1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
|
/* Copyright (c) 1997-2024
Ewgenij Gawrilow, Michael Joswig, and the polymake team
Technische Universität Berlin, Germany
https://polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#pragma once
#ifndef POLYMAKE_WITH_FLINT
#error "this should not be included when flint is disabled!"
#else
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wshadow"
#pragma clang diagnostic ignored "-Wconversion"
#pragma clang diagnostic ignored "-Wzero-as-null-pointer-constant"
#elif defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wshadow"
#pragma GCC diagnostic ignored "-Wconversion"
#pragma GCC diagnostic ignored "-Wzero-as-null-pointer-constant"
#endif
#include <flint/fmpq.h>
#include <flint/fmpq_poly.h>
#if defined(__clang__)
#pragma clang diagnostic pop
#elif defined(__GNUC__)
#pragma GCC diagnostic pop
#endif
#include "polymake/Rational.h"
#include "polymake/Polynomial.h"
#include "polymake/hash_map"
namespace pm {
class FlintPolynomial;
// bool abs_equal(const FlintPolynomial& a, const FlintPolynomial& b);
class FlintPolynomial {
template <typename,typename> friend class UniPolynomial;
private:
fmpq_poly_t flintPolynomial;
Int shift;
mutable fmpq_t fqtmp;
static slong safe_cast(Int x)
{
if (x < std::numeric_limits<slong>::min() || x > std::numeric_limits<slong>::max())
throw std::runtime_error("degree/exponent input too high for Flint");
return slong(x);
}
public:
using monomial_type = Int;
using coefficient_type = Rational;
using term_hash = hash_map<monomial_type, coefficient_type>;
using sorted_terms_type = typename std::forward_list<monomial_type>;
using monomial_list_type = Vector<monomial_type>;
using generic_impl = polynomial_impl::GenericImpl<polynomial_impl::UnivariateMonomial<monomial_type>,coefficient_type>;
template <typename T>
using fits_as_coefficient = can_upgrade<T, coefficient_type>;
template <typename T>
using is_deeper_coefficient = typename generic_impl::template is_deeper_coefficient<T>;
static PolynomialVarNames& var_names()
{
return generic_impl::var_names();
}
static void reset_var_names()
{
return generic_impl::reset_var_names();
}
protected:
mutable std::unique_ptr<generic_impl> generic_impl_cache;
Int convertUniPolynomial2Flint(fmpq_poly_t& out, const typename FlintPolynomial::generic_impl& in)
{
fmpq_poly_init(out);
if (__builtin_expect(in.trivial(),0))
return 0;
Int expshift = in.lower_deg();
for (auto t = entire(in.get_terms()); !t.at_end(); ++t){
fmpq_set_mpq(fqtmp, t->second.get_rep());
fmpq_poly_set_coeff_fmpq(out, safe_cast(t->first-expshift), fqtmp);
}
return expshift;
}
const hash_map<Int, Rational> to_terms() const
{
hash_map<Int, Rational> result;
for (Int i = lower_deg(); i <= deg(); ++i) {
if (exists(i)) {
result[i] = get_coefficient(i);
}
}
return result;
}
const generic_impl& to_generic() const
{
if (!generic_impl_cache) {
generic_impl_cache.reset(new FlintPolynomial::generic_impl(1,to_terms()));
}
return *generic_impl_cache;
}
void set_terms (const term_hash& src)
{
shift = 0;
for (auto t = entire(src); !t.at_end(); ++t){
if (t->first < shift) {
shift = t->first;
}
}
for (auto t = entire(src); !t.at_end(); ++t){
fmpq_set_mpq(fqtmp, convert_to<Rational>(t->second).get_rep());
fmpq_poly_set_coeff_fmpq(flintPolynomial, safe_cast(t->first-shift), fqtmp);
}
}
public:
const hash_map<Int, Rational>& get_terms() const
{
return to_generic().get_terms();
}
const sorted_terms_type get_sorted_terms() const
{
auto mons = monomials();
return sorted_terms_type(mons.rbegin(),mons.rend());
}
// Constructors
FlintPolynomial(){
shift = 0;
fmpq_init(fqtmp);
fmpq_poly_init(flintPolynomial);
}
explicit FlintPolynomial(Int n_vars){
if (n_vars != 1) throw std::runtime_error("FlintPolynomial: univariate only");
fmpq_init(fqtmp);
fmpq_poly_init(flintPolynomial);
shift = 0;
}
FlintPolynomial(Int c, Int n_vars) {
if (n_vars != 1) throw std::runtime_error("FlintPolynomial: univariate only");
fmpq_init(fqtmp);
fmpq_poly_init(flintPolynomial);
fmpq_poly_set_si(flintPolynomial, c);
shift = 0;
}
FlintPolynomial(const FlintPolynomial& p) {
fmpq_init(fqtmp);
fmpq_poly_init(flintPolynomial);
fmpq_poly_set(flintPolynomial, p.flintPolynomial);
shift = p.shift;
}
FlintPolynomial(const Rational& c, Int n_vars) {
if (n_vars != 1) throw std::runtime_error("FlintPolynomial: univariate only");
fmpq_init(fqtmp);
fmpq_poly_init(flintPolynomial);
fmpq_set_mpq(fqtmp, c.get_rep());
fmpq_poly_set_fmpq(flintPolynomial, fqtmp);
shift = 0;
}
explicit FlintPolynomial(const typename FlintPolynomial::generic_impl& in)
{
fmpq_init(fqtmp);
shift = convertUniPolynomial2Flint(flintPolynomial, in);
}
template <typename Container1, typename Container2>
FlintPolynomial(const Container1& coefficients, const Container2& monomials, const Int n_vars)
{
if (n_vars != 1)
throw std::runtime_error("FlintPolynomial: univariate only");
fmpq_init(fqtmp);
fmpq_poly_init(flintPolynomial);
shift = 0;
for (auto m = entire(monomials); !m.at_end(); ++m){
if (*m < shift) {
shift = *m;
}
}
auto c = entire(coefficients);
for (auto e = entire(monomials); !e.at_end(); ++e, ++c){
fmpq_set_mpq(fqtmp, convert_to<Rational>(*c).get_rep());
fmpq_poly_set_coeff_fmpq(flintPolynomial, safe_cast(*e-shift), fqtmp);
}
}
explicit FlintPolynomial(const term_hash& terms, Int nvars = 1)
{
if (nvars != 1) throw std::runtime_error("FlintPolynomial: univariate only");
fmpq_init(fqtmp);
fmpq_poly_init(flintPolynomial);
this->set_terms(terms);
}
// destruction
~FlintPolynomial() {
fmpq_poly_clear(flintPolynomial);
fmpq_clear(fqtmp);
}
void clear()
{
fmpq_poly_zero(flintPolynomial);
generic_impl_cache.reset(nullptr);
}
// assignment
FlintPolynomial& operator = (const FlintPolynomial &p){
fmpq_poly_init(flintPolynomial);
fmpq_poly_set(flintPolynomial, p.flintPolynomial);
shift = p.shift;
generic_impl_cache.reset(nullptr);
return *this;
}
// Operators
FlintPolynomial operator+ (const FlintPolynomial& p) const{
FlintPolynomial result(*this);
result += p;
return result;
}
FlintPolynomial& operator+= (const FlintPolynomial& p){
if(shift == p.shift){
fmpq_poly_add(flintPolynomial, flintPolynomial, p.flintPolynomial);
} else {
if(shift > p.shift){
set_shift(p.shift);
*this += p;
} else {
FlintPolynomial tmpp(p);
tmpp.set_shift(shift);
*this += tmpp;
}
}
reduce_shift();
generic_impl_cache.reset(nullptr);
return *this;
}
void reduce_shift(){
if (__builtin_expect(trivial(),0))
shift = 0;
else if (shift < 0 && lower_deg() > shift) {
set_shift(lower_deg());
}
}
void set_shift(Int desired){
if (shift == desired) {
return;
} else if (desired < shift) {
fmpq_poly_shift_left(flintPolynomial, flintPolynomial, safe_cast(shift-desired));
shift = desired;
} else {
if (desired > lower_deg())
throw std::runtime_error("Shifting would change polynomial");
fmpq_poly_shift_right(flintPolynomial, flintPolynomial, safe_cast(desired-shift));
shift = desired;
}
}
// substitute a monomial with given exponent into a polynomial
template <typename Exp = Int, typename T>
auto
substitute_monomial(const T& exponent, std::enable_if_t<!std::is_same<Exp, Int>::value, std::nullptr_t> = nullptr) const
{
return this->to_generic().substitute_monomial<Exp>(exponent);
}
template <typename Exp = Int, typename T>
auto
substitute_monomial(const T& exponent, std::enable_if_t<std::is_same<Exp, Int>::value, std::nullptr_t> = nullptr) const
{
FlintPolynomial tmp;
if (__builtin_expect(pm::is_zero(exponent),0)) {
fmpq_t res;
fmpq_init(res);
fmpq_set_mpq(fqtmp, Rational(1).get_rep());
fmpq_poly_evaluate_fmpq(res, flintPolynomial, fqtmp);
fmpq_poly_set_fmpq(tmp.flintPolynomial,res);
fmpq_clear(res);
} else if (exponent < 0) {
tmp.shift = safe_cast(Int(deg() * exponent));
for (Int i = 0; i <= deg() - shift; ++i)
if (exists(i+shift)) {
fmpq_set_mpq(fqtmp, get_coefficient(i+shift).get_rep());
fmpq_poly_set_coeff_fmpq(tmp.flintPolynomial, safe_cast(Int((deg()-shift-i)*abs(exponent))), fqtmp);
}
} else {
tmp.shift = Int(shift * exponent);
for (Int i = 0; i <= deg()-shift; ++i)
if (exists(i+shift)) {
fmpq_set_mpq(fqtmp, get_coefficient(i+shift).get_rep());
fmpq_poly_set_coeff_fmpq(tmp.flintPolynomial, safe_cast(Int(i*exponent)), fqtmp);
}
}
return tmp;
}
FlintPolynomial& operator+= (const Rational& c)
{
if (shift == 0) {
fmpq_set_mpq(fqtmp,c.get_rep());
fmpq_poly_add_fmpq(flintPolynomial,flintPolynomial, fqtmp);
} else {
FlintPolynomial C(c,1);
*this += C;
}
generic_impl_cache.reset(nullptr);
return *this;
}
FlintPolynomial& operator+= (Int c)
{
if (shift == 0) {
fmpq_poly_add_si(flintPolynomial,flintPolynomial, c);
} else {
FlintPolynomial C(c, 1);
*this += C;
}
generic_impl_cache.reset(nullptr);
return *this;
}
template <typename T>
typename std::enable_if<fits_as_coefficient<T>::value, FlintPolynomial>::type
operator+ (const T& c) const
{
FlintPolynomial tmp(*this);
tmp += c;
return tmp;
}
FlintPolynomial operator- (const FlintPolynomial& p) const
{
FlintPolynomial result(*this);
result -= p;
return result;
}
FlintPolynomial& operator-= (const FlintPolynomial& p)
{
if (shift == p.shift) {
fmpq_poly_sub(flintPolynomial, flintPolynomial, p.flintPolynomial);
} else if (shift > p.shift) {
set_shift(p.shift);
*this -= p;
} else {
FlintPolynomial tmpp(p);
tmpp.set_shift(shift);
*this -= tmpp;
}
reduce_shift();
generic_impl_cache.reset(nullptr);
return *this;
}
template <typename T>
typename std::enable_if<fits_as_coefficient<T>::value, FlintPolynomial&>::type
operator -= (const T& c)
{
*this += -c;
return *this;
}
template <typename T>
typename std::enable_if<fits_as_coefficient<T>::value, FlintPolynomial>::type
operator- (const T& c) const
{
FlintPolynomial tmp(*this);
tmp -= c;
return tmp;
}
FlintPolynomial operator* (const FlintPolynomial& p) const
{
FlintPolynomial result(*this);
result *= p;
return result;
}
FlintPolynomial& operator*= (const FlintPolynomial& p)
{
fmpq_poly_mul(flintPolynomial, flintPolynomial, p.flintPolynomial);
shift += p.shift;
generic_impl_cache.reset(nullptr);
return *this;
}
FlintPolynomial& operator*= (const Rational& c)
{
if (__builtin_expect(is_zero(c), 0))
fmpq_poly_zero(flintPolynomial);
else {
fmpq_set_mpq(fqtmp, c.get_rep());
fmpq_poly_scalar_mul_fmpq(flintPolynomial, flintPolynomial, fqtmp);
}
generic_impl_cache.reset(nullptr);
return *this;
}
FlintPolynomial& operator*= (Int c)
{
if (__builtin_expect(is_zero(c), 0))
fmpq_poly_zero(flintPolynomial);
else
fmpq_poly_scalar_mul_si(flintPolynomial,flintPolynomial,c);
generic_impl_cache.reset(nullptr);
return *this;
}
template <typename T>
typename std::enable_if<fits_as_coefficient<T>::value, FlintPolynomial>::type
operator* (const T& c) const
{
FlintPolynomial tmp(*this);
tmp *= c;
return tmp;
}
template <typename T>
typename std::enable_if<fits_as_coefficient<T>::value, FlintPolynomial>::type
mult_from_right(const T& c) const
{
FlintPolynomial tmp(*this);
tmp *= c;
return tmp;
}
FlintPolynomial pow(Int e) const
{
FlintPolynomial tmp;
if (__builtin_expect(trivial(), 0))
return tmp;
if (e < 0) {
Int d = deg();
if (d != lower_deg())
throw std::runtime_error("Exponentiation with negative exponent is only implemented for monomials");
tmp.shift = (d-shift)*e;
Rational c(get_coefficient(d));
c = pm::Rational::pow(c, e);
fmpq_set_mpq(fqtmp, c.get_rep());
fmpq_poly_set_coeff_fmpq(tmp.flintPolynomial, safe_cast(shift*e), fqtmp);
} else {
fmpq_poly_pow(tmp.flintPolynomial,flintPolynomial,e);
tmp.shift = shift*e;
}
return tmp;
}
FlintPolynomial& div_exact(const FlintPolynomial& p)
{
if(shift == p.shift){
FlintPolynomial tmp;
fmpq_poly_div(tmp.flintPolynomial, flintPolynomial, p.flintPolynomial);
fmpq_poly_set(flintPolynomial,tmp.flintPolynomial);
// Set shift to zero since we receive a polynomial.
shift = 0;
} else {
if(shift > p.shift){
set_shift(p.shift);
div_exact(p);
} else {
FlintPolynomial tmpp(p);
tmpp.set_shift(shift);
div_exact(tmpp);
}
}
reduce_shift();
generic_impl_cache.reset(nullptr);
return *this;
}
FlintPolynomial& operator%= (const FlintPolynomial& p)
{
FlintPolynomial tmp;
fmpq_poly_rem(tmp.flintPolynomial, flintPolynomial, p.flintPolynomial);
fmpq_poly_set(flintPolynomial,tmp.flintPolynomial);
generic_impl_cache.reset(nullptr);
return *this;
}
FlintPolynomial operator% (const FlintPolynomial& p)
{
FlintPolynomial tmp(*this);
return tmp %= p;
}
FlintPolynomial& operator/= (const Rational& c) {
if (__builtin_expect(is_zero(c), 0))
throw GMP::ZeroDivide();
fmpq_set_mpq(fqtmp, c.get_rep());
fmpq_poly_scalar_div_fmpq(flintPolynomial,flintPolynomial,fqtmp);
generic_impl_cache.reset(nullptr);
return *this;
}
FlintPolynomial& operator/= (Int c) {
if (__builtin_expect(is_zero(c), 0))
throw GMP::ZeroDivide();
fmpq_poly_scalar_div_si(flintPolynomial,flintPolynomial,c);
generic_impl_cache.reset(nullptr);
return *this;
}
template <typename T>
typename std::enable_if<fits_as_coefficient<T>::value, FlintPolynomial>::type
operator/ (const T& c) const {
FlintPolynomial tmp(*this);
tmp /= c;
return tmp;
}
FlintPolynomial& negate()
{
fmpq_poly_neg(flintPolynomial, flintPolynomial);
generic_impl_cache.reset(nullptr);
return *this;
}
FlintPolynomial operator- () const
{
FlintPolynomial result(*this);
return result.negate();
}
Int n_vars() const
{
return 1;
}
template <typename Other>
void croak_if_incompatible(const Other& other) const
{
if (other.n_vars() != 1)
throw std::runtime_error("Polynomials of different rings");
}
Int deg() const
{
if (__builtin_expect(trivial(), 0))
return std::numeric_limits<Int>::min();
return Int(fmpq_poly_degree(flintPolynomial)) + shift;
}
bool exists(Int i) const
{
return !trivial() && i >= shift && i <= deg() && !fmpz_is_zero(fmpq_poly_numref(flintPolynomial) + (i-shift));
}
Int lower_deg() const
{
if (__builtin_expect(trivial(),0))
return std::numeric_limits<Int>::max();
Int i = 0;
while (i <= deg() - shift && fmpz_is_zero(fmpq_poly_numref(flintPolynomial) + i)) ++i;
return i+shift;
}
Int lm() const
{
return deg();
}
Rational get_coefficient(Int i) const
{
if (__builtin_expect(trivial(),0) || i < shift || i > deg())
return zero_value<Rational>();
mpq_t tmp;
mpq_init(tmp);
fmpq_poly_get_coeff_fmpq(fqtmp,flintPolynomial,safe_cast(i-shift));
fmpq_get_mpq(tmp, fqtmp);
Rational rat(std::move(tmp));
return rat;
}
Rational lc() const
{
if (__builtin_expect(trivial(),0))
return zero_value<Rational>();
return get_coefficient(deg());
}
Rational lc(Int o) const
{
if (__builtin_expect(trivial(), 0))
return zero_value<Rational>();
return o > 0 ? get_coefficient(deg()) : get_coefficient(lower_deg());
}
monomial_list_type monomials() const
{
if (__builtin_expect(trivial(),0))
return monomial_list_type();
return monomial_list_type(range(lower_deg(),deg()));
}
Vector<Rational> coefficients_as_vector() const
{
if (__builtin_expect(trivial(),0))
return Vector<Rational>();
Vector<Rational> coeffs(deg()-lower_deg()+1);
Int i = lower_deg();
for (auto c = entire(coeffs); !c.at_end(); ++c, ++i)
*c = get_coefficient(i);
return coeffs;
}
// comparison
bool operator== (const FlintPolynomial& p2) const
{
return (shift == p2.shift) && fmpq_poly_equal(flintPolynomial,p2.flintPolynomial);
}
template <typename T>
typename std::enable_if<fits_as_coefficient<T>::value, bool>::type
operator== (const T& p2) const
{
if (__builtin_expect(trivial(), 0))
return pm::is_zero(p2);
return deg() == 0 && lc() == p2;
}
cmp_value compare(const FlintPolynomial& p2) const
{
if(shift == p2.shift)
return cmp_value(fmpq_poly_cmp(flintPolynomial,p2.flintPolynomial));
else return cmp_value(false);
}
FlintPolynomial& normalize()
{
return *this /= lc();
}
bool trivial() const
{
return fmpq_poly_is_zero(flintPolynomial);
}
bool is_one() const
{
return shift == 0 && fmpq_poly_is_one(flintPolynomial);
}
template <typename Output, typename Order>
void pretty_print(Output& out, const Order& order) const
{
this->to_generic().pretty_print(out,order);
}
template <typename Output>
friend
Output& operator<<(GenericOutput<Output>& out, const FlintPolynomial & p){
p.pretty_print(out.top(),polynomial_impl::cmp_monomial_ordered_base<monomial_type>());
return out.top();
}
template <typename QuotConsumer>
typename std::enable_if<std::is_same<QuotConsumer,FlintPolynomial>::value, void>::type
remainder(const FlintPolynomial& den, QuotConsumer& quot)
{
FlintPolynomial rem;
fmpq_poly_divrem(quot.flintPolynomial,rem.flintPolynomial,flintPolynomial,den.flintPolynomial);
fmpq_poly_set(flintPolynomial,rem.flintPolynomial);
}
template <typename QuotConsumer>
typename std::enable_if<!std::is_same<QuotConsumer,FlintPolynomial>::value, void>::type
remainder(const FlintPolynomial& den, QuotConsumer& quot)
{
FlintPolynomial rem;
fmpq_poly_rem(rem.flintPolynomial,flintPolynomial,den.flintPolynomial);
fmpq_poly_set(flintPolynomial,rem.flintPolynomial);
}
static void xgcd(FlintPolynomial& g, FlintPolynomial& s, FlintPolynomial& t,
const FlintPolynomial& p1, const FlintPolynomial& p2)
{
if(p1.shift == p2.shift){
fmpq_poly_xgcd(g.flintPolynomial, s.flintPolynomial, t.flintPolynomial,
p1.flintPolynomial, p2.flintPolynomial);
g.shift = p1.shift;
s.shift = p1.shift;
t.shift = p1.shift;
g.reduce_shift();
s.reduce_shift();
t.reduce_shift();
} else {
if(p1.shift < p2.shift){
FlintPolynomial tmpp2(p2);
tmpp2.set_shift(p1.shift);
xgcd(g, s, t, p1, tmpp2);
} else {
FlintPolynomial tmpp1(p1);
tmpp1.set_shift(p2.shift);
xgcd(g, s, t, tmpp1, p2);
}
}
}
static FlintPolynomial gcd(const FlintPolynomial& p1, const FlintPolynomial& p2)
{
if(p1.shift == p2.shift){
FlintPolynomial tmp;
fmpq_poly_gcd(tmp.flintPolynomial,p1.flintPolynomial,p2.flintPolynomial);
tmp.shift = p1.shift;
tmp.reduce_shift();
return tmp;
} else {
if(p1.shift < p2.shift){
FlintPolynomial tmpp2(p2);
tmpp2.set_shift(p1.shift);
return gcd(p1, tmpp2);
} else {
return gcd(p2, p1);
}
}
}
size_t get_hash() const noexcept
{
size_t h = std::hash<Int>{}(shift);
if (__builtin_expect(trivial(),0))
return h;
hash_func<Rational> rathash;
Int i = lower_deg();
while (i <= deg()) {
if (exists(i)) {
hash_combine(h, std::hash<Int>{}(i));
hash_combine(h, rathash(get_coefficient(i)));
}
++i;
};
return h;
}
};
}
namespace polymake {
using pm::FlintPolynomial;
}
#endif
|