File: GenericVector.h

package info (click to toggle)
polymake 4.14-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 35,888 kB
  • sloc: cpp: 168,933; perl: 43,407; javascript: 31,575; ansic: 3,007; java: 2,654; python: 632; sh: 268; xml: 117; makefile: 61
file content (1478 lines) | stat: -rw-r--r-- 53,893 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
/* Copyright (c) 1997-2024
   Ewgenij Gawrilow, Michael Joswig, and the polymake team
   Technische Universität Berlin, Germany
   https://polymake.org

   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 2, or (at your option) any
   later version: http://www.gnu.org/licenses/gpl.txt.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
--------------------------------------------------------------------------------
*/

#pragma once

#include "polymake/GenericIO.h"
#include "polymake/TransformedContainer.h"
#include "polymake/internal/converters.h"
#include "polymake/IndexedSubset.h"
#include "polymake/SelectedSubset.h"
#include "polymake/ContainerChain.h"
#include "polymake/internal/sparse.h"

#include <algorithm>
#include <stdexcept>

namespace pm {

template <typename E> class Vector;
template <typename E> class SparseVector;

template <typename TVector, typename E=typename TVector::element_type>
class GenericVector;

template <typename T, typename... E>
using is_generic_vector = is_derived_from_instance_of<pure_type_t<T>, GenericVector, E...>;

template <typename VectorRef, typename Operation> class LazyVector1;
template <typename VectorRef1, typename VectorRef2, typename Operation> class LazyVector2;
template <typename VectorRef1, typename VectorRef2, typename Operation> class VectorTensorProduct;
template <typename VectorList> class VectorChain;
template <typename ElemRef> class SameElementVector;

/** @file GenericVector.h
    @class GenericVector
    @brief @ref generic "Generic type" for @ref vector_sec "vectors"
 */

template <typename TVector, typename E>
class GenericVector
   : public Generic<TVector> {
   template <typename, typename> friend class GenericVector;

   // TODO: allow only numeric types (after refactoring in atint)
   static_assert(!is_among<E, bool, int>::value, "invalid Vector element type");

protected:
   GenericVector() {}
   GenericVector(const GenericVector&) {}
public:
   /// element type
   using element_type = E;
   /// determine if the persistent type is sparse
   static constexpr bool is_sparse = check_container_feature<TVector, sparse>::value;
   /// @ref generic "persistent type"
   using persistent_type = std::conditional_t<is_sparse, SparseVector<E>, Vector<E>>;
   using persistent_dense_type = Vector<E>;
   /// top type
   using typename Generic<TVector>::top_type;
   /// @ref generic "generic type"
   using generic_type = GenericVector;
   using sparse_discr = std::conditional_t<check_container_feature<TVector, pure_sparse>::value, pure_sparse,
                                           std::conditional_t<is_sparse, sparse, dense>>;

protected:
   template <typename TVector2>
   void assign_impl(const TVector2& v, dense)
   {
      copy_range(ensure(v, dense()).begin(), entire(this->top()));
   }

   template <typename TVector2>
   void assign_impl(const TVector2& v, pure_sparse)
   {
      assign_sparse(this->top(), ensure(v, pure_sparse()).begin());
   }

   template <typename TVector2, typename E2>
   constexpr bool trivial_assignment(const GenericVector<TVector2, E2>&) const { return false; }

   constexpr bool trivial_assignment(const GenericVector& v) const { return this==&v; }

   template <typename TVector2>
   void swap(GenericVector<TVector2, E>& v, dense)
   {
      swap_ranges(entire(this->top()), v.top().begin());
   }

   template <typename TVector2>
   void swap(GenericVector<TVector2, E>& v, pure_sparse)
   {
      swap_sparse(this->top(), ensure(v.top(), pure_sparse()));
   }

   template <typename TVector2>
   void assign(const TVector2& v)
   {
      assign_impl(v, sparse_discr());
   }

   template <typename TVector2, typename Operation>
   void assign_op_impl(const TVector2& v, const Operation& op_arg, dense, dense)
   {
      perform_assign(entire(this->top()), v.begin(), op_arg);
   }

   template <typename TVector2, typename Operation>
   void assign_op_impl(const TVector2& v, const Operation& op_arg, dense, sparse)
   {
      typedef binary_op_builder<Operation, typename ensure_features<TVector, end_sensitive>::const_iterator, typename ensure_features<TVector2, end_sensitive>::const_iterator> opb;
      const typename opb::operation& op=opb::create(op_arg);
      Int i_prev = 0;
      auto dst = this->top().begin();
      for (auto src2 = entire(v); !src2.at_end(); ++src2) {
         Int i = src2.index();
         std::advance(dst, i-i_prev);
         op.assign(*dst, *src2);
         i_prev = i;
      }
   }

   template <typename TVector2, typename Operation, typename discr2>
   typename std::enable_if<!operations::is_partially_defined_for<Operation, TVector, TVector2>::value, void>::type
   assign_op_impl(const TVector2& v, const Operation& op, sparse, discr2)
   {
      perform_assign(entire(this->top()), v.begin(), op);
   }

   template <typename TVector2, typename Operation, typename discr2>
   typename std::enable_if<operations::is_partially_defined_for<Operation, TVector, TVector2>::value, void>::type
   assign_op_impl(const TVector2& v, const Operation& op, sparse, discr2)
   {
      perform_assign_sparse(this->top(), ensure(v, pure_sparse()).begin(), op);
   }

   template <typename E2>
   void fill_impl(const E2& x, dense)
   {
      fill_range(entire(this->top()), x);
   }

   template <typename E2>
   void fill_impl(const E2& x, pure_sparse)
   {
      if (!is_zero(x))
         fill_sparse(this->top(), ensure(same_value_in_context<E>(x), indexed()).begin());
      else
         this->top().clear();
   }

   // undefined for dense
   void remove0s(dense);

   void remove0s(pure_sparse)
   {
      top_type& me=this->top();
      for (auto e=me.begin(); !e.at_end(); ) {
         if (!is_zero(*e))
            ++e;
         else
            me.erase(e++);
      }
   }

public:
   Int dim() const { return get_dim(this->top()); }

   bool prefer_sparse_representation() const
   {
      return is_sparse && this->top().size()*2 < dim();
   }

   template <typename TVector2>
   void swap(GenericVector<TVector2, E>& v)
   {
      if (trivial_assignment(v)) return;

      if (POLYMAKE_DEBUG || is_wary<TVector>() || is_wary<TVector2>()) {
         if (dim() != v.dim())
            throw std::runtime_error("GenericVector::swap - dimension mismatch");
      }
      using sparse_discr2 = std::conditional_t<(check_container_feature<TVector, sparse>::value ||
                                                check_container_feature<TVector2, sparse>::value),
                                               pure_sparse, dense>;
      swap(v, sparse_discr2());
   }

   template <typename Operation>
   void assign_op(const Operation& op)
   {
      perform_assign(entire(this->top()), op);
   }

   template <typename TVector2, typename Operation>
   void assign_op(const TVector2& v, const Operation& op)
   {
      using sparse_discr2 = std::conditional_t<check_container_feature<TVector2, sparse>::value, sparse, dense>;
      assign_op_impl(v, op, sparse_discr(), sparse_discr2());
   }

   template <typename E2>
   void fill(const E2& x)
   {
      this->top().fill_impl(x, sparse_discr());
   }

   top_type& operator= (const GenericVector& v)
   {
      if (!trivial_assignment(v)) {
         if (!object_traits<TVector>::is_resizeable && (POLYMAKE_DEBUG || is_wary<TVector>())) {
            if (dim() != v.dim())
               throw std::runtime_error("GenericVector::operator= - dimension mismatch");
         }
         this->top().assign(v.top());
      }
      return this->top();
   }

   template <typename TVector2, typename E2,
             typename=typename std::enable_if<can_assign_to<E2, E>::value>::type>
   top_type& operator= (const GenericVector<TVector2, E2>& v)
   {
      if (!object_traits<TVector>::is_resizeable && (POLYMAKE_DEBUG || is_wary<TVector>())) {
         if (dim() != v.dim())
            throw std::runtime_error("GenericVector::operator= - dimension mismatch");
      }
      this->top().assign(v.top());
      return this->top();
   }

   template <typename E2,
             typename=typename std::enable_if<can_assign_to<E2, E>::value>::type>
   top_type& operator= (std::initializer_list<E2> l)
   {
      if (!object_traits<TVector>::is_resizeable && (POLYMAKE_DEBUG || is_wary<TVector>())) {
         if (dim() != l.size())
            throw std::runtime_error("GenericVector::operator= - dimension mismatch");
      }
      this->top().assign(l);
      return this->top();
   }

protected:
   // TODO: enable variants with persistent_type&&
   // when defined<Operation> is properly implemented
   template <bool now, bool>
   using temp_ignore = bool_constant<now>;

   template <typename T>
   using is_this = std::is_same<generic_type, typename unwary_t<pure_type_t<T>>::generic_type>;

   template <typename Left, typename Right, typename Operation, typename=void>
   struct lazy_op {};

   template <typename Left, typename Operation>
   struct lazy_op<Left, void, Operation,
                  std::enable_if_t<is_this<Left>::value &&
                                   !std::is_same<Left, persistent_type>::value>> {
      using v_type = LazyVector1<add_const_t<unwary_t<Left>>, Operation>;
   };

   template <typename Operation>
   struct lazy_op<persistent_type, void, Operation, void> {
      using r_type = persistent_type&&;
   };

   // TODO: && is_defined<Operation>
   template <typename Left, typename Right, typename Operation>
   struct lazy_op<Left, Right, Operation,
                  std::enable_if_t<!std::is_same<Operation, BuildBinary<operations::mul>>::value &&
                                   is_this<Left>::value &&
                                   temp_ignore<true, !std::is_same<Left, persistent_type>::value>::value &&
                                   is_generic_vector<Right>::value &&
                                   isomorphic_types<E, typename pure_type_t<Right>::element_type>::value>> {
      using v_v_type = LazyVector2<add_const_t<unwary_t<Left>>, add_const_t<unwary_t<Right>>, Operation>;
   };

   // TODO: && is_defined<Operation>
   template <typename Right, typename Operation>
   struct lazy_op<persistent_type, Right, Operation,
                  std::enable_if_t<!std::is_same<Operation, BuildBinary<operations::mul>>::value &&
                                   temp_ignore<false, std::is_same<TVector, persistent_type>::value>::value &&
                                   is_generic_vector<Right>::value &&
                                   isomorphic_types<E, typename pure_type_t<Right>::element_type>::value>> {
      using r_v_type = persistent_type&&;
   };

   template <typename Left, typename Operation>
   struct lazy_op<Left, persistent_type, Operation,
                  std::enable_if_t<!std::is_same<Operation, BuildBinary<operations::mul>>::value &&
                                   is_generic_vector<Left>::value &&
                                   temp_ignore<false, !std::is_same<Left, persistent_type>::value>::value &&
                                   isomorphic_types<E, typename pure_type_t<Left>::element_type>::value>> {
      using v_r_type = persistent_type&&;
   };

   template <typename Left, typename Right, typename Operation>
   struct lazy_op<Left, Right, Operation,
                  std::enable_if_t<isomorphic_types<E, pure_type_t<Right>>::value &&
                                   is_this<Left>::value &&
                                   temp_ignore<true, !std::is_same<Left, persistent_type>::value>::value>> {
      using scalar_type = same_value_container<diligent_ref_t<unwary_t<Right>>>;
      using v_s_type = LazyVector2<add_const_t<unwary_t<Left>>, scalar_type, Operation>;

      static v_s_type make(Left&& l, Right&& r)
      {
         return v_s_type(unwary(std::forward<Left>(l)), scalar_type(diligent(unwary(std::forward<Right>(r)))));
      }
   };

#if 0
   // TODO enable when temp_ignore goes
   template <typename Right, typename Operation>
   struct lazy_op<persistent_type, Right, Operation,
                  std::enable_if_t<isomorphic_types<E, pure_type_t<Right>>>> {
      using r_s_type = persistent_type&&;
   };
#endif

   template <typename Left, typename Right, typename Operation>
   struct lazy_op<Left, Right, Operation,
                  std::enable_if_t<isomorphic_types<E, pure_type_t<Left>>::value &&
                                   is_this<Right>::value &&
                                   temp_ignore<true, !std::is_same<Right, persistent_type>::value>::value>> {
      using scalar_type = same_value_container<diligent_ref_t<unwary_t<Left>>>;
      using s_v_type = LazyVector2<scalar_type, add_const_t<unwary_t<Right>>, Operation>;

      static s_v_type make(Left&& l, Right&& r)
      {
         return s_v_type(scalar_type(diligent(unwary(std::forward<Left>(l)))), unwary(std::forward<Right>(r)));
      }
   };

#if 0
   // TODO enable when temp_ignore goes
   template <typename Left, typename Operation>
   struct lazy_op<Left, persistent_type, Operation,
                  std::enable_if_t<isomorphic_types<E, pure_type_t<Left>>>> {
      using s_r_type = persistent_type&&;
   };
#endif

   // TODO: && is_defined<mul>
   template <typename Left, typename Right>
   struct lazy_op<Left, Right, BuildBinary<operations::mul>,
                  std::enable_if_t<is_this<Left>::value &&
                                   is_generic_vector<Right>::value &&
                                   isomorphic_types<E, typename pure_type_t<Right>::element_type>::value &&
                                   cleanOperations::can<cleanOperations::mul, E, typename pure_type_t<Right>::element_type>::value>> {
      using v_v_type = typename cleanOperations::can<cleanOperations::mul, E, typename pure_type_t<Right>::element_type>::type;
   };

   template <typename Left, typename Right, typename Operation, typename=void>
   struct lazy_tensor {};

   // TODO: is_defined<Operation>
   template <typename Left, typename Right, typename Operation>
   struct lazy_tensor<Left, Right, Operation,
                      std::enable_if_t<is_this<Left>::value &&
                                       is_generic_vector<Right>::value &&
                                       isomorphic_types<E, typename pure_type_t<Right>::element_type>::value>> {
      using v_v_type = VectorTensorProduct<add_const_t<unwary_t<Left>>, add_const_t<unwary_t<Right>>, Operation>;
   };

#define PmCheckVectorDim(Left, l, Right, r, sign) \
   if (POLYMAKE_DEBUG || is_wary<Left>() || is_wary<Right>()) \
      if (l.dim() != r.dim()) \
         throw std::runtime_error("GenericVector::operator" sign " - dimension mismatch")

public:
   /// negate
   template <typename Op>
   friend
   typename lazy_op<Op, void, BuildUnary<operations::neg>>::v_type
   operator- (Op&& m)
   {
      return typename lazy_op<Op, void, BuildUnary<operations::neg>>::v_type(unwary(std::forward<Op>(m)));
   }

   template <typename Op>
   friend
   typename lazy_op<Op, void, BuildUnary<operations::neg>>::r_type
   operator- (Op&& v)
   {
      return std::move(v.negate());
   }

   /// negate elements in place
   top_type& negate()
   {
      this->top().assign_op(BuildUnary<operations::neg>());
      return this->top();
   }

   /// add a vector
   template <typename Left, typename Right>
   friend
   typename lazy_op<Left, Right, BuildBinary<operations::add>>::v_v_type
   operator+ (Left&& l, Right&& r)
   {
      PmCheckVectorDim(Left, l, Right, r, "+");
      return typename lazy_op<Left, Right, BuildBinary<operations::add>>::v_v_type(unwary(std::forward<Left>(l)),
                                                                                   unwary(std::forward<Right>(r)));
   }

   template <typename Left, typename Right>
   friend
   typename lazy_op<Left, Right, BuildBinary<operations::add>>::r_v_type
   operator+ (Left&& l, Right&& r)
   {
      PmCheckVectorDim(Left, l, Right, r, "+");
      return std::move(l += r);
   }

   template <typename Left, typename Right>
   friend
   typename lazy_op<Left, Right, BuildBinary<operations::add>>::v_r_type
   operator+ (Left&& l, Right&& r)
   {
      PmCheckVectorDim(Left, l, Right, r, "+");
      return std::move(r += l);
   }

   template <typename Right, typename E2>
   std::enable_if_t<isomorphic_types<E, E2>::value &&
                    cleanOperations::can<cleanOperations::add, E, E2>::value, top_type&>
   operator+= (const GenericVector<Right, E2>& r)
   {
      PmCheckVectorDim(TVector, (*this), Right, r, "+=");
      this->top().assign_op(r.top(), BuildBinary<operations::add>());
      return this->top();
   }

   /// subtract a vector
   template <typename Left, typename Right>
   friend
   typename lazy_op<Left, Right, BuildBinary<operations::sub>>::v_v_type
   operator- (Left&& l, Right&& r)
   {
      PmCheckVectorDim(Left, l, Right, r, "-");
      return typename lazy_op<Left, Right, BuildBinary<operations::sub>>::v_v_type(unwary(std::forward<Left>(l)),
                                                                                   unwary(std::forward<Right>(r)));
   }

   template <typename Left, typename Right>
   friend
   typename lazy_op<Left, Right, BuildBinary<operations::add>>::r_v_type
   operator- (Left&& l, Right&& r)
   {
      PmCheckVectorDim(Left, l, Right, r, "-");
      return std::move(l -= r);
   }

   template <typename Left, typename Right>
   friend
   typename lazy_op<Left, Right, BuildBinary<operations::add>>::v_r_type
   operator- (Left&& l, Right&& r)
   {
      PmCheckVectorDim(Left, l, Right, r, "-");
      return std::move(r.negate() += l);
   }

   template <typename Right, typename E2>
   std::enable_if_t<isomorphic_types<E, E2>::value &&
                    cleanOperations::can<cleanOperations::sub, E, E2>::value, top_type&>
   operator-= (const GenericVector<Right, E2>& r)
   {
      PmCheckVectorDim(TVector, (*this), Right, r, "-=");
      this->top().assign_op(r.top(), BuildBinary<operations::sub>());
      return this->top();
   }

   /// multiply with a scalar
   template <typename Left, typename Right>
   friend
   typename lazy_op<Left, Right, BuildBinary<operations::mul>>::v_s_type
   operator* (Left&& l, Right&& r)
   {
      return lazy_op<Left, Right, BuildBinary<operations::mul>>::make(std::forward<Left>(l), std::forward<Right>(r));
   }

   template <typename Left, typename Right>
   friend
   typename lazy_op<Left, Right, BuildBinary<operations::mul>>::s_v_type
   operator* (Left&& l, Right&& r)
   {
      return lazy_op<Left, Right, BuildBinary<operations::mul>>::make(std::forward<Left>(l), std::forward<Right>(r));
   }

   template <typename Left, typename Right>
   friend
   typename lazy_op<Left, Right, BuildBinary<operations::mul>>::r_s_type
   operator* (Left&& l, Right&& r)
   {
      return std::move(l *= r);
   }

   template <typename Left, typename Right>
   friend
   typename lazy_op<Left, Right, BuildBinary<operations::mul>>::s_r_type
   operator* (Left&& l, Right&& r)
   {
      return std::move(r.mul_from_left(l));
   }

   /// scalar (dot) product
   template <typename Left, typename Right>
   friend
   typename lazy_op<Left, Right, BuildBinary<operations::mul>>::v_v_type
   operator* (Left&& l, Right&& r)
   {
      if (POLYMAKE_DEBUG || is_wary<Left>() || is_wary<Right>()) {
         if (l.dim() != r.dim())
            throw std::runtime_error("GenericVector::operator* - dimension mismatch");
      }
      return accumulate(attach_operation(unwary(l), unwary(r), BuildBinary<operations::mul>()), BuildBinary<operations::add>());
   }

   template <typename Right>
   std::enable_if_t<isomorphic_types<E, Right>::value &&
                    cleanOperations::can<cleanOperations::mul, E, Right>::value, top_type&>
   operator*= (const Right& r)
   {
      if (!is_zero(r))
         this->top().assign_op(same_value_in_context<E>(r), BuildBinary<operations::mul>());
      else
         fill(r);
      return this->top();
   }

   template <typename Left>
   std::enable_if_t<isomorphic_types<E, Left>::value &&
                    cleanOperations::can<cleanOperations::mul, Left, E>::value, top_type&>
   mul_from_left(const Left& l)
   {
      if (!is_zero(l))
         this->top().assign_op(same_value_in_context<E>(l), BuildBinary<operations::mul_from_left>());
      else
         fill(l);
      return this->top();
   }

   /// multiply a vector with itself
   friend
   E sqr(const GenericVector& v)
   {
      return accumulate(attach_operation(v.top(), BuildUnary<operations::square>()), BuildBinary<operations::add>());
   }

   /// tensor product of two vectors
   template <typename Left, typename Right>
   friend
   typename lazy_tensor<Left, Right, BuildBinary<operations::mul>>::v_v_type
   tensor_product(Left&& l, Right&& r)
   {
      return typename lazy_tensor<Left, Right, BuildBinary<operations::mul>>::v_v_type(unwary(std::forward<Left>(l)),
                                                                                       unwary(std::forward<Right>(r)));
   }

   /// divide by a scalar
   template <typename Left, typename Right>
   friend
   typename lazy_op<Left, Right, BuildBinary<operations::div>>::v_s_type
   operator/ (Left&& l, Right&& r)
   {
      return lazy_op<Left, Right, BuildBinary<operations::div>>::make(std::forward<Left>(l), std::forward<Right>(r));
   }

   template <typename Left, typename Right>
   friend
   typename lazy_op<Left, Right, BuildBinary<operations::div>>::r_s_type
   operator/ (Left&& l, Right&& r)
   {
      return std::move(l /= r);
   }

   template <typename Right>
   std::enable_if_t<isomorphic_types<E, Right>::value &&
                    cleanOperations::can<cleanOperations::div, E, Right>::value, top_type&>
   operator/= (const Right& r)
   {
      this->top().assign_op(same_value_in_context<E>(r), BuildBinary<operations::div>());
      return this->top();
   }

   /// divide without residue by a scalar
   template <typename Left, typename Right>
   friend
   typename lazy_op<Left, Right, BuildBinary<operations::divexact>>::v_s_type
   div_exact(Left&& l, Right&& r)
   {
      return lazy_op<Left, Right, BuildBinary<operations::divexact>>::make(std::forward<Left>(l), std::forward<Right>(r));
   }

   template <typename Left, typename Right>
   friend
   typename lazy_op<Left, Right, BuildBinary<operations::divexact>>::r_s_type
   div_exact(Left&& l, Right&& r)
   {
      return std::move(l.div_exact(r));
   }

   template <typename Right>
   std::enable_if_t<isomorphic_types<E, Right>::value &&
                    cleanOperations::can<cleanOperations::div, E, Right>::value, top_type&>
   div_exact(const Right& r)
   {
      this->top().assign_op(same_value_in_context<E>(r), BuildBinary<operations::divexact>());
      return this->top();
   }

#undef PmCheckVectorDim

   /// divide by the first element
   top_type& dehomogenize()
   {
      const E first=this->top().front();
      this->top()/=first;
      return this->top();
   }

   /// subtracts first element
   top_type& dehomogenize_trop()
   {
      const E first=this->top().front();
      this->top()-=first;
      return this->top();
   }

   /// remove all zero elements which might have been overseen in some previous operation
   void remove0s()
   {
      remove0s(sparse_discr());
   }

protected:
   template <typename VectorRef, typename IndexSetRef>
   static auto make_slice(VectorRef&& vector, IndexSetRef&& indices)
   {
      if (POLYMAKE_DEBUG || is_wary<TVector>()) {
         if (!set_within_range(indices, vector.dim()))
            throw std::runtime_error("GenericVector::slice - indices out of range");
      }
      using result_type = IndexedSlice<VectorRef, typename final_index_set<IndexSetRef>::type>;
      return result_type(std::forward<VectorRef>(vector), prepare_index_set(std::forward<IndexSetRef>(indices), [&](){ return vector.dim(); }));
   }

public:
   //@{ 
   /** 
    * Select a vector slice consisting of elements with given indices. 
    * The last variant selects a contiguous range of indices beginning 
    * with start. 
    * size==-1 means up to the end of the vector.
    * The const variants of these methods create immutable slice objects.
    * The indices must lie in the valid range.
    */
   template <typename IndexSetRef>
   // gcc 5 can't digest auto here
   IndexedSlice<const typename Unwary<TVector>::type&, typename final_index_set<IndexSetRef>::type>
   slice(IndexSetRef&& indices,
         std::enable_if_t<isomorphic_to_container_of<pure_type_t<IndexSetRef>, Int>::value, std::nullptr_t> = nullptr) const &
   {
      return make_slice(unwary(*this), std::forward<IndexSetRef>(indices));
   }

   template <typename IndexSetRef>
   // gcc 5 can't digest auto here
   IndexedSlice<typename Unwary<TVector>::type&, typename final_index_set<IndexSetRef>::type>
   slice(IndexSetRef&& indices,
         std::enable_if_t<isomorphic_to_container_of<pure_type_t<IndexSetRef>, Int>::value, std::nullptr_t> = nullptr) &
   {
      return make_slice(unwary(*this), std::forward<IndexSetRef>(indices));
   }

   template <typename IndexSetRef>
   // gcc 5 can't digest auto here
   IndexedSlice<typename Unwary<TVector>::type, typename final_index_set<IndexSetRef>::type>
   slice(IndexSetRef&& indices,
         std::enable_if_t<isomorphic_to_container_of<pure_type_t<IndexSetRef>, Int>::value, std::nullptr_t> = nullptr) &&
   {
      return make_slice(unwary(std::move(*this)), std::forward<IndexSetRef>(indices));
   }
   //@}

   template <typename Result>
   struct rebind_generic {
      typedef GenericVector<Result, E> type;
   };

   // stub for BlockMatrix
   void stretch_dim(Int d) const
   {
      throw std::runtime_error("dimension mismatch");
   }

protected:
   template <typename Left, typename Right, typename = void>
   struct concat {};

   template <typename Left, typename Right>
   struct concat<Left, Right, std::enable_if_t<is_this<Left>::value &&
                                               is_generic_vector<Right, E>::value>> {
      using v_v_type = typename chain_compose<VectorChain, true>::template with<unwary_t<Left>, unwary_t<Right>>;
   };

   template <typename Left, typename Right>
   struct concat<Left, Right, std::enable_if_t<is_this<Left>::value &&
                                               isomorphic_types<E, pure_type_t<Right>>::value>> {
      static constexpr bool homogeneous = std::is_same<E, pure_type_t<Right>>::value;
      using scalar_type = SameElementVector<std::conditional_t<homogeneous, unwary_t<Right>, E>>;
      using v_s_type = typename chain_compose<VectorChain, true>::template with<unwary_t<Left>, scalar_type>;

      static v_s_type make(Left&& l, Right&& r)
      {
         return v_s_type(unwary(std::forward<Left>(l)),
                         scalar_type(convert_to<E>(unwary(std::forward<Right>(r))), 1));
      }
   };

   template <typename Left, typename Right>
   struct concat<Left, Right, std::enable_if_t<is_this<Right>::value &&
                                               isomorphic_types<E, pure_type_t<Left>>::value>> {
      static constexpr bool homogeneous = std::is_same<E, pure_type_t<Left>>::value;
      using scalar_type = SameElementVector<std::conditional_t<homogeneous, unwary_t<Left>, E>>;
      using s_v_type = typename chain_compose<VectorChain, true>::template with<scalar_type, unwary_t<Right>>;

      static s_v_type make(Left&& l, Right&& r)
      {
         return s_v_type(scalar_type(convert_to<E>(unwary(std::forward<Left>(l))), 1),
                         unwary(std::forward<Right>(r)));
      }
   };

public:
   template <typename Left, typename Right>
   friend
   typename concat<Left, Right>::v_v_type operator| (Left&& l, Right&& r)
   {
      return typename concat<Left, Right>::v_v_type(unwary(std::forward<Left>(l)),
                                                    unwary(std::forward<Right>(r)));
   }

   template <typename Left, typename Right>
   friend
   typename concat<Left, Right>::v_s_type operator| (Left&& l, Right&& r)
   {
      return concat<Left, Right>::make(std::forward<Left>(l), std::forward<Right>(r));
   }

   template <typename Left, typename Right>
   friend
   typename concat<Left, Right>::s_v_type operator| (Left&& l, Right&& r)
   {
      return concat<Left, Right>::make(std::forward<Left>(l), std::forward<Right>(r));
   }

   // comparisons

   template <typename TVector2, typename E2>
   std::enable_if_t<are_comparable<E, E2>::value, bool>
   operator== (const GenericVector<TVector2, E2>& v2) const
   {
      return operations::cmp_unordered()(this->top(), v2.top()) == cmp_eq;
   }

   template <typename TVector2, typename E2>
   std::enable_if_t<are_comparable<E, E2>::value, bool>
   operator!= (const GenericVector<TVector2, E2>& v2) const
   {
      return !(*this == v2);
   }

#if POLYMAKE_DEBUG
   void dump() const __attribute__((used)) { cerr << this->top() << endl; }
#endif
};

struct is_vector;

template <typename TVector, typename E>
struct spec_object_traits< GenericVector<TVector, E> >
   : spec_or_model_traits<TVector, is_container> {
   typedef is_vector generic_tag;
   static const bool allow_sparse=true;

   static bool is_zero(const GenericVector<TVector>& v)
   {
      return entire(attach_selector(v.top(), BuildUnary<operations::non_zero>())).at_end();
   }
};

/* --------------------------------------------
 *  LazyVector1
 * lazy evaluation of an unary vector operator
 * -------------------------------------------- */

template <typename VectorRef, typename Operation>
class LazyVector1
   : public TransformedContainer<VectorRef, Operation>
   , public GenericVector< LazyVector1<VectorRef,Operation>,
                           typename object_traits<typename TransformedContainer<VectorRef, Operation>::value_type>::persistent_type > {
   using base_t = TransformedContainer<VectorRef, Operation>;
public:
   using TransformedContainer<VectorRef, Operation>::TransformedContainer;

   Int dim() const { return get_dim(this->get_container()); }
};

template <typename VectorRef, typename Operation>
struct spec_object_traits< LazyVector1<VectorRef, Operation> >
   : spec_object_traits<is_container> {
   static constexpr bool is_lazy = true, is_temporary = true, is_always_const = true;
};

template <typename VectorRef, typename Operation, typename Feature>
struct check_container_feature<LazyVector1<VectorRef,Operation>, Feature>
   : check_container_feature<TransformedContainer<VectorRef,Operation>, Feature> {};

/* --------------------------------------------
 *  LazyVector2
 * lazy evaluation of a binary vector operator
 * -------------------------------------------- */

template <typename VectorRef1, typename VectorRef2, typename Operation>
class LazyVector2
   : public TransformedContainerPair<VectorRef1, VectorRef2, Operation>
   , public GenericVector< LazyVector2<VectorRef1,VectorRef2,Operation>,
                           typename object_traits<typename TransformedContainerPair<VectorRef1, VectorRef2, Operation>::value_type>::persistent_type > {
   using base_t = TransformedContainerPair<VectorRef1, VectorRef2, Operation>;
protected:
   Int dim_impl(std::true_type) const { return get_dim(this->get_container2()); }
   Int dim_impl(std::false_type) const { return get_dim(this->get_container1()); }
public:
   using TransformedContainerPair<VectorRef1, VectorRef2, Operation>::TransformedContainerPair;

   Int dim() const
   {
      return dim_impl(bool_constant< check_container_ref_feature<VectorRef1,unlimited>::value >());
   }
};

template <typename VectorRef1, typename VectorRef2, typename Operation>
struct spec_object_traits< LazyVector2<VectorRef1, VectorRef2, Operation> >
   : spec_object_traits<is_container> {
   static constexpr bool is_lazy = true, is_temporary = true, is_always_const = true;
};

template <typename VectorRef1, typename VectorRef2, typename Operation, typename Feature>
struct check_container_feature<LazyVector2<VectorRef1, VectorRef2, Operation>, Feature>
   : check_container_feature<TransformedContainerPair<VectorRef1, VectorRef2, Operation>, Feature> {};

/// explicit conversion of vector elements to another type
template <typename TargetType, typename TVector>
const TVector& convert_to(const GenericVector<TVector, TargetType>& v)
{
   return v.top();
}

template <typename TargetType, typename TVector, typename E,
          typename=std::enable_if_t<can_initialize<E, TargetType>::value && !std::is_same<E, TargetType>::value>>
auto convert_to(const GenericVector<TVector, E>& v)
{
   return LazyVector1<const TVector&, conv<E, TargetType>>(v.top());
}

template <typename T>
decltype(auto) convert_to_persistent(T&& x, std::enable_if_t<std::is_same<pure_type_t<T>, typename pure_type_t<T>::persistent_type>::value, std::nullptr_t> = nullptr)
{
   return std::forward<T>(x);
}

template <typename T>
decltype(auto) convert_to_persistent(T&& x, std::enable_if_t<!std::is_same<pure_type_t<T>, typename pure_type_t<T>::persistent_type>::value, std::nullptr_t> = nullptr)
{
   return typename pure_type_t<T>::persistent_type(std::forward<T>(x));
}

template <typename T>
decltype(auto) convert_to_persistent_dense(T&& x, std::enable_if_t<std::is_same<pure_type_t<T>, typename pure_type_t<T>::persistent_dense_type>::value, std::nullptr_t> =nullptr)
{
   return std::forward<T>(x);
}

template <typename T>
decltype(auto) convert_to_persistent_dense(T&& x, std::enable_if_t<!std::is_same<pure_type_t<T>, typename pure_type_t<T>::persistent_dense_type>::value, std::nullptr_t> =nullptr)
{
   return typename pure_type_t<T>::persistent_dense_type(std::forward<T>(x));
}

template <typename TargetType, typename TVector, typename E>
const TVector& convert_lazily(const GenericVector<TVector, E>& v,
                              std::enable_if_t<std::is_convertible<E, TargetType>::value, void**> =nullptr)
{
   return v.top();
}

template <typename TargetType, typename TVector, typename E>
auto convert_lazily(const GenericVector<TVector, E>& v,
                    std::enable_if_t<can_initialize<E, TargetType>::value && !std::is_convertible<E, TargetType>::value, void**> =nullptr)
{
   return LazyVector1<const TVector&, conv<E, TargetType>>(v.top());
}

template <typename Vector, typename Operation>
auto apply_operation(const GenericVector<Vector>& v, const Operation& op)
{
   return LazyVector1<const Vector&, Operation>(v.top(), op);
}

/* --------------------------------------------
 *  VectorTensorProduct
 * lazy evaluation of a vector tensor product
 * -------------------------------------------- */
template <typename VectorRef1, typename VectorRef2, typename Operation>
class VectorTensorProduct
   : public ContainerProduct<VectorRef1, VectorRef2, Operation>
   , public GenericVector< VectorTensorProduct<VectorRef1, VectorRef2, Operation>,
                           typename object_traits<typename ContainerProduct<VectorRef1, VectorRef2, Operation>::value_type>::persistent_type > {
   using base_t = ContainerProduct<VectorRef1, VectorRef2, Operation>;
public:
   using ContainerProduct<VectorRef1, VectorRef2, Operation>::ContainerProduct;
   using base_t::dim;
};

template <typename VectorRef1, typename VectorRef2, typename Operation>
struct spec_object_traits< VectorTensorProduct<VectorRef1,VectorRef2,Operation> >
   : spec_object_traits<is_container> {
   static const bool is_lazy = true, is_temporary = true, is_always_const = true;
};

template <typename VectorRef1, typename VectorRef2, typename Operation, typename Feature>
struct check_container_feature<VectorTensorProduct<VectorRef1,VectorRef2,Operation>, Feature>
   : check_container_feature<ContainerProduct<VectorRef1, VectorRef2, Operation>, Feature> {};

/* -------------
 *  VectorChain
 * ------------- */

template <typename VectorList>
class VectorChain
   : public ContainerChain<VectorList>
   , public GenericVector< VectorChain<VectorList>,
                           typename pure_type_t<typename mlist_head<VectorList>::type>::element_type > {

   using element_types = typename mlist_transform_unary<VectorList, extract_element_type>::type;
   static_assert(mlist_length<typename mlist_remove_duplicates<element_types>::type>::value == 1,
                 "concatenated vectors of different element types");

   using base_t = ContainerChain<VectorList>;
   using arg_helper = chain_arg_helper<pm::VectorChain>;
public:
   template <typename... Args, typename=std::enable_if_t<arg_helper::allow(VectorList(), mlist<Args...>())>>
   explicit VectorChain(Args&&... args)
      : base_t(arg_helper(), std::forward<Args>(args)...) {}

   // TODO: =delete
   VectorChain(const VectorChain&) = default;
   VectorChain(VectorChain&&) = default;

   VectorChain& operator= (const VectorChain& other) { return VectorChain::generic_type::operator=(other); }
   using VectorChain::generic_type::operator=;
   using base_t::dim;
};

template <typename VectorList>
struct spec_object_traits< VectorChain<VectorList> >
   : spec_object_traits< ContainerChain<VectorList> > {};

template <typename VectorList, typename Feature>
struct check_container_feature< VectorChain<VectorList>, Feature>
   : check_container_feature< ContainerChain<VectorList>, Feature> {};

/* -------------------
 *  SameElementVector
 * ------------------- */

template <typename ElemRef>
class SameElementVector
   : public repeated_value_container<ElemRef>
   , public GenericVector<SameElementVector<ElemRef>,
                          typename object_traits<pure_type_t<ElemRef>>::persistent_type> {
   using base_t = repeated_value_container<ElemRef>;
public:
   using repeated_value_container<ElemRef>::repeated_value_container;
   using base_t::dim;
   using base_t::stretch_dim;
   using GenericVector<SameElementVector>::stretch_dim;
};

template <typename ElemRef>
struct spec_object_traits< SameElementVector<ElemRef> >
   : spec_object_traits< repeated_value_container<ElemRef> > {};

/// Create a vector with all entries equal to the given element x.
template <typename E>
auto same_element_vector(E&& x, Int dim = 0)
{
   return SameElementVector<prevent_int_element<E>>(std::forward<E>(x), dim);
}

/// Create a vector with all entries equal to 1.
template <typename E>
auto ones_vector(Int dim = 0)
{
   return same_element_vector(one_value<prevent_int_element<E>>(), dim);
}

/// Create a vector with all entries equal to 0.
template <typename E>
auto zero_vector(Int dim = 0)
{
   return same_element_vector(zero_value<prevent_int_element<E>>(), dim);
}

template <typename E>
auto scalar2vector(E&& x)
{
   return same_element_vector(std::forward<E>(x), 1);
}

template <typename SetRef,
          bool = check_container_ref_feature<SetRef, sparse_compatible>::value,
          bool = is_instance_of<pure_type_t<SetRef>, Complement>::value>
struct SameElementSparseVector_helper {
   static constexpr bool has_dim = true;
   using container = SetRef;
   using alias_type = alias<container>;

   template <typename Arg>
   using accept_arg = std::is_constructible<alias_type, Arg>;

   template <typename Arg, typename=std::enable_if_t<accept_arg<Arg>::value>>
   static Arg&& create(Arg&& c, Int)
   {
      return std::forward<Arg>(c);
   }
   static decltype(auto) get_container(const alias_type& a)
   {
      return *a;
   }
};

template <typename SetRef>
struct SameElementSparseVector_helper<SetRef, false, true> {
   static constexpr bool has_dim = check_container_ref_feature<typename mget_template_parameter<pure_type_t<SetRef>, 0>::type, sparse_compatible>::value;
   using container = SetRef;
   using alias_type = pure_type_t<SetRef>;

   template <typename Arg>
   using accept_arg = std::is_constructible<alias_type, Arg, Int>;

   template <typename Arg, typename=std::enable_if_t<accept_arg<Arg>::value>>
   static alias_type create(Arg&& c, Int d)
   {
      return alias_type(std::forward<Arg>(c), d);
   }
   static const alias_type& get_container(const alias_type& a)
   {
      return a;
   }
};

template <typename SetRef>
struct SameElementSparseVector_helper<SetRef, false, false>
   : SameElementSparseVector_helper<Set_with_dim<SetRef>, false, true> {};

template <typename SetRef, typename ElemRef>
class SameElementSparseVector
   : public modified_container_pair_impl< SameElementSparseVector<SetRef, ElemRef>,
                                          mlist< Container1RefTag< same_value_container<ElemRef> >,
                                                 Container2RefTag< typename SameElementSparseVector_helper<SetRef>::container >,
                                                 OperationTag< pair<nothing, BuildBinaryIt<operations::dereference2> > > > >
   , public GenericVector< SameElementSparseVector<SetRef, ElemRef>,
                           typename object_traits<typename deref<ElemRef>::type>::persistent_type > {
   using base_t = modified_container_pair_impl<SameElementSparseVector>;
   using helper = SameElementSparseVector_helper<SetRef>;
protected:
   typename helper::alias_type set;
   alias<ElemRef> apparent_elem;

public:
   using container_category = typename least_derived_class<bidirectional_iterator_tag, typename container_traits<SetRef>::category>::type;

   SameElementSparseVector() = default;

   template <typename Arg1, typename Arg2,
             typename=std::enable_if_t<helper::template accept_arg<Arg1>::value &&
                                       std::is_constructible<alias<ElemRef>, Arg2>::value>>
   SameElementSparseVector(Arg1&& set_arg, Arg2&& data_arg, Int dim_arg = -1)
      : set(helper::create(std::forward<Arg1>(set_arg), dim_arg))
      , apparent_elem(std::forward<Arg2>(data_arg)) {}

   decltype(auto) get_container1() const
   {
      return as_same_value_container(apparent_elem);
   }
   decltype(auto) get_container2() const
   {
      return helper::get_container(set);
   }

   auto find(Int i) const
   {
      return typename base_t::const_iterator(get_container1().begin(), get_container2().find(i), base_t::get_operation());
   }

   typename base_t::const_reference operator[] (Int i) const
   {
      if (i<0 || i>=base_t::dim())
         throw std::runtime_error("SameElementSparseVector - index out of range");
      if (get_container2().contains(i))
         return *apparent_elem;
      return zero_value<typename deref<ElemRef>::type>();
   }

   using base_t::dim;
};

template <typename SetRef, typename ElemRef>
struct spec_object_traits< SameElementSparseVector<SetRef, ElemRef> >
   : spec_object_traits<is_container> {
   static constexpr bool
      is_temporary = true,
      is_always_const = true;
};

template <typename SetRef, typename ElemRef>
struct check_container_feature<SameElementSparseVector<SetRef,ElemRef>, pure_sparse> : std::true_type {};

template <typename E, typename TSet>
auto same_element_sparse_vector(TSet&& s, E&& elem, std::enable_if_t<is_integer_set<TSet>::value, Int> dim)
{
   if (POLYMAKE_DEBUG || is_wary<TSet>()) {
      if (!set_within_range(s.top(), dim))
         throw std::runtime_error("same_element_sparse_vector - dimension mismatch");
   }
   using result_type = SameElementSparseVector<add_const_t<unwary_t<TSet>>, prevent_int_element<add_const_t<E>>>;
   return result_type(unwary(std::forward<TSet>(s)), std::forward<E>(elem), dim);
}

template <typename E, typename TSet>
auto same_element_sparse_vector(TSet&& s, std::enable_if_t<is_integer_set<TSet>::value, Int> dim)
{
   return same_element_sparse_vector(std::forward<TSet>(s), one_value<E>(), dim);
}

template <typename E, typename TSet,
          typename = std::enable_if_t<is_integer_set<TSet>::value &&
                                      SameElementSparseVector_helper<unwary_t<TSet>>::has_dim>>
auto same_element_sparse_vector(TSet&& s)
{
   return same_element_sparse_vector>(std::forward<TSet>(s), one_value<E>(), s.dim());
}


/* kind = 1: constructs SameElementSparseVector<sequence> of full size or empty
 * kind = 2: always constructs SameElementSparseVector< SingleElementSet<Int> > aka unit vector
 * kind = 3: constructs SameElementSparseVector<sequence> with one element or empty
 */
template <int kind, typename ElemRef=void>
class SameElementSparseVector_factory {
protected:
   Int dim;
public:
   typedef Int first_argument_type;
   typedef ElemRef second_argument_type;
   typedef SameElementSparseVector<typename std::conditional<kind==2, SingleElementSet<Int>, sequence>::type, ElemRef>
      result_type;

   SameElementSparseVector_factory(Int dim_arg = 0) : dim(dim_arg) {}

   template <typename R>
   result_type operator() (first_argument_type pos, R&& elem) const
   {
      return result_type(index_set(pos, int_constant<kind>()), std::forward<R>(elem), dim);
   }

   template <typename Iterator2>
   result_type operator() (operations::partial_left, Int pos, const Iterator2&) const
   {
      return result_type(sequence(pos, 0), zero_value<typename deref<ElemRef>::type>(), dim);
   }

   // can never happen, but must be defined
   template <typename Iterator1, typename R>
   result_type operator() (operations::partial_right, const Iterator1&, R&& elem) const
   {
      return result_type(sequence(0,0), std::forward<R>(elem), dim);
   }

protected:
   sequence index_set(Int, int_constant<1>) const
   {
      return sequence(0, dim);
   }
   SingleElementSet<Int> index_set(Int pos, int_constant<2>) const
   {
      return SingleElementSet<Int>(pos);
   }
   sequence index_set(Int pos, int_constant<3>) const
   {
      return sequence(pos, 1);
   }
};

template <int kind>
class SameElementSparseVector_factory<kind, void> : public operations::incomplete {
protected:
   Int dim_;
public:
   SameElementSparseVector_factory(Int dim_arg = 0) : dim_(dim_arg) {}
   Int dim() const { return dim_; }
};

template <int kind, typename Iterator1, typename Iterator2, typename Reference1, typename Reference2>
struct binary_op_builder< SameElementSparseVector_factory<kind, void>, Iterator1, Iterator2, Reference1, Reference2 > {
   typedef SameElementSparseVector_factory<kind, prevent_int_element<add_const_t<Reference2>>> operation;
   static operation create(const SameElementSparseVector_factory<kind,void>& op) { return operation(op.dim()); }
};

/* ------------
 *  UnitVector
 * ------------ */

template <typename E>
auto unit_vector(Int dim, Int i, E&& x)
{
   if (POLYMAKE_DEBUG) {
      if (i < 0 || i >= dim)
         throw std::runtime_error("unit_vector - index out of range");
   }
   return same_element_sparse_vector(SingleElementSet<Int>(i), std::forward<E>(x), dim);
}

template <typename E>
auto unit_vector(Int dim, Int i)
{
   if (POLYMAKE_DEBUG) {
      if (i < 0 || i >= dim)
         throw std::runtime_error("unit_vector - index out of range");
   }
   return same_element_sparse_vector(SingleElementSet<Int>(i), one_value<E>(), dim);
}

/* ----------------
 *  ExpandedVector
 * ---------------- */

template <typename VectorRef>
class ExpandedVector
   : public TransformedContainer<masquerade_add_features<VectorRef, sparse_compatible>,
                                 pair<nothing, operations::fix2<Int, operations::composed12< BuildUnaryIt<operations::index2element>, void, BuildBinary<operations::add> > > > >
   , public GenericVector< ExpandedVector<VectorRef>, typename deref<VectorRef>::type::element_type > {
   using base_t = TransformedContainer<masquerade_add_features<VectorRef, sparse_compatible>,
                                       pair<nothing, operations::fix2<Int, operations::composed12< BuildUnaryIt<operations::index2element>, void, BuildBinary<operations::add> > > > >;
   Int dim_;
public:
   template <typename Arg, typename=std::enable_if_t<std::is_constructible<typename base_t::alias_t, Arg>::value>>
   ExpandedVector(Arg&& src_arg, Int offset, Int dim_arg)
      : base_t(std::forward<Arg>(src_arg), offset)
      , dim_(dim_arg) {}

   Int dim() const { return dim_; }
};

template <typename VectorRef>
struct spec_object_traits< ExpandedVector<VectorRef> >
   : spec_object_traits<is_container> {
   static constexpr bool is_temporary = true, is_always_const = true;
};

template <typename VectorRef>
struct check_container_feature<ExpandedVector<VectorRef>, sparse> : std::true_type {};

template <typename VectorRef>
struct check_container_feature<ExpandedVector<VectorRef>, pure_sparse>
   : check_container_ref_feature<VectorRef, pure_sparse> {};

template <typename VectorRef=void>
class ExpandedVector_factory {
protected:
   Int offset, dim;
public:
   typedef VectorRef argument_type;
   typedef ExpandedVector<VectorRef> vector_type;
   typedef vector_type result_type;

   ExpandedVector_factory(Int offset_arg = 0, Int dim_arg = 0)
      : offset(offset_arg), dim(dim_arg) {}

   template <typename Ref2>
   ExpandedVector_factory(const ExpandedVector_factory<Ref2>& f)
      : offset(f.offset), dim(f.dim) {}

   template <typename T>
   result_type operator() (T&& vec) const
   {
      return vector_type(std::forward<T>(vec), offset,dim);
   }

   template <typename> friend class ExpandedVector_factory;
};

template <>
class ExpandedVector_factory<void> : public operations::incomplete {
protected:
   Int offset, dim;
public:
   ExpandedVector_factory(Int offset_arg = 0, Int dim_arg = 0)
      : offset(offset_arg), dim(dim_arg) {}
   template <typename> friend class ExpandedVector_factory;
};

template <typename Iterator, typename Reference>
struct unary_op_builder< ExpandedVector_factory<void>, Iterator, Reference > {
   typedef ExpandedVector_factory<Reference> operation;

   template <typename Ref2>
   static operation create(const ExpandedVector_factory<Ref2>& f) { return f; }
};

/* ---------------------------------------
 *  functor objects for vector operations
 * --------------------------------------- */

namespace operations {

template <typename LeftRef, typename RightRef>
struct add_impl<LeftRef, RightRef, cons<is_vector, is_vector> > {
   typedef LeftRef  first_argument_type;
   typedef RightRef second_argument_type;
   typedef decltype(std::declval<LeftRef>() + std::declval<RightRef>()) result_type;

   template <typename L, typename R>
   result_type operator() (L&& l, R&& r) const
   {
      return std::forward<L>(l) + std::forward<R>(r);
   }

   template <typename L, typename R>
   void assign(L&& l, const R& r) const
   {
      l += r;
   }
};

template <typename LeftRef, typename RightRef>
struct sub_impl<LeftRef, RightRef, cons<is_vector, is_vector> > {
   typedef LeftRef  first_argument_type;
   typedef RightRef second_argument_type;
   typedef decltype(std::declval<LeftRef>() - std::declval<RightRef>()) result_type;

   template <typename L, typename R>
   result_type operator() (L&& l, R&& r) const
   {
      return std::forward<L>(l) - std::forward<R>(r);
   }

   template <typename L, typename R>
   void assign(L&& l, const R& r) const
   {
      l -= r;
   }
};

template <typename LeftRef, typename RightRef>
struct mul_impl<LeftRef, RightRef, cons<is_vector, is_vector> > {
   typedef LeftRef  first_argument_type;
   typedef RightRef second_argument_type;
   typedef decltype(std::declval<LeftRef>() * std::declval<RightRef>()) result_type;

   result_type operator() (first_argument_type l, second_argument_type r) const
   {
      return l*r;
   }
};

template <typename LeftRef, typename RightRef>
struct tensor_impl<LeftRef, RightRef, cons<is_vector, is_vector> > {
   typedef LeftRef  first_argument_type;
   typedef RightRef second_argument_type;
   typedef decltype(tensor_product(std::declval<LeftRef>(), std::declval<RightRef>())) result_type;

   template <typename L, typename R>
   result_type operator() (L&& l, R&& r) const
   {
      return tensor_product(std::forward<L>(l), std::forward<R>(r));
   }
};

template <typename LeftRef, typename RightRef>
struct concat_impl<LeftRef, RightRef, cons<is_vector, is_vector> > {
   typedef LeftRef  first_argument_type;
   typedef RightRef second_argument_type;
   typedef decltype(std::declval<LeftRef>() | std::declval<RightRef>()) result_type;

   template <typename L, typename R>
   result_type operator() (L&& l, R&& r) const
   {
      return std::forward<L>(l) | std::forward<R>(r);
   }
};

} // end namespace operations

template <typename TVector>
struct hash_func<TVector, is_vector> {
protected:
   hash_func<typename TVector::value_type> hash_elem;
public:
   size_t operator() (const TVector& v) const
   {
      size_t h=1;
      for (auto e=ensure(v, sparse_compatible()).begin(); !e.at_end(); ++e)
         h += (hash_elem(*e) * (e.index()+1));
      return h;
   }
};

template <typename TVector>
typename std::enable_if<!TVector::is_sparse, Indices<SelectedSubset<const GenericVector<TVector>&, BuildUnary<operations::non_zero>>>>::type
indices(const GenericVector<TVector>& v) 
{ 
   return indices(attach_selector(v, BuildUnary<operations::non_zero>())); 
}

template <typename TVector1, typename TVector2, typename E>
cmp_value lex_compare(const GenericVector<TVector1, E>& l, const GenericVector<TVector2, E>& r)
{
   return operations::cmp()(l.top(), r.top());
}

} // end namespace pm

namespace polymake {
   using pm::GenericVector;
   using pm::scalar2vector;
   using pm::same_element_vector;
   using pm::same_element_sparse_vector;
   using pm::convert_to;
   using pm::ones_vector;
   using pm::zero_vector;
   using pm::unit_vector;
   using pm::convert_to_persistent;
   using pm::convert_to_persistent_dense;
}

namespace std {

template <typename Vector1, typename Vector2, typename E>
void swap(pm::GenericVector<Vector1, E>& v1, pm::GenericVector<Vector2, E>& v2)
{
   v1.top().swap(v2.top());
}

}


// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End: