an output iterator swallowing all erased facets or their IDs
@return the number of facets actually removed.
*/
template <typename TSet, typename Consumer>
Int eraseSupersets(const GenericSet<TSet, Int, operations::cmp>& f, Consumer consumer)
{
return table->eraseSupersets(f, consumer);
}
/** @brief Erase all subsets of a given set.
* @return the number of facets actually removed.
*/
template <typename TSet>
Int eraseSubsets(const GenericSet<TSet, Int, operations::cmp>& f)
{
return table->eraseSubsets(f, black_hole<Int>());
}
/** @brief Erase all subsets of a given set.
* @param consumer an output iterator swallowing all erased facets or their IDs
* @return the number of facets actually removed.
*/
template <typename TSet, typename Consumer>
Int eraseSubsets(const GenericSet<TSet, Int, operations::cmp>& f, Consumer consumer)
{
return table->eraseSubsets(f, consumer);
}
/** Add a new facet @em{if and only if} there are no facets including it.
* If this holds, remove all facets that are included in the new one.
* The average operation costs are O(dim<sup>2</sup> deg).
*
* @return @c true if the new facet was really included.
*/
template <typename TSet>
bool insertMax(const GenericSet<TSet, Int, operations::cmp>& f)
{
return table->insertMax(f, black_hole<Int>(), std::true_type());
}
/** Add a new facet @em{if and only if} there are no facets included in it.
* If this holds, remove all facets including the new one.
*
* @return @c true if the new facet was really included.
*/
template <typename TSet>
bool insertMin(const GenericSet<TSet, Int, operations::cmp>& f)
{
return table->insertMin(f, black_hole<Int>(), std::true_type());
}
/** Add a new facet @em{if and only if} there are no facets including it.
* If this holds, remove all facets that are included in the new one.
* @param consumer an output iterator swallowing all erased facets or their IDs
*
* @return @c true if the new facet was really included.
*/
template <typename TSet, typename Consumer>
bool insertMax(const GenericSet<TSet, Int, operations::cmp>& f, Consumer consumer)
{
return table->insertMax(f, consumer, std::true_type());
}
/** Add a new facet @em{if and only if} there are no facets included in it.
* If this holds, remove all facets including the new one.
* @param consumer an output iterator swallowing all erased facets or their IDs
*
* @return @c true if the new facet was really included.
*/
template <typename TSet, typename Consumer>
bool insertMin(const GenericSet<TSet, Int, operations::cmp>& f, Consumer consumer)
{
return table->insertMin(f, consumer, std::true_type());
}
/** Slightly optimized versions of @see insertMax. Assumes that the
@c FacetList object already has all columns corresponding to the vertices
of a new facet, and therefore does not need to be expanded.
*/
template <typename TSet>
bool replaceMax(const GenericSet<TSet, Int, operations::cmp>& f)
{
if (POLYMAKE_DEBUG || is_wary<TSet>()) {
if (!set_within_range(f.top(), this->cols()))
throw std::runtime_error("FacetList::replaceMax - invalid face");
}
return table->insertMax(f, black_hole<Int>(), std::false_type());
}
/** Slightly optimized versions of @see insertMin. Assumes that the
@c FacetList object already has all columns corresponding to the vertices
of a new facet, and therefore does not need to be expanded.
*/
template <typename TSet>
bool replaceMin(const GenericSet<TSet, Int, operations::cmp>& f)
{
if (POLYMAKE_DEBUG || is_wary<TSet>()) {
if (!set_within_range(f.top(), this->cols()))
throw std::runtime_error("FacetList::replaceMin - invalid face");
}
return table->insertMin(f, black_hole<Int>(), std::false_type());
}
template <typename TSet, typename Consumer>
bool replaceMax(const GenericSet<TSet, Int, operations::cmp>& f, Consumer consumer)
{
if (POLYMAKE_DEBUG || is_wary<TSet>()) {
if (!set_within_range(f.top(), this->cols()))
throw std::runtime_error("FacetList::replaceMax - invalid face");
}
return table->insertMax(f, consumer, std::false_type());
}
template <typename TSet, typename Consumer>
bool replaceMin(const GenericSet<TSet, Int, operations::cmp>& f, Consumer consumer)
{
if (POLYMAKE_DEBUG || is_wary<TSet>()) {
if (!set_within_range(f.top(), this->cols()))
throw std::runtime_error("FacetList::replaceMin - invalid face");
}
return table->insertMin(f, consumer, std::false_type());
}
friend class Cols<FacetList>;
#if POLYMAKE_DEBUG
bool sanity_check() const;
void dump() const;
#endif
};
const Cols<FacetList>::container&
Cols<FacetList>::get_container() const
{
return *hidden().table->columns;
}
template <>
struct spec_object_traits<FacetList::LexOrdered>
: spec_object_traits<is_container> {
static const bool is_always_const=true;
typedef FacetList masquerade_for;
};
template <typename TSet>
struct check_iterator_feature<FacetList::subset_iterator<TSet>, end_sensitive> : std::true_type {};
template <typename TSet>
struct check_iterator_feature<FacetList::subset_iterator<TSet>, indexed> : std::true_type {};
} // end namespace pm
namespace std {
inline
void swap(pm::FacetList& l1, pm::FacetList& l2) { l1.swap(l2); }
}
namespace polymake {
using pm::FacetList;
}
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|