File: Graph.h

package info (click to toggle)
polymake 4.14-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 35,888 kB
  • sloc: cpp: 168,933; perl: 43,407; javascript: 31,575; ansic: 3,007; java: 2,654; python: 632; sh: 268; xml: 117; makefile: 61
file content (3540 lines) | stat: -rw-r--r-- 114,873 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
/* Copyright (c) 1997-2024
   Ewgenij Gawrilow, Michael Joswig, and the polymake team
   Technische Universität Berlin, Germany
   https://polymake.org

   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 2, or (at your option) any
   later version: http://www.gnu.org/licenses/gpl.txt.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
--------------------------------------------------------------------------------
*/

#pragma once
/** @file Graph.h
    @brief Implementation of pm::graph::Graph class
*/


#include "polymake/internal/sparse2d.h"
#include "polymake/IncidenceMatrix.h"
#include "polymake/SparseMatrix.h"
#include "polymake/internal/assoc.h"
#include "polymake/internal/converters.h"
#include "polymake/SelectedSubset.h"
#include "polymake/GenericGraph.h"
#include "polymake/Bitset.h"
#include "polymake/EmbeddedList.h"
#include "polymake/hash_map"
#include "polymake/list"
#include "polymake/vector"
#include "polymake/meta_list.h"
#include <cassert>

namespace pm {
namespace graph {

using pm::sparse2d::restriction_kind;
using pm::sparse2d::full;
using pm::sparse2d::dying;
using pm::relocate;

template <typename TDir> class Table;
template <typename TDir, restriction_kind restriction=full> struct node_entry;
template <typename Traits> struct dir_permute_entries;
template <typename Traits> struct undir_permute_entries;

template <typename TDir, typename E, typename... TParams> class NodeMap;
template <typename TDir, typename E, typename... TParams> class EdgeMap;
template <typename TDir, typename E, typename... TParams> class NodeHashMap;
template <typename TDir, typename E, typename... TParams> class EdgeHashMap;

struct edge_agent_base {
   Int n_edges, n_alloc;
   edge_agent_base() : n_edges(0), n_alloc(0) {}

   static constexpr Int bucket_shift = 8, bucket_size = 1L << bucket_shift, bucket_mask = bucket_size-1;
   static constexpr Int min_buckets(Int b) { return b >= 10 ? b : 10; }

   template <typename MapList>
   bool extend_maps(MapList& maps);
};

template <typename TDir>
struct edge_agent : edge_agent_base {
   Table<TDir>* table;
   edge_agent() : table(nullptr) {}

   typedef sparse2d::cell<Int> Cell;

   template <bool for_copy>
   void init(Table<TDir> *t, bool_constant<for_copy>);

   template <typename NumberConsumer>
   void renumber(const NumberConsumer& nc);

   void reset() { n_alloc = 0; table = nullptr; }

   void added(Cell* c)
   {
      if (table)
         table->edge_added(*this, c);
      else
         n_alloc = 0;
      ++n_edges;
   }

   void removed(Cell* c)
   {
      --n_edges;
      if (table)
         table->edge_removed(c);
      else
         n_alloc = 0;
   }
};

template <typename TDir, bool TOut_edges>
class it_traits : public sparse2d::it_traits<Int, TOut_edges, TDir::value> {
   typedef sparse2d::it_traits<Int, TOut_edges, TDir::value> base_t;
public:
   it_traits(Int index_arg = 0) : base_t(index_arg) {}

   AVL::Ptr<typename base_t::Node>& link(typename base_t::Node *n, AVL::link_index X) const
   {
      return (TDir::value && n->key<0) ? n->links[X-AVL::L] : base_t::link(n,X);
   }

   const it_traits& get_it_traits() const { return *this; }
};

template <typename TDir, bool TOut_edges /* =false */, restriction_kind restriction>
class traits_base : public it_traits<TDir, TOut_edges> {
public:
   typedef it_traits<TDir, TOut_edges> traits_for_iterator;
   typedef typename traits_for_iterator::Node Node;
protected:
   mutable AVL::Ptr<Node> root_links[3];
public:
   typedef Int mapped_type;

   static constexpr bool
      symmetric = TDir::value,
      row_oriented = TOut_edges /* =false */,
      allow_multiple = TDir::multigraph;

   typedef AVL::tree< sparse2d::traits<traits_base, symmetric, restriction> > own_tree;
   typedef AVL::tree< sparse2d::traits<traits_base<TDir, (!symmetric && !row_oriented), restriction>, symmetric, restriction> >
      cross_tree;
protected:
   typedef node_entry<TDir, restriction> entry;
   typedef sparse2d::ruler<entry, edge_agent<TDir> > own_ruler;
   typedef own_ruler cross_ruler;

   Node* head_node() const
   {
      return reinterpret_cast<Node*>(const_cast<traits_base*>(this));
   }

   const entry& get_node_entry() const
   {
      return *entry::reverse_cast(static_cast<const own_tree*>(this));
   }
   entry& get_node_entry()
   {
      return *entry::reverse_cast(static_cast<own_tree*>(this));
   }

   const cross_ruler& get_cross_ruler() const
   {
      return get_node_entry().get_ruler();
   }
   cross_ruler& get_cross_ruler()
   {
      return get_node_entry().get_ruler();
   }

   Int visit_by_copy(Node* n) const
   {
      return 2*this->get_line_index() - n->key;
   }

   void notify_add(Node* n)
   {
      get_cross_ruler().prefix().added(n);
   }
   void notify_remove(Node* n)
   {
      get_cross_ruler().prefix().removed(n);
   }
public:
   typedef Int arg_type;
   traits_base(Int index_arg) : traits_for_iterator(index_arg) {}

   const cross_tree& get_cross_tree(Int i) const
   {
      return get_cross_ruler()[i].out();
   }
   cross_tree& get_cross_tree(Int i)
   {
      return get_cross_ruler()[i].out();
   }

   friend class Table<TDir>;
   template <typename> friend struct sparse2d::sym_permute_entries;
   template <typename> friend struct dir_permute_entries;
   template <typename> friend struct undir_permute_entries;
};

template <typename TDir, restriction_kind restriction>
class traits_base<TDir, true, restriction> {
protected:
   typedef sparse2d::cell<Int> Node;

   mutable AVL::Ptr<Node> root_links[3];
public:
   typedef Int mapped_type;

   static constexpr bool
      symmetric = false,
      row_oriented = true,
      allow_multiple = TDir::multigraph;

   typedef it_traits<TDir, true> traits_for_iterator;
   typedef traits_base<TDir, false, restriction> cross_traits_base;

   static AVL::Ptr<Node>& link(Node* n, AVL::link_index X)
   {
      return n->links[X-AVL::L+3];
   }

   Int get_line_index() const
   {
      return get_node_entry().in().get_line_index();
   }
   traits_for_iterator get_it_traits() const { return get_line_index(); }

   typedef AVL::tree< sparse2d::traits<traits_base, symmetric, restriction> > own_tree;
   typedef AVL::tree< sparse2d::traits<cross_traits_base, symmetric, restriction> > cross_tree;
protected:
   typedef node_entry<TDir, restriction> entry;
   typedef sparse2d::ruler<entry, edge_agent<TDir> > own_ruler;
   typedef own_ruler cross_ruler;

   Node* head_node() const
   {
      return reinterpret_cast<Node*>(reinterpret_cast<char*>(const_cast<traits_base*>(this))-
                                     sizeof(cross_traits_base));
   }

   const entry& get_node_entry() const
   {
      return *entry::reverse_cast(static_cast<const own_tree*>(this));
   }
   entry& get_node_entry()
   {
      return *entry::reverse_cast(static_cast<own_tree*>(this));
   }

   const cross_ruler& get_cross_ruler() const
   {
      return get_node_entry().get_ruler();
   }
   cross_ruler& get_cross_ruler()
   {
      return get_node_entry().get_ruler();
   }

   Int visit_by_copy(Node* n) const
   {
      return 2*get_line_index() - n->key;
   }

   void notify_add(Node* n)
   {
      get_cross_ruler().prefix().added(n);
   }
   void notify_remove(Node* n)
   {
      get_cross_ruler().prefix().removed(n);
   }

public:
   typedef const traits_base& arg_type;

   const cross_tree& get_cross_tree(Int i) const
   {
      return get_cross_ruler()[i].in();
   }
   cross_tree& get_cross_tree(Int i)
   {
      return get_cross_ruler()[i].in();
   }

   static void prepare_move_between_trees(Node* n, const Int old_line_index, const Int new_line_index)
   {
      n->key += new_line_index - old_line_index;
   }

   friend class Table<TDir>;
};

template <typename TDir, restriction_kind restriction, bool _symmetric=TDir::value /* =true */>
struct node_entry_trees {
   typedef AVL::tree< sparse2d::traits<traits_base<TDir, false, restriction>, _symmetric, restriction> >
      out_tree_type;
   typedef out_tree_type in_tree_type;
   out_tree_type out_;

   explicit node_entry_trees(Int index_arg) : out_(index_arg) {}

   node_entry_trees(const node_entry_trees&) = default;
   node_entry_trees(node_entry_trees&&) = default;

   node_entry_trees(const node_entry_trees& from, AVL::copy_without_nodes)
      : out_(from.out_, AVL::copy_without_nodes()) {}

   out_tree_type& out() { return out_; }
   const out_tree_type& out() const { return out_; }
   out_tree_type& in() { return out_; }
   const out_tree_type& in() const { return out_; }
   Int degree() const { return out_.size(); }

   out_tree_type& cross_tree(out_tree_type*) { return out_; }

   static const node_entry<TDir, restriction>*
   reverse_cast(const out_tree_type* t)
   {
      return static_cast<const node_entry<TDir, restriction>*>(pm::reverse_cast(t, &node_entry_trees::out_));
   }
   static node_entry<TDir, restriction>*
   reverse_cast(out_tree_type* t)
   {
      return static_cast<node_entry<TDir, restriction>*>(pm::reverse_cast(t, &node_entry_trees::out_));
   }
};

template <typename TDir, restriction_kind restriction>
struct node_entry_trees<TDir, restriction, false> {
   typedef AVL::tree< sparse2d::traits<traits_base<TDir, true, restriction>, false, restriction> >
      out_tree_type;
   typedef AVL::tree< sparse2d::traits<traits_base<TDir, false, restriction>, false, restriction> >
      in_tree_type;
   in_tree_type in_;
   out_tree_type out_;

   explicit node_entry_trees(Int index_arg) : in_(index_arg) {}

   node_entry_trees(const node_entry_trees&) = default;
   node_entry_trees(node_entry_trees&&) = default;

   node_entry_trees(const node_entry_trees& from, AVL::copy_without_nodes)
      : in_(from.in_, AVL::copy_without_nodes())
      , out_(from.out_, AVL::copy_without_nodes()) {}

   out_tree_type& out() { return out_; }
   const out_tree_type& out() const { return out_; }
   in_tree_type& in() { return in_; }
   const in_tree_type& in() const { return in_; }
   Int degree() const { return out_.size() + in_.size(); }

   out_tree_type& cross_tree(in_tree_type*)  { return out_; }
   in_tree_type&  cross_tree(out_tree_type*) { return in_; }

   static const node_entry<TDir, restriction>*
   reverse_cast(const out_tree_type* t)
   {
      return static_cast<const node_entry<TDir, restriction>*>(pm::reverse_cast(t, &node_entry_trees::out_));
   }
   static node_entry<TDir, restriction>*
   reverse_cast(out_tree_type* t)
   {
      return static_cast<node_entry<TDir, restriction>*>(pm::reverse_cast(t, &node_entry_trees::out_));
   }
   static const node_entry<TDir, restriction>*
   reverse_cast(const in_tree_type* t)
   {
      return static_cast<const node_entry<TDir, restriction>*>(pm::reverse_cast(t, &node_entry_trees::in_));
   }
   static node_entry<TDir, restriction>*
   reverse_cast(in_tree_type* t)
   {
      return static_cast<node_entry<TDir, restriction>*>(pm::reverse_cast(t, &node_entry_trees::in_));
   }
};

template <typename TDir, restriction_kind restriction>
struct node_entry
   : public node_entry_trees<TDir, restriction> {
   typedef TDir dir;
   typedef sparse2d::ruler<node_entry, edge_agent<TDir> > ruler;

   explicit node_entry(Int index_arg)
      : node_entry_trees<TDir, restriction>(index_arg) {}

   node_entry(const node_entry& from, AVL::copy_without_nodes)
      : node_entry_trees<TDir, restriction>(from, AVL::copy_without_nodes()) {}

   node_entry(const node_entry&) = default;
   node_entry(node_entry&&) = default;

   Int get_line_index() const { return this->in().get_line_index(); }

   const ruler& get_ruler() const
   {
      return ruler::reverse_cast(this, get_line_index());
   }
   ruler& get_ruler()
   {
      return ruler::reverse_cast(this, get_line_index());
   }
};

template <typename Table>
struct dir_permute_entries {
   typedef typename Table::ruler ruler;
   typedef typename Table::entry entry_t;
   typedef typename Table::out_tree_type out_tree_t;
   typedef typename Table::in_tree_type in_tree_t;
   typedef typename out_tree_t::Node Node;

   explicit dir_permute_entries(Int& free_node_id)
      : free_node_id_ptr(&free_node_id) {}

   static void relocate(entry_t* from, entry_t* to)
   {
      new(to) entry_t(*from, AVL::copy_without_nodes());
   }

   static void complete_in_trees(ruler* R)
   {
      Int nfrom = 0;
      for (entry_t& entry : *R) {
         for (auto e = entry.out_.begin(); !e.at_end(); ++e) {
            Node* node = e.operator->();
            (*R)[node->key - nfrom].in_.push_back_node(node);
         }
         ++nfrom;
      }
   }

   void operator()(ruler* Rold, ruler* R)
   {
      inv_perm_store.resize(R->size(), -1);
      Int nto = 0;
      for (entry_t& entry : *R) {
         const Int old_n = entry.in_.line_index;
         if (old_n >= 0)
            inv_perm_store[old_n] = nto;
         ++nto;
      }

      nto = 0;
      for (entry_t& entry : *R) {
         const Int old_nto = entry.in_.line_index;
         if (old_nto >= 0) {
            entry.in_.line_index = nto;
            for (auto e = (*Rold)[old_nto].in_.begin(); !e.at_end(); ++e) {
               Node* node = e.operator->();
               const Int old_nfrom = node->key - old_nto, nfrom = inv_perm_store[old_nfrom];
               node->key = nfrom + nto;
               (*R)[nfrom].out_.insert_node(node);
            }
            entry.in_.init();
         } else {
            *free_node_id_ptr = ~nto;
            free_node_id_ptr = &entry.in_.line_index;
         }
         ++nto;
      }
      *free_node_id_ptr = std::numeric_limits<Int>::min();

      complete_in_trees(R);
   }

   template <typename Perm, typename InvPerm>
   void copy(const ruler* R_src, ruler* R_dst, const Perm& perm, const InvPerm& inv_perm)
   {
      const Int n = R_dst->size();
      auto p_it = perm.begin();
      for (Int dst_nto = 0; dst_nto < n; ++dst_nto, ++p_it) {
         const Int src_nto = *p_it;
         const in_tree_t& src_in_tree = (*R_src)[src_nto].in_;
         if (src_in_tree.line_index >= 0) {
            for (auto e = src_in_tree.begin(); !e.at_end(); ++e) {
               const Node* node = e.operator->();
               const Int src_nfrom = node->key - src_nto;
               const Int dst_nfrom = inv_perm[src_nfrom];
               out_tree_t& t = (*R_dst)[dst_nfrom].out_;
               t.insert_node(t.create_free_node(dst_nfrom+dst_nto));
            }
         } else {
            *free_node_id_ptr = ~dst_nto;
            free_node_id_ptr = &(*R_dst)[dst_nto].in_.line_index;
         }
      }
      *free_node_id_ptr = std::numeric_limits<Int>::min();

      complete_in_trees(R_dst);
   }

   std::vector<Int> inv_perm_store;
   Int* free_node_id_ptr;
};

template <typename Traits>
struct undir_permute_entries
   : sparse2d::sym_permute_entries<Traits> {

   using typename Traits::entry_t;

   explicit undir_permute_entries(Int& free_node_id)
      : free_node_id_ptr(&free_node_id) {}

   static void relocate(entry_t* from, entry_t* to)
   {
      new(to) entry_t(*from, AVL::copy_without_nodes());
   }

   void deleted_node(entry_t& entry, Int n)
   {
      *free_node_id_ptr = ~n;
      free_node_id_ptr = &entry.out_.line_index;
   }

   void finalize_deleted_nodes()
   {
      *free_node_id_ptr = std::numeric_limits<Int>::min();
   }

   Int* free_node_id_ptr;
};

struct NodeMapBase {
   ptr_pair<NodeMapBase> ptrs;
   Int refc;
   void* table_;

   NodeMapBase() : refc(1), table_(nullptr) {}

   virtual ~NodeMapBase() {}
   virtual void init()=0;
   virtual void reset(Int n = 0)=0;
   virtual void resize(size_t n_alloc_new, Int n, Int nnew)=0;
   virtual void shrink(size_t n_alloc_new, Int n)=0;
   virtual void move_entry(Int n_from, Int n_to)=0;
   virtual void revive_entry(Int n)=0;
   virtual void delete_entry(Int n)=0;
   virtual void permute_entries(const std::vector<Int>& inv_perm)=0;
};

template <typename> class EdgeMapDataAccess;

struct EdgeMapBase {
   ptr_pair<EdgeMapBase> ptrs;
   Int refc;
   void* table_;

   EdgeMapBase() : refc(1), table_(nullptr)  {}
   virtual ~EdgeMapBase() {}
   virtual bool is_detachable() const = 0;
   virtual void reset()=0;

   virtual void revive_entry(Int e)=0;
   virtual void delete_entry(Int e)=0;
   virtual void realloc(size_t n_alloc)=0;
   virtual void add_bucket(Int n)=0;
};

struct EdgeMapDenseBase : public EdgeMapBase {
   void **buckets;
   size_t n_alloc;

   EdgeMapDenseBase() : buckets(nullptr) {}

   void first_alloc(size_t n)
   {
      n_alloc = n;
      buckets = new void*[n];
      std::fill_n(buckets, n, nullptr);
   }
   void realloc(size_t new_n_alloc)
   {
      if (new_n_alloc > n_alloc) {
         void** old_buckets = buckets;
         buckets = new void*[new_n_alloc];
         std::fill_n(std::copy(old_buckets, old_buckets + n_alloc, buckets), new_n_alloc - n_alloc, nullptr);
         delete[] old_buckets;
         n_alloc = new_n_alloc;
      }
   }

   void destroy()
   {
      delete[] buckets;
      buckets = nullptr;
      n_alloc = 0;
   }
};

template <typename MapList>
bool edge_agent_base::extend_maps(MapList& maps)
{
   if (n_edges & bucket_mask) return false;

   const Int new_bucket = n_edges >> bucket_shift;
   if (new_bucket >= n_alloc) {
      n_alloc += min_buckets(n_alloc/5);
      for (auto& map : maps) {
         map.realloc(n_alloc);
         map.add_bucket(new_bucket);
      }
   } else {
      for (auto& map : maps)
         map.add_bucket(new_bucket);
   }
   return true;
}

template <typename Data>
class EdgeMapDataAccess {
public:
   typedef Int argument_type;
   typedef Data& result_type;

   static Data* index2addr(void** buckets, Int i)
   {
      return reinterpret_cast<Data*>(buckets[i>>edge_agent_base::bucket_shift])+(i&edge_agent_base::bucket_mask);
   }
   result_type operator() (Int i) const
   {
      return *index2addr(buckets,i);
   }

   EdgeMapDataAccess(void** arg = nullptr) : buckets(arg) {}
   EdgeMapDataAccess(const EdgeMapDataAccess<typename attrib<Data>::minus_const>& op) : buckets(op.buckets) {}
protected:
   void **buckets;
};

} // end namespace graph

template <typename Data>
struct operation_cross_const_helper< graph::EdgeMapDataAccess<Data> > {
   typedef graph::EdgeMapDataAccess<typename attrib<Data>::minus_const> operation;
   typedef graph::EdgeMapDataAccess<typename attrib<Data>::plus_const> const_operation;
};

namespace graph {

template <typename TDir>
class Table {
public:
   typedef TDir dir;
   static constexpr bool is_directed = dir::value == Directed::value;
   typedef node_entry<dir> entry;
   typedef typename entry::ruler ruler;
protected:
   ruler* R;
   typedef sparse2d::cell<Int> Cell;

   typedef EmbeddedList<NodeMapBase, &NodeMapBase::ptrs> node_map_list;
   typedef EmbeddedList<EdgeMapBase, &EdgeMapBase::ptrs> edge_map_list;
   mutable node_map_list node_maps;
   mutable edge_map_list edge_maps;
   std::vector<Int> free_edge_ids;
   Int n_nodes, free_node_id;

   friend struct edge_agent<dir>;
   friend class Graph<dir>;
public:
   Table()
      : R(ruler::construct(0)), n_nodes(0), free_node_id(std::numeric_limits<Int>::min()) {}

   explicit Table(Int n)
      : R(ruler::construct(n)), n_nodes(n), free_node_id(std::numeric_limits<Int>::min()) {}

   Table(const Table& t)
      : R(ruler::construct(*t.R)), n_nodes(t.n_nodes), free_node_id(t.free_node_id)
   {
      R->prefix().n_edges = t.edges();
   }

protected:
   template <typename TSet>
   static std::enable_if_t<check_container_feature<TSet, sparse_compatible>::value, Int>
   get_dim_of(const TSet& s)
   {
      return s.dim();
   }
   template <typename TSet>
   static std::enable_if_t<!check_container_feature<TSet, sparse_compatible>::value, Int>
   get_dim_of(const TSet& s)
   {
      return s.empty() ? 0 : s.back()+1;
   }
public:
   template <typename TSet>
   explicit Table(const GenericSet<TSet>& s)
      : R(ruler::construct(get_dim_of(s.top())))
      , n_nodes(R->size())
      , free_node_id(std::numeric_limits<Int>::min())
   {
      if (!std::is_same<TSet, sequence>::value || s.top().size()!=n_nodes)
         init_delete_nodes(sequence(0,n_nodes)-s);
   }

   template <typename TSet>
   Table(const GenericSet<TSet>& s, Int dim)
      : R(ruler::construct(dim))
      , n_nodes(dim)
      , free_node_id(std::numeric_limits<Int>::min())
   {
      if (!std::is_same<TSet, sequence>::value || s.top().size()!=n_nodes)
         init_delete_nodes(sequence(0,n_nodes)-s);
   }

protected:
   void detach_node_maps()
   {
      for (auto it=entire(node_maps); !it.at_end(); ) {
         NodeMapBase* m=it.operator->();  ++it;
         m->reset(); m->table_ = nullptr;
         detach(*m);
      }
   }
   void detach_edge_maps()
   {
      for (auto it=entire(edge_maps); !it.at_end(); ) {
         EdgeMapBase* m=it.operator->();  ++it;
         m->reset(); m->table_ = nullptr;
         detach(*m);
      }
   }
public:
   ~Table()
   {
      detach_node_maps();
      detach_edge_maps();
      typedef typename node_entry<dir,dying>::ruler dying_ruler;
      dying_ruler::destroy(reinterpret_cast<dying_ruler*>(R));
   }

   Table& operator= (const Table& t)
   {
      this->~Table();
      new(this) Table(t);
      return *this;
   }

   void swap(Table& t)
   {
      std::swap(R,t.R);
      node_maps.swap(t.node_maps);
      edge_maps.swap(t.edge_maps);
      std::swap(n_nodes, t.n_nodes);
      std::swap(free_node_id, t.free_node_id);
      std::swap(free_edge_ids, t.free_edge_ids);
      for (auto& map : node_maps)
         map.table_ = this;
      for (auto& map : t.node_maps)
         map.table_ = &t;
      for (auto& map : edge_maps)
         map.table_ = this;
      for (auto& map : t.edge_maps)
         map.table_ = &t;
   }

   void clear(Int n = 0)
   {
      for (auto& map : node_maps) map.reset(n);
      for (auto& map : edge_maps) map.reset();
      R->prefix().table = nullptr;
      R = ruler::resize_and_clear(R, n);
      edge_agent<dir>& h = R->prefix();
      if (!edge_maps.empty()) h.table = this;
      h.n_alloc = 0;
      h.n_edges = 0;
      n_nodes = n;
      if (n) for (auto& map : node_maps) map.init();
      free_node_id = std::numeric_limits<Int>::min();
      free_edge_ids.clear();
   }

   struct shared_clear {
      Int n;
      shared_clear(Int n_arg) : n(n_arg) {}

      void operator() (void *p, const Table&) const { new(p) Table(n); }
      void operator() (Table& t) const { t.clear(n); }
   };

   typedef typename entry::out_tree_type out_tree_type;
   typedef typename entry::in_tree_type in_tree_type;

   Int dim() const { return R->size(); }
   Int nodes() const { return n_nodes; }
   Int edges() const { return R->prefix().n_edges; }

   bool node_exists(Int n) const { return (*R)[n].get_line_index() >= 0; }
   bool node_out_of_range(Int n) const { return n < 0 || n >= R->size(); }
   bool invalid_node(Int n) const { return node_out_of_range(n) || !node_exists(n); }

   entry& operator[] (Int n) { return (*R)[n]; }
   const entry& operator[] (Int n) const { return (*R)[n]; }

protected:
   Int revive_node()
   {
      Int n = ~free_node_id;
      entry& e = (*R)[n];
      free_node_id = e.in().line_index;
      e.in().line_index = n;
      for (auto& map : node_maps) map.revive_entry(n);
      ++n_nodes;
      return n;
   }

   // is only called when the maps do not contain any gaps
   void resize_to(const Int nnew)
   {
      R = ruler::resize(R, nnew);
      for (auto& map : node_maps) map.resize(R->max_size(), n_nodes, nnew);
      n_nodes = nnew;
   }

   void edge_added(edge_agent<dir>& h, Cell* c)
   {
      Int id;
      if (free_edge_ids.empty()) {
         id = h.n_edges;
         if (h.extend_maps(edge_maps)) {
            c->data = id;
            return;
         }
      } else {
         id = free_edge_ids.back();
         free_edge_ids.pop_back();
      }
      c->data = id;
      for (auto& map : edge_maps) map.revive_entry(id);
   }

   void edge_removed(Cell* c)
   {
      const Int id = c->data;
      for (auto& map : edge_maps) map.delete_entry(id);
      free_edge_ids.push_back(id);
   }
public:
   Int add_node()
   {
      if (free_node_id != std::numeric_limits<Int>::min())
         return revive_node();
      const Int n = R->size();
      resize_to(n+1);
      return n;
   }

   void delete_node(Int n)
   {
      entry& e = (*R)[n];
      e.out().clear();
      if (is_directed) e.in().clear();
      e.in().line_index = free_node_id;
      free_node_id = ~n;
      for (auto& map : node_maps) map.delete_entry(n);
      --n_nodes;
   }

protected:
   template <typename List>
   void init_delete_nodes(const List& l)
   {
      for (auto it = entire(l); !it.at_end(); ++it) {
         const Int n = *it;
         entry& e = (*R)[n];
         e.in().line_index = free_node_id;
         free_node_id = ~n;
         --n_nodes;
      }
   }

   template <typename Tree>
   void renumber_nodes_in_edges(Tree& t, Int /*nnew*/, Int diff, Directed)
   {
      for (auto e = entire(t); !e.at_end(); ++e)
         e->key -= diff;
   }
   void renumber_nodes_in_edges(in_tree_type& t, Int nnew, Int diff, Undirected)
   {
      const Int diag = 2 * t.line_index;
      for (auto e = entire(t); !e.at_end(); ) {
         Cell& c = *e; ++e;
         c.key -= diff << (c.key==diag);
      }
      t.line_index=nnew;
   }

   template <bool delete_isolated>
   struct squeeze_node_chooser {
      int operator() (const entry& t) const
      {
         if (t.get_line_index() < 0) return -1;
         return delete_isolated && t.degree() == 0;
      }
   };

   struct resize_node_chooser {
      Int nnew;

      int operator() (entry& t) const
      {
         Int n = t.get_line_index();
         if (n < 0) return -1;
         if (n >= nnew) {
            t.in().clear();
            if (is_directed) t.out().clear();
            return 1;
         }
         return 0;
      }

      resize_node_chooser(Int n_arg) : nnew(n_arg) {}
   };

   template <typename NumberConsumer, typename NodeChooser>
   void squeeze_nodes(const NumberConsumer& nc, NodeChooser to_delete)
   {
      Int n = 0, nnew = 0;
      for (auto t = R->begin(), end = R->end(); t != end; ++t, ++n) {
         using entry_t = pure_type_t<decltype(*t)>;
         const int what = to_delete(*t);
         if (what == 0) {
            if (Int diff = n-nnew) {
               if (is_directed) t->in().line_index = nnew;
               renumber_nodes_in_edges(t->out(), nnew, diff, dir());
               if (is_directed) renumber_nodes_in_edges(t->in(), nnew, diff, dir());
               new(&t[-diff]) entry_t(std::move(*t));
               for (auto& map : node_maps) map.move_entry(n, nnew);
            }
            nc(n, nnew);  ++nnew;
         } else {
            if (what > 0) {
               for (auto& map : node_maps) map.delete_entry(n);
               --n_nodes;
            }
            destroy_at(t.operator->());
         }
      }
      if (nnew < n) {
         R=ruler::resize(R, nnew, false);
         for (auto it = entire(node_maps); !it.at_end(); ++it) it->shrink(R->max_size(), nnew);
      }
      free_node_id = std::numeric_limits<Int>::min();
   }

public:
   template <typename NumberConsumer>
   void squeeze_nodes(const NumberConsumer& nc)
   {
      squeeze_nodes(nc, squeeze_node_chooser<false>());
   }

   template <typename NumberConsumer>
   void squeeze_edges(const NumberConsumer& nc)
   {
      for (auto& map : edge_maps) {
         if (!map.is_detachable())
            throw std::runtime_error("can't renumber edge IDs - non-trivial data attached");
      }
      R->prefix().renumber(nc);
      detach_edge_maps();
   }

   void resize(Int n)
   {
      if (n > n_nodes) {
         while (free_node_id != std::numeric_limits<Int>::min()) {
            revive_node();
            if (n == n_nodes) return;
         }
         resize_to(n);
      } else if (n < n_nodes) {
         if (free_node_id != std::numeric_limits<Int>::min())
            squeeze_nodes(operations::binary_noop(), resize_node_chooser(n));
         else
            resize_to(n);
      }
   }

protected:
   struct undir_perm_traits {
      typedef typename Table::ruler ruler;
      typedef out_tree_type tree_t;
      typedef typename Table::entry entry_t;
      static tree_t& tree(entry_t& e) { return e.out(); }
      static const tree_t& tree(const entry_t& e) { return e.out(); }

      static bool is_alive(const entry_t& e) { return e.get_line_index() >= 0; }

      void handle_dead_entry(entry_t& e, Int n)
      {
         static_cast<undir_permute_entries<undir_perm_traits>&>(*this).deleted_node(e, n);
      }
      void finalize_dead_entries()
      {
         static_cast<undir_permute_entries<undir_perm_traits>&>(*this).finalize_deleted_nodes();
      }
   };

   dir_permute_entries<Table> permute_entries(Directed)
   {
      return dir_permute_entries<Table>(free_node_id);
   }
   undir_permute_entries<undir_perm_traits> permute_entries(Undirected)
   {
      return undir_permute_entries<undir_perm_traits>(free_node_id);
   }

public:
   template <typename TPerm, typename _inverse>
   void permute_nodes(const TPerm& perm, _inverse)
   {
      auto permuter=permute_entries(dir());
      R=ruler::permute(R, perm, permuter, _inverse());
      for (auto& map : node_maps) map.permute_entries(permuter.inv_perm_store);
   }

   template <typename TPerm, typename TInvPerm>
   void copy_permuted(const Table& src, const TPerm& perm, const TInvPerm& inv_perm)
   {
      permute_entries(dir()).copy(src.R, R, perm, inv_perm);
      n_nodes=src.n_nodes;
      R->prefix().n_edges=src.edges();
   }

#if POLYMAKE_DEBUG
public:
   void check(const char* prefix) const
   {
      for (const entry *r=R->begin(), *end=R->end(); r!=end; ++r) {
         check(r->out(), prefix, "(out)");
         if (is_directed) check(r->in(), prefix, "(in)");
      }
   }
protected:
   template <typename Tree>
   void check(const Tree& t, const char* prefix, const char* direction) const
   {
      std::ostringstream label;
      label << prefix << "node " << t.get_line_index() << direction << ": ";
      t.check(label.str().c_str());
   }
#endif // POLYMAKE_DEBUG
public:
   void attach(NodeMapBase& m) const
   {
      Table* me=const_cast<Table*>(this);
      m.table_ = me;
      me->node_maps.push_back(m);
   }

   void detach(NodeMapBase& m)
   {
      node_maps.remove(m);
   }

   void attach(EdgeMapBase& m) const
   {
      Table* me=const_cast<Table*>(this);
      m.table_ = me;
      me->edge_maps.push_back(m);
   }

   void detach(EdgeMapBase& m)
   {
      edge_maps.remove(m);
      if (edge_maps.empty()) {
         R->prefix().reset();
         free_edge_ids.clear();
      }
   }

   ruler& get_ruler() { return *R; }
   const ruler& get_ruler() const { return *R; }

   template <bool for_copy>
   const edge_agent<dir>& get_edge_agent(bool_constant<for_copy> C) const
   {
      edge_agent<dir>& h=R->prefix();
      if (!h.table) h.init(const_cast<Table*>(this), C);
      return h;
   }
};

struct edge_accessor
   : public sparse2d::cell_accessor< sparse2d::cell<Int> > {

   template <typename Iterator>
   class mix_in : public Iterator {
   public:
      mix_in() {}

      template <typename SourceIterator, typename suitable=typename suitable_arg_for_iterator<SourceIterator, Iterator>::type>
      mix_in(const SourceIterator& cur_arg)
         : Iterator(prepare_iterator_arg<Iterator>(cur_arg)) {}

      Int from_node() const
      {
         return (Iterator::symmetric || Iterator::row_oriented)
                ? this->get_line_index()
                : sparse2d::cell_index_accessor<const Iterator&>()(*this);
      }
      Int to_node() const
      {
         return (Iterator::symmetric || Iterator::row_oriented)
                ? sparse2d::cell_index_accessor<const Iterator&>()(*this)
                : this->get_line_index();
      }

   protected:
      Int& edge_id() const { return (**this).data; }

      template <typename> friend struct edge_agent;
   };
};

class truncate_after_index
{
public:
   typedef void argument_type;
   typedef bool result_type;

   truncate_after_index(Int v = 0) : val(v) {}

   template <typename Iterator>
   bool operator() (const Iterator& it) const { return it.index() <= val; }

private:
   Int val;
};

template <typename Tree>
class incident_edge_list
   : public modified_tree< incident_edge_list<Tree>,
                           mlist< OperationTag< pair< edge_accessor, BuildUnaryIt<sparse2d::cell_index_accessor> > >,
                                  HiddenTag< Tree > > > {
   typedef modified_tree<incident_edge_list> base_t;
   template <typename> friend class Graph;
protected:
   ~incident_edge_list() = delete;

   template <typename Iterator>
   void copy(Iterator src)
   {
      auto dst = this->begin();
      for (; !src.at_end(); ++src) {
         Int idiff = 1;
         while (!dst.at_end()) {
            idiff = dst.index() - src.index();
            if (idiff < 0)
               this->erase(dst++);
            else
               break;
            idiff = 1;
         }
         if (idiff > 0)
            this->insert(dst, src.index());
         else
            ++dst;
      }
      while (!dst.at_end()) this->erase(dst++);
   }

   // merge not needed
   template <typename Iterator>
   bool init_from_set(Iterator src, std::false_type)
   {
      auto dst = this->begin();
      const Int diag = Tree::symmetric ? this->hidden().get_line_index() : 0;
      assert(dst == this->end() || Tree::symmetric && dst.index() > diag);
      for (; !src.at_end(); ++src) {
         const Int i = *src;
         if (Tree::symmetric && i > diag) return true;
         this->insert(dst, i);
      }
      return false;
   }

   // merge needed
   template <typename Iterator>
   void init_from_set(Iterator src, std::true_type)
   {
      auto dst = this->begin();
      for (; !src.at_end(); ++src) {
         const Int i = *src;
         Int idiff = 1;
         while (!dst.at_end()) {
            idiff = dst.index() - i;
            if (idiff <= 0) ++dst;
            if (idiff >= 0) break;
            idiff = 1;
         }
         if (idiff > 0) this->insert(dst, i);
      }
   }

   template <typename Iterator, typename need_merge>
   void init_from_edge_list(Iterator src, need_merge, std::false_type)
   {
      init_from_set(make_unary_transform_iterator(src, BuildUnaryIt<operations::index2element>()), need_merge());
   }

   template <typename Iterator, typename need_merge>
   void init_from_edge_list(Iterator src, need_merge, std::true_type)
   {
      init_from_set(make_equal_range_contractor(make_unary_transform_iterator(src, BuildUnaryIt<operations::index2element>())), need_merge());
   }

   template <typename Input>
   void init_multi_from_sparse(Input& src)
   {
      const Int d = dim();
      if (!src.get_option(TrustedValue<std::true_type>()) &&
          src.get_dim(false) != d)
         throw std::runtime_error("multigraph input - dimension mismatch");

      auto dst = this->end();
      const Int diag = Tree::symmetric ? this->hidden().get_line_index() : 0;

      while (!src.at_end()) {
         const Int index = src.index(d);
         if (Tree::symmetric && index > diag) {
            src.skip_item();
            src.skip_rest();
            break;
         }
         Int count;
         for (src >> count; count; --count)
            this->insert(dst, index);
      }
   }

   template <typename Input>
   void init_multi_from_dense(Input& src)
   {
      if (!src.get_option(TrustedValue<std::true_type>()) &&
          src.size() != dim())
         throw std::runtime_error("multigraph input - dimension mismatch");

      auto dst = this->end();
      const Int diag = Tree::symmetric ? this->hidden().get_line_index() : 0;

      for (Int i = 0; !src.at_end(); ++i) {
         if (Tree::symmetric && i > diag) {
            src.skip_rest();
            break;
         }
         Int count;
         for (src >> count; count; --count)
            this->insert(dst, i);
      }
   }

public:
   static const bool multigraph = Tree::allow_multiple;

   template <typename Input>
   std::enable_if_t<!multigraph, typename mproject2nd<Input, void>::type>
   read(Input& in)
   {
      auto src = in.begin_list((std::list<Int>*)nullptr);
      if (init_from_set(list_reader<Int, decltype(src)&>(src), std::false_type())) src.skip_rest();
      src.finish();
   }

   template <typename Input>
   std::enable_if_t<multigraph, typename mproject2nd<Input, void>::type>
   read(Input& in)
   {
      auto src = in.begin_list((SparseVector<Int>*)nullptr);
      if (src.sparse_representation())
         init_multi_from_sparse(src.set_option(SparseRepresentation<std::true_type>()));
      else
         init_multi_from_dense(src.set_option(SparseRepresentation<std::false_type>()));
      src.finish();
   }

   Int dim() const { return this->max_size(); }

   incident_edge_list& operator= (const incident_edge_list& l)
   {
      copy(entire(l));
      return *this;
   }

   template <typename Input> friend
   Input& operator>> (GenericInput<Input>& in, incident_edge_list& me)
   {
      me.read(in.top());
      return in.top();
   }

   using parallel_edge_iterator = std::conditional_t<multigraph,
                                     input_truncator<typename base_t::iterator, truncate_after_index>,
                                     single_position_iterator<typename base_t::iterator> >;

   using parallel_edge_const_iterator = std::conditional_t<multigraph,
                                     input_truncator<typename base_t::const_iterator, truncate_after_index>,
                                     single_position_iterator<typename base_t::const_iterator> >;

private:
   parallel_edge_const_iterator all_edges_to(Int n2, std::false_type) const
   {
      return this->find(n2);
   }

   parallel_edge_iterator all_edges_to(Int n2, std::false_type)
   {
      return this->find(n2);
   }

   parallel_edge_const_iterator all_edges_to(Int n2, std::true_type) const
   {
      return parallel_edge_const_iterator(this->find_nearest(n2, first_of_equal()), truncate_after_index(n2));
   }

   parallel_edge_iterator all_edges_to(Int n2, std::true_type)
   {
      return parallel_edge_iterator(this->find_nearest(n2, first_of_equal()), truncate_after_index(n2));
   }

   void delete_all_edges_to(Int n2, std::false_type)
   {
      this->erase(n2);
   }

   void delete_all_edges_to(Int n2, std::true_type)
   {
      for (parallel_edge_iterator e=all_edges_to(n2, std::true_type()); !e.at_end(); )
         this->erase(e++);
   }
public:
   parallel_edge_const_iterator all_edges_to(Int n2) const
   {
      return all_edges_to(n2, bool_constant<multigraph>());
   }

   parallel_edge_iterator all_edges_to(Int n2)
   {
      return all_edges_to(n2, bool_constant<multigraph>());
   }

   void delete_all_edges_to(Int n2)
   {
      delete_all_edges_to(n2, bool_constant<multigraph>());
   }
};

template <typename Tree>
class lower_incident_edge_list
   : public modified_container_impl< lower_incident_edge_list<Tree>,
                                     mlist< HiddenTag< incident_edge_list<Tree> >,
                                            IteratorConstructorTag< input_truncator_constructor >,
                                            OperationTag< BuildUnaryIt<uniq_edge_predicate> > > > {
public:
   Int dim() const { return this->hidden().dim(); }
};


template <typename Tree>
class multi_adjacency_line
   : public modified_container_impl< multi_adjacency_line<Tree>,
                                     mlist< HiddenTag< incident_edge_list<Tree> >,
                                            IteratorConstructorTag< range_folder_constructor >,
                                            OperationTag< equal_index_folder > > >,
   public GenericVector<multi_adjacency_line<Tree>, Int> {
protected:
   ~multi_adjacency_line() = delete;

public:
   Int dim() const { return this->hidden().dim(); }
};


template <typename EntryRef>
struct valid_node_selector {
   typedef EntryRef argument_type;
   typedef typename deref<EntryRef>::type entry_type;
   typedef bool result_type;

   bool operator() (argument_type t) const
   {
      return t.get_line_index()>=0;
   }

   using out_tree_type = typename entry_type::out_tree_type;
   using in_tree_type = typename entry_type::in_tree_type;
   using out_edge_list = incident_edge_list<out_tree_type>;
   using in_edge_list = incident_edge_list<in_tree_type>;
   using out_adjacent_node_list = std::conditional_t<out_edge_list::multigraph, multi_adjacency_line<out_tree_type>, incidence_line<out_tree_type>>;
   using in_adjacent_node_list = std::conditional_t<out_edge_list::multigraph, multi_adjacency_line<in_tree_type>, incidence_line<in_tree_type>>;
   using adjacent_node_list = out_adjacent_node_list;
   using out_edge_list_ref = typename inherit_ref<out_edge_list, EntryRef>::type;
   using in_edge_list_ref = typename inherit_ref<in_edge_list, EntryRef>::type;
   using out_adjacent_node_list_ref = typename inherit_ref<out_adjacent_node_list, EntryRef>::type;
   using in_adjacent_node_list_ref = typename inherit_ref<in_adjacent_node_list, EntryRef>::type;
   using adjacent_node_list_ref = out_adjacent_node_list_ref;

   out_edge_list_ref out_edges(EntryRef t) const
   {
      return reinterpret_cast<out_edge_list_ref>(t.out());
   }
   in_edge_list_ref in_edges(EntryRef t) const
   {
      return reinterpret_cast<in_edge_list_ref>(t.in());
   }

   typename out_tree_type::const_iterator out_edge_impl(EntryRef t, Int n2, std::true_type) const
   {
      typename out_tree_type::const_iterator e=t.out().find(n2);
      if (e.at_end()) throw no_match("non-existing edge");
      return e;
   }
   typename in_tree_type::const_iterator in_edge_impl(EntryRef t, Int n2, std::true_type) const
   {
      typename in_tree_type::const_iterator e=t.in().find(n2);
      if (e.at_end()) throw no_match("non-existing edge");
      return e;
   }

   typename out_tree_type::iterator out_edge_impl(EntryRef t, Int n2, std::false_type) const
   {
      return t.out().insert(n2);
   }
   typename in_tree_type::iterator in_edge_impl(EntryRef t, Int n2, std::false_type) const
   {
      return t.in().insert(n2);
   }
   Int out_edge(EntryRef t, Int n2) const
   {
      return out_edge_impl(t, n2, bool_constant<attrib<EntryRef>::is_const>())->data;
   }
   Int in_edge(EntryRef t, Int n2) const
   {
      return in_edge_impl(t, n2, bool_constant<attrib<EntryRef>::is_const>())->data;
   }

   Int out_degree(EntryRef t) const
   {
      return t.out().size();
   }
   Int in_degree(EntryRef t) const
   {
      return t.in().size();
   }
   Int degree(EntryRef t) const
   {
      return t.degree();
   }

   out_adjacent_node_list_ref out_adjacent_nodes(EntryRef t) const
   {
      return reinterpret_cast<out_adjacent_node_list_ref>(t.out());
   }
   in_adjacent_node_list_ref in_adjacent_nodes(EntryRef t) const
   {
      return reinterpret_cast<in_adjacent_node_list_ref>(t.in());
   }
   adjacent_node_list_ref adjacent_nodes(EntryRef t) const
   {
      return reinterpret_cast<adjacent_node_list_ref>(t.out());
   }
};

template <typename TOut_edges, template <typename> class MasqueradeLine, typename NodeIterator=void>
class line_factory;

template <typename Iterator, typename Accessor>
struct valid_node_iterator : public unary_predicate_selector<Iterator, Accessor> {
   typedef unary_predicate_selector<Iterator, Accessor> base_t;
   template <typename, template <typename> class, typename> friend class line_factory;
public:
   typedef valid_node_iterator<typename iterator_traits<Iterator>::iterator, Accessor> iterator;
   typedef valid_node_iterator<typename iterator_traits<Iterator>::const_iterator, Accessor> const_iterator;
   typedef random_access_iterator_tag iterator_category;

   valid_node_iterator() {}

   template <typename Accessor2>
   valid_node_iterator(const valid_node_iterator<typename iterator_traits<Iterator>::iterator, Accessor2>& it)
      : base_t(it) {}

   valid_node_iterator(const Iterator& cur_arg, const Accessor& acc_arg=Accessor())
      : base_t(cur_arg,acc_arg) {}

   valid_node_iterator& operator++ () { base_t::operator++(); return *this; }
   const valid_node_iterator operator++ (int) { valid_node_iterator copy(*this); base_t::operator++(); return copy; }

   valid_node_iterator& operator-- () { base_t::operator--(); return *this; }
   const valid_node_iterator operator-- (int) { valid_node_iterator copy(*this); base_t::operator--(); return copy; }

   // random access is based on the absolute node index, not on the number of valid nodes in between!
   valid_node_iterator& operator+= (Int i)
   {
      static_cast<Iterator&>(*this) += i;
      return *this;
   }
   valid_node_iterator operator+ (Int i) const { valid_node_iterator copy(*this); return copy+=i; }
   friend
   valid_node_iterator operator+ (Int i, const valid_node_iterator& me) { return me+i; }

   valid_node_iterator& operator-= (Int i)
   {
      static_cast<Iterator&>(*this) -= i;
      return *this;
   }
   valid_node_iterator operator- (Int i) const { valid_node_iterator copy(*this); return copy-=i; }
   ptrdiff_t operator- (const valid_node_iterator& it) const { return static_cast<const Iterator&>(*this)-it; }

   Int index() const { return (**this).get_line_index(); }

   typedef typename base_t::helper::operation::out_edge_list_ref out_edge_list_ref;
   typedef typename base_t::helper::operation::in_edge_list_ref in_edge_list_ref;
   typedef typename base_t::helper::operation::out_adjacent_node_list_ref out_adjacent_node_list_ref;
   typedef typename base_t::helper::operation::in_adjacent_node_list_ref in_adjacent_node_list_ref;
   typedef typename base_t::helper::operation::adjacent_node_list_ref adjacent_node_list_ref;

   out_edge_list_ref out_edges() const
   {
      return this->pred.out_edges(**this);
   }
   in_edge_list_ref in_edges() const
   {
      return this->pred.in_edges(**this);
   }

   Int out_edge(Int n2) const
   {
      return this->pred.out_edge(**this, n2);
   }
   Int in_edge(Int n2) const
   {
      return this->pred.in_edge(**this, n2);
   }
   Int edge(Int n2) const
   {
      return this->pred.out_edge(**this, n2);
   }

   Int out_degree() const
   {
      return this->pred.out_degree(**this);
   }
   Int in_degree() const
   {
      return this->pred.in_degree(**this);
   }
   Int degree() const
   {
      return this->pred.degree(**this);
   }

   out_adjacent_node_list_ref out_adjacent_nodes() const
   {
      return this->pred.out_adjacent_nodes(**this);
   }
   in_adjacent_node_list_ref in_adjacent_nodes() const
   {
      return this->pred.in_adjacent_nodes(**this);
   }
   adjacent_node_list_ref adjacent_nodes() const
   {
      return this->pred.adjacent_nodes(**this);
   }
};

struct valid_node_access_constructor : unary_predicate_selector_constructor {
   template <typename Iterator, typename Accessor, typename ExpectedFeatures>
   struct defs : unary_predicate_selector_constructor::defs<Iterator,Accessor,ExpectedFeatures> {
      typedef valid_node_iterator<Iterator,Accessor> iterator;
   };
};

template <typename TDir>
class valid_node_container
   : public modified_container_impl< valid_node_container<TDir>,
                                     mlist< ContainerTag< typename Table<TDir>::ruler >,
                                            OperationTag< BuildUnary<valid_node_selector> >,
                                            IteratorConstructorTag< valid_node_access_constructor >,
                                            HiddenTag< Table<TDir> > > > {
   typedef modified_container_impl<valid_node_container> base_t;
protected:
   ~valid_node_container();
public:
   typedef random_access_iterator_tag container_category;

   typename base_t::container& get_container() { return this->hidden().get_ruler(); }
   const typename base_t::container& get_container() const { return this->hidden().get_ruler(); }

   typename base_t::reference operator[] (Int n) { return get_container()[n]; }
   typename base_t::const_reference operator[] (Int n) const { return get_container()[n]; }

   Int dim() const { return get_container().size(); }
};

template <typename TDir>
class node_container
   : public modified_container_impl< node_container<TDir>,
                                     mlist< HiddenTag< valid_node_container<TDir> >,
                                            OperationTag< BuildUnaryIt<operations::index2element> > > >,
     public GenericSet<node_container<TDir>, Int, operations::cmp> {
protected:
   ~node_container();
public:
   Int dim() const { return this->get_container().dim(); }
};

} // end namespace graph

template <typename Iterator, typename Accessor, typename Feature>
struct check_iterator_feature<graph::valid_node_iterator<Iterator, Accessor>, Feature>
   : check_iterator_feature<unary_predicate_selector<Iterator, Accessor>, Feature> {};

template <typename Iterator, typename Accessor>
struct check_iterator_feature<graph::valid_node_iterator<Iterator, Accessor>, indexed>
   : std::true_type {};

template <typename TDir>
struct check_container_feature<graph::valid_node_container<TDir>, sparse_compatible>
   : std::true_type {};

template <typename TDir>
struct check_container_feature<graph::node_container<TDir>, sparse_compatible>
   : std::true_type {};

namespace graph {

template <typename TOut_edges, template <typename> class MasqueradeLine, typename EntryRef>
class line_factory {
public:
   typedef EntryRef argument_type;
   using tree_type = std::conditional_t<TOut_edges::value, typename deref<EntryRef>::type::out_tree_type,
                                                           typename deref<EntryRef>::type::in_tree_type>;
   typedef typename inherit_ref<MasqueradeLine<tree_type>, EntryRef>::type result_type;

   result_type operator() (argument_type e) const
   {
      return impl(e, TOut_edges());
   }
private:
   result_type impl(argument_type e, std::true_type) const
   {
      return reinterpret_cast<result_type>(e.out());
   }
   result_type impl(argument_type e, std::false_type) const
   {
      return reinterpret_cast<result_type>(e.in());
   }
};

template <typename TOut_edges, template <typename> class MasqueradeLine>
class line_factory<TOut_edges, MasqueradeLine, void> : operations::incomplete {};

} // end namespace graph

template <typename TOut_edges, template <typename> class MasqueradeLine, typename Iterator, typename EntryRef>
struct unary_op_builder<graph::line_factory<TOut_edges, MasqueradeLine, void>, Iterator, EntryRef>
   : empty_op_builder< graph::line_factory<TOut_edges, MasqueradeLine, EntryRef> > {};

namespace graph {

template <typename TDir, typename TOut_edges, template <typename> class MasqueradeLine>
class line_container
   : public modified_container_impl< line_container<TDir, TOut_edges, MasqueradeLine>,
                                     mlist< HiddenTag< valid_node_container<TDir> >,
                                            OperationTag< line_factory<TOut_edges, MasqueradeLine> > > > {
protected:
   ~line_container();
public:
   Table<TDir>&       get_table()       { return this->hidden().hidden(); }
   const Table<TDir>& get_table() const { return this->hidden().hidden(); }
   void resize(Int n) { get_table().clear(n); }
};

template <typename TDir, bool undirected=TDir::value>
struct edge_container_helper {
   typedef line_container<TDir, std::true_type, incident_edge_list> type;
};
template <typename TDir>
struct edge_container_helper<TDir, true> {
   typedef line_container<TDir, std::true_type, lower_incident_edge_list> type;
};

template <typename TDir>
class edge_container
   : public cascade_impl< edge_container<TDir>,
                          mlist< HiddenTag< typename edge_container_helper<TDir>::type >,
                                 CascadeDepth< int_constant<2> > > > {
protected:
   ~edge_container();
public:
   Int size() const { return this->hidden().get_table().edges(); }
   Int max_size() const { return size(); }
};

template <typename TDir>
template <bool for_copy>
void edge_agent<TDir>::init(Table<TDir>* t, bool_constant<for_copy>)
{
   table=t;
   n_alloc=min_buckets(n_edges+bucket_mask>>bucket_shift);
   if (!for_copy) {
      // if the table was cloned, edge ids were copied too
      Int id = 0;
      for (auto e = reinterpret_cast<edge_container<TDir>*>(t)->begin(); !e.at_end(); ++e, ++id)
         e.edge_id() = id;
   }
}

template <typename TDir>
template <typename NumberConsumer>
void edge_agent<TDir>::renumber(const NumberConsumer& nc)
{
   Int id = 0;
   for (auto e = reinterpret_cast<edge_container<TDir>*>(table)->begin(); !e.at_end(); ++e, ++id) {
      nc(e.edge_id(), id);
      e.edge_id() = id;
   }
   assert(id == n_edges);
}

} // end namespace graph

template <typename TDir, typename TOut_edges, template <typename> class MasqueradeLine>
struct check_container_feature<graph::line_container<TDir, TOut_edges, MasqueradeLine>, sparse_compatible> : std::true_type {};

template <typename Tree>
struct check_container_feature<graph::incident_edge_list<Tree>, sparse_compatible> : std::true_type {};

template <typename Tree>
struct check_container_feature<graph::lower_incident_edge_list<Tree>, sparse_compatible> : std::true_type {};

template <typename Tree>
struct check_container_feature<graph::multi_adjacency_line<Tree>, pure_sparse> : std::true_type {};

template <typename Tree>
struct spec_object_traits< graph::multi_adjacency_line<Tree> >
   : spec_object_traits<is_container> {
   typedef Tree masquerade_for;
   static constexpr int is_resizeable = 0;
   static constexpr bool is_always_const = true;
};

namespace graph {

/** @class Graph
    @brief Directed or undirected finite graphs.

    @a NodeAttr and @a EdgeAttr specify the type of additional data associated
    with nodes and edges (sometimes also called node and edge attributes.) The
    default setting @a nothing denotes the absence of any attributes, it
    doesn't waste extra memory.

    The nodes of the graph are referred to via integer indices, starting with
    0; they are stored in a contiguous array.  This allows constant-time
    random node access, while inserting or deleting of nodes incurs storage
    reallocation.  However, due to some kind of forecasting strategy of memory
    allocation (similar to that deployed in std::vector), the amortized
    cost of node insertion is proportional to <i>#nodes log(#nodes)</i>.

    The edges are organized in incidence lists, which are implemented as a 2-d
    mesh of AVL trees.  Hence, a random access to an edge (with given source
    and target nodes) takes a logarithmical time of the source node degree.
    Multiple edges (i.e., with the same source and target nodes) are not
    allowed; they could be modeled, however, by choosing some container class
    as the edge attribute.

    The kind of the graph decides about how the incidence edge lists are
    organized.  In the @em directed case each edge naturally appears in the
    outgoing list of its source node and in the ingoing list of its target
    node.  In the @em undirected case the notions of outgoing and ingoing
    edges are the same; each edge manages to appear in the outgoing lists of
    both adjacent nodes, although it is stored only once.  The @i skew case is
    a special variant of the indirect case, intended for numerical edge
    attributes only. Depending on the reading direction, the edge attribute
    changes its sign: @c{ edge(n1,n2) == -edge(n2,n1) }.

    The whole data structure is attached to the Graph object via a smart
    pointer with @ref refcounting "reference counting".

*/
template <typename TDir>
class Graph
   : public GenericGraph<Graph<TDir>, TDir> {
protected:
   typedef Table<TDir> table_type;
public:
   /// Create an empty Graph with 0 nodes.
   Graph() {}

   /// Create a Graph with @a n isolated nodes (without edges).
   explicit Graph(Int n)
      : data(n) {}

   Graph(const GenericGraph<Graph>& G2)
      : data(G2.top().data) {}

   template <typename Graph2>
   Graph(const GenericGraph<Graph2, TDir>& G2)
      : data(G2.top().dim())
   {
      copy_impl(pm::nodes(G2).begin(), std::false_type(), std::false_type(), G2.top().has_gaps());
   }

   template <typename Graph2, typename TDir2>
   explicit Graph(const GenericGraph<Graph2, TDir2>& G2)
      : data(G2.top().dim())
   {
      constexpr bool need_merge = Graph2::is_directed && !Graph::is_directed;
      constexpr bool need_contraction = Graph2::is_multigraph && !Graph::is_multigraph;
      copy_impl(pm::nodes(G2).begin(), bool_constant<need_merge>(), bool_constant<need_contraction>(), G2.top().has_gaps());
   }

   template <typename TMatrix>
   explicit Graph(const GenericIncidenceMatrix<TMatrix>& m,
                  std::enable_if_t<!TDir::multigraph, mlist<TMatrix>**> = nullptr)
      : data(m.rows())
   {
      if (POLYMAKE_DEBUG || is_wary<TMatrix>()) {
         if (!TMatrix::is_symmetric && m.rows() != m.cols())
            throw std::runtime_error("Graph - non-quadratic source adjacency matrix");
      }
      constexpr bool need_merge = !TMatrix::is_symmetric && !Graph::is_directed;
      copy_impl(rows(m).begin(), bool_constant<need_merge>());
   }

   // construct graph with gaps
   template <typename TSet>
   explicit Graph(const GenericSet<TSet, Int>& s)
      : data(s.top()) {}

   template <typename TSet>
   Graph(const GenericSet<TSet, Int>& s, Int dim)
      : data(s.top(), dim) {}

   /// assignment from Graph of the same type
   Graph& operator= (const Graph& G2)
   {
      data=G2.data;
      return *this;
   }

   /// assignment from GenericGraph
   Graph& operator= (const GenericGraph<Graph>& G2)
   {
      *this=G2.top();
      return *this;
   }

   /// assignment from GenericGraph with other flavor of directedness
   template <typename Graph2, typename TDir2>
   Graph& operator= (const GenericGraph<Graph2, TDir2>& G2)
   {
      clear(G2.top().dim());
      const bool need_merge= Graph2::is_directed && !Graph::is_directed,
           need_contraction= Graph2::is_multigraph && !Graph::is_multigraph;
      copy_impl(pm::nodes(G2).begin(), bool_constant<need_merge>(), bool_constant<need_contraction>(), G2.top().has_gaps());
      return *this;
   }

   /// number of nodes
   Int nodes() const { return data->nodes(); }

   /// resize the Graph to given number of nodes
   void resize(Int n) { data->resize(n); }

   /// clear all edges and resize (to zero nodes by default)
   void clear(Int n = 0) { data.apply(typename table_type::shared_clear(n)); }

   /// true of nodes are not (known to be) consecutively ordered
   bool has_gaps() const { return data->free_node_id != std::numeric_limits<Int>::min(); }

   /// renumber the nodes
   friend Graph renumber_nodes(const Graph& me)
   {
      if (!me.has_gaps()) return me;
      Graph G(me.nodes());
      std::vector<Int> renumber(me.dim());
      Int i = 0;
      for (auto n = entire(pm::nodes(me)); !n.at_end(); ++n, ++i)
         renumber[n.index()] = i;
      for (auto e = entire(pm::edges(me)); !e.at_end(); ++e)
         G.edge(renumber[e.from_node()], renumber[e.to_node()]);
      return G;
   }

   /// "output dimension"; relevant for proper output in the polymake shell
   Int dim() const { return data->dim(); }

   template <typename Input> friend
   Input& operator>> (GenericInput<Input>& in, Graph& me)
   {
      me.read(in.top().begin_list(&rows(pm::adjacency_matrix(me))));
      return in.top();
   }

   /// swap function
   void swap(Graph& G) { data.swap(G.data); }

   /// relocate the data
   friend void relocate(Graph* from, Graph* to)
   {
      relocate(&from->data, &to->data);
   }

   template <typename NumberConsumer>
   void squeeze(const NumberConsumer& nc)
   {
      data->squeeze_nodes(nc);
   }
      
   /// force renumbering of the nodes in consecutive order
   void squeeze()
   {
      data->squeeze_nodes(operations::binary_noop());
   }

   template <typename NumberConsumer>
   void squeeze_isolated(const NumberConsumer& nc)
   {
      data->squeeze_nodes(nc, typename table_type::template squeeze_node_chooser<true>());
   }

   void squeeze_isolated()
   {
      data->squeeze_nodes(operations::binary_noop(), typename table_type::template squeeze_node_chooser<true>());
   }

   template <typename NumberConsumer>
   void squeeze_edges(const NumberConsumer& nc)
   {
      data->squeeze_edges(nc);
   }

   void squeeze_edges()
   {
      data->squeeze_edges(operations::binary_noop());
   }

   /// delete a node
   void delete_node(Int n)
   {
      data->delete_node(n);
   }

   /// permute the nodes
   template <typename TPerm>
   std::enable_if_t<isomorphic_to_container_of<TPerm, Int>::value>
   permute_nodes(const TPerm& perm)
   {
      data->permute_nodes(perm, std::false_type());
   }

   /// inverse permutation of nodes
   template <typename TInvPerm>
   std::enable_if_t<isomorphic_to_container_of<TInvPerm, Int>::value>
   permute_inv_nodes(const TInvPerm& inv_perm)
   {
      data->permute_nodes(inv_perm, std::true_type());
   }

   /// permuted copy
   template <typename TPerm, typename TInvPerm>
   std::enable_if_t<isomorphic_to_container_of<TPerm, Int>::value &&
                    isomorphic_to_container_of<TInvPerm, Int>::value,
                    Graph>
   copy_permuted(const TPerm& perm, const TInvPerm& inv_perm) const
   {
      Graph result(dim());
      result.data->copy_permuted(*data, perm, inv_perm);
      return result;
   }

   /// node type
   typedef graph::node_container<TDir> node_container;
   /// node reference type
   typedef node_container& node_container_ref;
   /// constant node reference type
   typedef const node_container& const_node_container_ref;

   template <template <typename> class MasqueradeLine>
   struct edge_access {
      typedef line_container<TDir, std::true_type, MasqueradeLine> out;
      typedef line_container<TDir, std::false_type, MasqueradeLine> in;
   };

   typedef typename edge_access<incident_edge_list>::out out_edge_list_container;
   typedef out_edge_list_container& out_edge_list_container_ref;
   typedef const out_edge_list_container& const_out_edge_list_container_ref;

   typedef typename out_edge_list_container::value_type out_edge_list;
   typedef out_edge_list& out_edge_list_ref;
   typedef const out_edge_list& const_out_edge_list_ref;

   typedef typename out_edge_list::parallel_edge_iterator       parallel_edge_iterator;
   typedef typename out_edge_list::parallel_edge_const_iterator parallel_edge_const_iterator;

   typedef typename edge_access<incident_edge_list>::in in_edge_list_container;
   typedef in_edge_list_container& in_edge_list_container_ref;
   typedef const in_edge_list_container& const_in_edge_list_container_ref;

   typedef typename in_edge_list_container::value_type in_edge_list;
   typedef in_edge_list& in_edge_list_ref;
   typedef const in_edge_list& const_in_edge_list_ref;

   using adjacency_rows_container = std::conditional_t<TDir::multigraph, typename edge_access<multi_adjacency_line>::out, typename edge_access<incidence_line>::out>;
   typedef adjacency_rows_container& adjacency_rows_container_ref;
   typedef const adjacency_rows_container& const_adjacency_rows_container_ref;

   using adjacency_cols_container = std::conditional_t<TDir::multigraph, typename edge_access<multi_adjacency_line>::in, typename edge_access<incidence_line>::in>;
   typedef adjacency_cols_container& adjacency_cols_container_ref;
   typedef const adjacency_cols_container& const_adjacency_cols_container_ref;

   typedef typename adjacency_rows_container::value_type out_adjacent_node_list;
   typedef typename adjacency_cols_container::value_type in_adjacent_node_list;
   using adjacent_node_list = std::conditional_t<Graph::is_directed, nothing, out_adjacent_node_list>;
   typedef typename assign_const<out_adjacent_node_list, TDir::multigraph>::type& out_adjacent_node_list_ref;
   typedef const out_adjacent_node_list& const_out_adjacent_node_list_ref;
   typedef typename assign_const<in_adjacent_node_list, TDir::multigraph>::type& in_adjacent_node_list_ref;
   typedef const in_adjacent_node_list& const_in_adjacent_node_list_ref;
   using adjacent_node_list_ref = std::conditional_t<Graph::is_directed, nothing, out_adjacent_node_list_ref>;
   using const_adjacent_node_list_ref = std::conditional_t<Graph::is_directed, nothing, const_out_adjacent_node_list_ref>;

   template <typename MasqueradeRef>
   MasqueradeRef pretend()
   {
      return reinterpret_cast<MasqueradeRef>(*data);
   }

   template <typename MasqueradeRef>
   MasqueradeRef pretend() const
   {
      return reinterpret_cast<MasqueradeRef>(*data);
   }

   /// number of edges
   Int edges() const { return data->edges(); }

   /// add a node; may reuse a currently unused node
   Int add_node() { return data->add_node(); }

   /// true if node is unused
   bool invalid_node(Int n) const { return data->invalid_node(n); }
   /// true if node number is higher than currently reserved maximum number of nodes
   bool node_out_of_range(Int n) const { return data->node_out_of_range(n); }

   /// out-degree of a node
   Int out_degree(Int n) const
   {
      return (*data)[n].out().size();
   }

   /// in-degree of a node
   Int in_degree(Int n) const
   {
      return (*data)[n].in().size();
   }

   /// total degree of a node
   Int degree(Int n) const
   {
      return (*data)[n].degree();
   }

   /// true if node exists
   bool node_exists(Int n) const
   {
      return data->node_exists(n);
   }
private:
   typedef typename table_type::entry node_entry_type;
   typedef valid_node_selector<node_entry_type&> node_acc;
   typedef valid_node_selector<const node_entry_type&> const_node_acc;
public:
   /// Return the number of the edge between two given nodes.
   /// The edge is created if it did not exist before.
   /// In a multigraph, one (arbitrary) edge from a parallel bundle will be returned.
   Int edge(Int n1, Int n2)
   {
      node_acc n;
      return n.out_edge((*data)[n1], n2);
   }

   /// Return the number of the edge between two given nodes.
   /// If the edge does not exist, an exception is raised.
   Int edge(Int n1, Int n2) const
   {
      const_node_acc n;
      return n.out_edge((*data)[n1], n2);
   }

private:
   Int add_edge_impl(Int n1, Int n2, std::false_type) { return edge(n1, n2); }
   Int add_edge_impl(Int n1, Int n2, std::true_type) { return (*data)[n1].out().insert_new(n2)->data; }
public:
   /// Create a new edge between two given nodes and return its number.
   /// In a multigraph, a new edge is always created; the exact position of the new edge among its parallel twins can't be predicted.
   /// In a normal graph, a new edge is only created if the nodes were not adjacent before.
   Int add_edge(Int n1, Int n2)
   {
      return add_edge_impl(n1, n2, bool_constant<Graph::is_multigraph>());
   }

   /// Check whether there is an edge between the two given nodes.
   bool edge_exists(Int n1, Int n2) const
   {
      return (*data)[n1].out().exists(n2);
   }

   /// Return the iterator over all edges connecting two given nodes.
   parallel_edge_iterator all_edges(Int n1, Int n2)
   {
      return out_edges(n1).all_edges_to(n2);
   }

   /// Return the iterator over all edges connecting two given nodes.
   parallel_edge_const_iterator all_edges(Int n1, Int n2) const
   {
      return out_edges(n1).all_edges_to(n2);
   }

   /// Delete the edge (if it exists) connecting the two given nodes.
   void delete_edge(Int n1, Int n2)
   {
      (*data)[n1].out().erase(n2);
   }

   /// Delete an edge pointed by the given iterator over a sequence of (parallel) edges.
   void delete_edge(const parallel_edge_iterator& where)
   {
      (*data)[where.get_line_index()].out().erase(where);
   }

   /// Delete all (parallel) edges connecting the two given nodes.
   void delete_all_edges(Int n1, Int n2)
   {
      out_edges(n1).delete_all_edges_to(n2);
   }

   /// Contract the edge between the two given nodes.
   /// The second node is deleted afterwards.
   /// If the specified edge belongs to one or more triangles in a multigraph, the lateral edges become parallel after contraction.
   /// In a normal graph, the lateral edges incident to n2 are deleted.
   void contract_edge(Int n1, Int n2)
   {
      relink_edges((*data)[n2].out(), (*data)[n1].out(), n2, n1);
      if (Graph::is_directed)
         relink_edges((*data)[n2].in(), (*data)[n1].in(), n2, n1);
      data->delete_node(n2);
   }

private:
   template <typename Tree>
   void relink_edges(Tree& tree_from, Tree& tree_to, Int node_from, Int node_to)
   {
      for (auto it = tree_from.begin(); !it.at_end(); ) {
         const auto c = it.operator->();  ++it;
         if (c->key == node_from + node_to) {
            // this is an edge to be contracted
            tree_from.destroy_node(c);

         } else if (c->key == node_from*2) {
            // a loop
            c->key = node_to*2;
            if (tree_to.insert_node(c)) {
               if (Graph::is_directed) {
                  (*data)[node_from].in().remove_node(c);
                  (*data)[node_to].in().insert_node(c);
               }
            } else {
               c->key = node_from*2;
               tree_from.destroy_node(c);
            }

         } else {
            tree_from.prepare_move_between_trees(c, node_from, node_to);
            if (tree_to.insert_node(c)) {
               (*data)[c->key - node_to].cross_tree(&tree_from).update_node(c);
            } else {
               tree_to.prepare_move_between_trees(c, node_to, node_from);
               tree_from.destroy_node(c);
            }
         }
      }
      // forget the nodes
      tree_from.init();
   }

public:
   template <template <typename> class MasqueradeLine>
   typename edge_access<MasqueradeLine>::out::reference
   out_edges(Int n)
   {
      return reinterpret_cast<typename edge_access<MasqueradeLine>::out::reference>((*data)[n].out());
   }
   template <template <typename> class MasqueradeLine>
   typename edge_access<MasqueradeLine>::out::const_reference
   out_edges(Int n) const
   {
      return reinterpret_cast<typename edge_access<MasqueradeLine>::out::const_reference>((*data)[n].out());
   }

   /// reference to list of outgoing edges
   out_edge_list_ref out_edges(Int n)
   {
      return this->template out_edges<incident_edge_list>(n);
   }
   /// constant reference to list of outgoing edges
   const_out_edge_list_ref out_edges(Int n) const
   {
      return this->template out_edges<incident_edge_list>(n);
   }

   template <template <typename> class MasqueradeLine>
   typename edge_access<MasqueradeLine>::in::reference
   in_edges(Int n)
   {
      return reinterpret_cast<typename edge_access<MasqueradeLine>::in::reference>((*data)[n].in());
   }
   template <template <typename> class MasqueradeLine>
   const typename edge_access<MasqueradeLine>::in::const_reference
   in_edges(Int n) const
   {
      return reinterpret_cast<typename edge_access<MasqueradeLine>::in::const_reference>((*data)[n].in());
   }

   /// reference to list of incoming edges
   in_edge_list_ref in_edges(Int n)
   {
      return this->template in_edges<incident_edge_list>(n);
   }
   /// constant reference to list of incoming edges
   const_in_edge_list_ref in_edges(Int n) const
   {
      return this->template in_edges<incident_edge_list>(n);
   }

   /// reference to list of nodes which are adjacent via out-arcs
   out_adjacent_node_list_ref out_adjacent_nodes(Int n)
   {
      return out_adjacent_nodes_impl(n, bool_constant<TDir::multigraph>());
   }
   /// constant reference to list of nodes which are adjacent via out-arcs
   const_out_adjacent_node_list_ref out_adjacent_nodes(Int n) const
   {
      return out_adjacent_nodes_impl(n, bool_constant<TDir::multigraph>());
   }
   /// reference to list of nodes which are adjacent via in-arcs
   in_adjacent_node_list_ref in_adjacent_nodes(Int n)
   {
      return in_adjacent_nodes_impl(n, bool_constant<TDir::multigraph>());
   }
   /// constant reference to list of nodes which are adjacent via in-arcs
   const_in_adjacent_node_list_ref in_adjacent_nodes(Int n) const
   {
      return in_adjacent_nodes_impl(n, bool_constant<TDir::multigraph>());
   }
   /// reference to list of all adjacent nodes
   adjacent_node_list_ref adjacent_nodes(Int n)
   {
      static_assert(!Graph::is_directed, "adjacent_nodes undefined for a directed graph");
      return out_adjacent_nodes_impl(n, bool_constant<TDir::multigraph>());
   }
   /// constant reference to list of all adjacent nodes
   const_adjacent_node_list_ref adjacent_nodes(Int n) const
   {
      static_assert(!Graph::is_directed, "adjacent_nodes undefined for a directed graph");
      return out_adjacent_nodes_impl(n, bool_constant<TDir::multigraph>());
   }

private:
   out_adjacent_node_list_ref out_adjacent_nodes_impl(Int n, std::false_type)
   {
      return this->template out_edges<incidence_line>(n);
   }
   const_out_adjacent_node_list_ref out_adjacent_nodes_impl(Int n, std::false_type) const
   {
      return this->template out_edges<incidence_line>(n);
   }
   in_adjacent_node_list_ref in_adjacent_nodes_impl(Int n, std::false_type)
   {
      return this->template in_edges<incidence_line>(n);
   }
   const_in_adjacent_node_list_ref in_adjacent_nodes_impl(Int n, std::false_type) const
   {
      return this->template in_edges<incidence_line>(n);
   }

   const_out_adjacent_node_list_ref out_adjacent_nodes_impl(Int n, std::true_type) const
   {
      return this->template out_edges<multi_adjacency_line>(n);
   }
   const_in_adjacent_node_list_ref in_adjacent_nodes_impl(Int n, std::true_type) const
   {
      return this->template in_edges<multi_adjacency_line>(n);
   }

public:
   template <typename E, typename... TParams>
   struct NodeMapData : public NodeMapBase {
      typedef typename mlist_wrap<TParams...>::type params;
      typedef typename mtagged_list_extract<params, DefaultValueTag, operations::clear<E>>::type default_value_supplier;

      E* data;
      size_t n_alloc;
      default_value_supplier dflt;

      table_type& table() { return *reinterpret_cast<table_type*>(table_); }
      const table_type& ctable() const { return *reinterpret_cast<const table_type*>(table_); }

      static E* alloc(size_t n)
      {
         return reinterpret_cast<E*>(::operator new(n * sizeof(E)));
      }
      static void dealloc(E* p, size_t)
      {
         ::operator delete(p);
      }

      void first_alloc(size_t n)
      {
         n_alloc = n;
         data = alloc(n);
      }
      void dealloc()
      {
         dealloc(data, n_alloc);
      }

      void init()
      {
         for (auto it = entire(get_index_container()); !it.at_end(); ++it)
            construct_at(data + *it, dflt());
      }

      template <typename Init>
      void init(const Init& val,
                std::enable_if_t<can_initialize<Init, E>::value, std::nullptr_t> = nullptr)
      {
         for (auto it = entire(get_index_container()); !it.at_end(); ++it)
            construct_at(data + *it, val);
      }

      template <typename Iterator>
      void init(Iterator&& src_it,
                std::enable_if_t<assess_iterator_value<Iterator, can_initialize, E>::value, std::nullptr_t> = nullptr)
      {
         decltype(auto) src = ensure_private_mutable(std::forward<Iterator>(src_it));
         for (auto it = entire(get_index_container()); !it.at_end(); ++it, ++src)
            construct_at(data + *it, *src);
      }

      void copy(const NodeMapData& m)
      {
         dflt = m.dflt;
         auto src = m.get_index_container().begin();
         for (auto it = entire(get_index_container()); !it.at_end(); ++it, ++src)
            construct_at(data + *it, m.data[*src]);
      }

      void reset(Int n = 0)
      {
         if (!std::is_trivially_destructible<E>::value)
            for (auto it = entire(get_index_container()); !it.at_end(); ++it)
               destroy_at(data + *it);
         if (n) {
            if (size_t(n) != n_alloc) {
               dealloc();
               first_alloc(n);
            }
         } else {
            dealloc();
            data = nullptr;
            n_alloc = 0;
         }
      }

      void clear(Int n = 0)
      {
         for (auto it = entire(get_index_container()); !it.at_end(); ++it)
            dflt.assign(data[*it]);
      }

      void resize(size_t new_n_alloc, Int n, Int nnew)
      {
         if (n_alloc < new_n_alloc) {
            E *new_data = alloc(new_n_alloc), *src = data, *dst = new_data;
            for (E *end = new_data+std::min(n, nnew); dst < end; ++src, ++dst)
               relocate(src, dst);
            if (nnew > n) {
               for (E *end = new_data + nnew; dst < end; ++dst)
                  construct_at(dst, dflt());
            } else {
               for (E *end = data + n; src < end; ++src)
                  destroy_at(src);
            }
            if (data) dealloc();
            data = new_data;
            n_alloc = new_n_alloc;

         } else if (nnew > n) {
            for (E *d = data + n, *end = data + nnew; d < end; ++d)
               construct_at(d, dflt());
         } else {
            for (E *d = data + nnew, *end = data + n; d < end; ++d)
               destroy_at(d);
         }
      }

      void shrink(size_t new_n_alloc, Int n)
      {
         if (n_alloc != new_n_alloc) {
            E* new_data = alloc(new_n_alloc);
            for (E *src = data, *dst = new_data, *end = new_data + n; dst < end; ++src, ++dst)
               relocate(src, dst);
            dealloc();
            data = new_data;
            n_alloc = new_n_alloc;
         }
      }

      void move_entry(Int n_from, Int n_to) { relocate(data+n_from, data+n_to); }
      void revive_entry(Int n) { construct_at(data+n, dflt()); }
      void delete_entry(Int n) { if (!std::is_trivially_destructible<E>::value) destroy_at(data + n); }

      void permute_entries(const std::vector<Int>& inv_perm)
      {
         E* new_data = alloc(n_alloc);
         Int n_from = 0;
         for (const Int n_to : inv_perm) {
            if (n_to >= 0)
               relocate(data+n_from, new_data+n_to);
            ++n_from;
         }
         dealloc();
         data = new_data;
      }

      typedef E value_type;

      NodeMapData() {}

      explicit NodeMapData(const default_value_supplier& dflt_arg)
         : data(nullptr)
         , n_alloc(0)
         , dflt(dflt_arg) {}

      ~NodeMapData() {if (table_) { reset(); table().detach(*this); } }

      typedef const_node_container_ref index_container_ref;
      index_container_ref get_index_container() const { return reinterpret_cast<index_container_ref>(ctable()); }
   };

   template <typename E, typename... TParams>
   struct EdgeMapData
      : public EdgeMapDenseBase {
      typedef typename mlist_wrap<TParams...>::type params;
      typedef typename mtagged_list_extract<params, DefaultValueTag, operations::clear<E>>::type default_value_supplier;

      default_value_supplier dflt;

      table_type& table() { return *reinterpret_cast<table_type*>(table_); }
      const table_type& ctable() const { return *reinterpret_cast<const table_type*>(table_); }

      E* index2addr(Int i) const
      {
         return EdgeMapDataAccess<E>::index2addr(buckets, i);
      }

      void* alloc_bucket()
      {
         return ::operator new(edge_agent_base::bucket_size * sizeof(E));
      }
      void dealloc_bucket(void* b)
      {
         ::operator delete(b);
      }

      void first_alloc(const edge_agent_base& h)
      {
         EdgeMapDenseBase::first_alloc(h.n_alloc);
         void** b = buckets;
         for (Int n = h.n_edges; n > 0; n -= h.bucket_size, ++b)
            *b = alloc_bucket();
      }

      void init()
      {
         for (auto it = entire(get_index_container()); !it.at_end(); ++it)
            construct_at(index2addr(*it), dflt());
      }

      template <typename Init>
      void init(const Init& val,
                std::enable_if_t<can_initialize<Init, E>::value, std::nullptr_t> = nullptr)
      {
         for (auto it = entire(get_index_container()); !it.at_end(); ++it)
            construct_at(index2addr(*it), val);
      }

      template <typename Iterator>
      void init(Iterator&& src_it,
                std::enable_if_t<assess_iterator_value<Iterator, can_initialize, E>::value, std::nullptr_t> = nullptr)
      {
         decltype(auto) src = ensure_private_mutable(std::forward<Iterator>(src_it));
         for (auto it = entire(get_index_container()); !it.at_end(); ++it, ++src)
            construct_at(index2addr(*it), *src);
      }

      void copy(const EdgeMapData& m)
      {
         dflt = m.dflt;
         auto src = m.get_index_container().begin();
         for (auto it = entire(get_index_container()); !it.at_end(); ++it, ++src)
            construct_at(index2addr(*it), *m.index2addr(*src));
      }

      void reset()
      {
         if (!std::is_trivially_destructible<E>::value)
            for (auto it = entire(get_index_container()); !it.at_end(); ++it)
               destroy_at(index2addr(*it));
         for (void **b = buckets, **b_end = b+n_alloc; b < b_end; ++b)
            if (*b) dealloc_bucket(*b);
         EdgeMapDenseBase::destroy();
      }

      bool is_detachable() const
      {
         return std::is_trivially_destructible<E>::value;
      }

      void clear()
      {
         if (!(std::is_standard_layout<E>::value && std::is_trivial<E>::value)) {
            operations::clear<E> clr;
            for (auto it = entire(get_index_container()); !it.at_end(); ++it)
               clr(*index2addr(*it));
         }
      }

      void revive_entry(Int e) { construct_at(index2addr(e), dflt()); }
      void delete_entry(Int e) { if (!std::is_trivially_destructible<E>::value) destroy_at(index2addr(e)); }

      void add_bucket(Int n)
      {
         E* b = (E*)alloc_bucket();
         construct_at(b, dflt());
         buckets[n] = b;
      }

      typedef E value_type;

      EdgeMapData() {}
      explicit EdgeMapData(const default_value_supplier& dflt_arg) : dflt(dflt_arg) {}
      ~EdgeMapData() { if (table_) { reset(); table().detach(*this); } }

      typedef const edge_container<TDir>& index_container_ref;
      index_container_ref get_index_container() const { return reinterpret_cast<index_container_ref>(ctable()); }
   };

   template <typename E, typename... TParams>
   struct NodeHashMapData : public NodeMapBase {
      typedef typename mlist_wrap<TParams...>::type params;
      typedef typename mtagged_list_extract<params, DefaultValueTag, operations::clear<E>>::type default_value_supplier;

      typedef hash_map<Int, E, TParams...> hash_map_t;
      hash_map_t data;

      void init() {}
      void reset(Int = 0) { data.clear(); }
      void clear() { data.clear(); }
      void shrink(size_t, Int) {}
      void revive_entry(Int) {}

      void resize(size_t, Int n, Int nnew)
      {
         while (n > nnew) data.erase(--n);
      }
      void move_entry(Int n_from, Int n_to)
      {
         auto it=data.find(n_from);
         if (it != data.end()) {
            data.insert(n_to, std::move(it->second));
            data.erase(it);
         }
      }
      void delete_entry(Int n) { data.erase(n); }

      void permute_entries(const std::vector<Int>& inv_perm)
      {
         hash_map_t new_data;
         Int n_from = 0;
         for (const Int n_to : inv_perm) {
            if (n_to >= 0) {
               auto it = data.find(n_from);
               if (it != data.end())
                  new_data.insert(n_to, std::move(it->second));
            }
         }
         data.swap(new_data);
      }

      void copy(const NodeHashMapData& m) { data=m.data; }

      table_type& table() { return *reinterpret_cast<table_type*>(table_); }
      const table_type& ctable() const { return *reinterpret_cast<const table_type*>(table_); }

      NodeHashMapData() {}
      NodeHashMapData(const default_value_supplier& dflt_arg) : data(dflt_arg) {}
      ~NodeHashMapData() { if (table_) table().detach(*this); }
   };

   template <typename E, typename... TParams>
   struct EdgeHashMapData : public EdgeMapBase {
      typedef typename mlist_wrap<TParams...>::type params;
      typedef typename mtagged_list_extract<params, DefaultValueTag, operations::clear<E>>::type default_value_supplier;

      typedef hash_map<Int, E, TParams...> hash_map_t;
      hash_map_t data;

      void reset() { data.clear(); }
      bool is_detachable() const { return true; }
      void clear() { data.clear(); }
      void revive_entry(Int) {}
      void realloc(size_t) {}
      void add_bucket(Int) {}
      void delete_entry(Int e) { data.erase(e); }

      void copy(const EdgeHashMapData& m) { data=m.data; }

      table_type& table() { return *reinterpret_cast<table_type*>(table_); }
      const table_type& ctable() const { return *reinterpret_cast<const table_type*>(table_); }

      EdgeHashMapData() {}
      explicit EdgeHashMapData(const default_value_supplier& dflt_arg) : data(dflt_arg) {}
      ~EdgeHashMapData() { if (table_) table().detach(*this); }
   };

// Due to a bug in clang >=3.8 (https://llvm.org/bugs/show_bug.cgi?id=26938), the SharedMap
// class template cant be resolved in the definition of NodeMap if this forward declaration
// and the friend declaration in map2graph_connector exist at the same time.
// The friend statement suffices as forward declaration.
// TODO: An upper limit on the version will be set depending on the bug resolution.
#if !(defined(__clang__) && ((!defined(__APPLE__) && __clang_major__ == 3 && __clang_minor__ >= 8) || ( defined(__APPLE__) && ( __clang_major__ == 7 && __clang_minor__ >= 3 || __clang_major__ >= 8 ) ) ) )
   template <typename BaseMap> class SharedMap;
#endif

protected:
   template <typename E, typename... TParams, bool for_copy> static
   void prepare_attach(const table_type& t, NodeMapData<E, TParams...>& m, bool_constant<for_copy>)
   {
      m.first_alloc(t.get_ruler().max_size());
      t.attach(m);
   }

   template <typename E, typename... TParams, bool for_copy> static
   void prepare_attach(const table_type& t, EdgeMapData<E, TParams...>& m, bool_constant<for_copy> C)
   {
      m.first_alloc(t.get_edge_agent(C));
      t.attach(m);
   }

   template <typename E, typename... TParams, bool for_copy> static
   void prepare_attach(const table_type& t, NodeHashMapData<E, TParams...>& m, bool_constant<for_copy>)
   {
      t.attach(m);
   }

   template <typename E, typename... TParams, bool for_copy> static
   void prepare_attach(const table_type& t, EdgeHashMapData<E, TParams...>& m, bool_constant<for_copy> C)
   {
      (void)t.get_edge_agent(C);
      t.attach(m);
   }

   class divorce_maps;

   class map2graph_connector : public shared_alias_handler {
   protected:
      virtual void divorce(const table_type& t)=0;
      virtual ~map2graph_connector() {}
      friend class divorce_maps;
      friend class Graph<TDir>;
   };

   class divorce_maps : public shared_alias_handler {
   public:
      template <typename Rep>
      Rep* operator() (Rep *body, std::true_type) const
      {
         if (al_set.n_aliases)
            for (auto alias_ptr : al_set)
               static_cast<map2graph_connector*>(alias_ptr->to_handler())->divorce(body->obj);
         return body;
      }

      template <typename Rep>
      Rep* operator() (Rep *body, std::false_type)
      {
         if (al_set.n_aliases) al_set.forget();
         return body;
      }

      friend class Graph<TDir>;
      template <typename> friend class SharedMap;
   };
public:
   template <typename BaseMap>
   class SharedMap : protected map2graph_connector {
   public:
      typedef typename BaseMap::default_value_supplier default_value_supplier;
      typedef BaseMap map_type;
   protected:
      map_type *map;
      default_value_supplier dflt;

      map_type* copy(const table_type& t)
      {
         map_type* cp=new map_type;
         prepare_attach(t, *cp, std::true_type());
         cp->copy(*map);
         return cp;
      }

      void divorce();
      void divorce(const table_type& t);
      void leave()
      {
         if (--map->refc == 0) delete map;
      }
      map_type* mutable_access()
      {
         if (__builtin_expect(map->refc>1, 0)) divorce();
         return map;
      }

      template <bool may_need_detach>
      void attach_to(const Graph& G, bool_constant<may_need_detach>)
      {
         if (may_need_detach && map) {
            if (this->al_set.owner) {
               assert(this->al_set.owner != &G.data.get_divorce_handler().al_set);
               this->al_set.owner->remove(&this->al_set);
            }
            if (&map->table() == G.data.get()) {
               // attached via perl magic object or another Graph 
               this->al_set.enter(G.data.get_divorce_handler().al_set);
               return;
            }
            leave();
         }
         map=new map_type(dflt);
         prepare_attach(*G.data,*map, std::false_type());
         this->al_set.enter(G.data.get_divorce_handler().al_set);
      }

      SharedMap() : map(nullptr) {}

      explicit SharedMap(const default_value_supplier& dflt_arg) : map(nullptr), dflt(dflt_arg) {}

      explicit SharedMap(const Graph& G) { attach_to(G, std::false_type()); }

      SharedMap(const Graph& G, const default_value_supplier& dflt_arg) : dflt(dflt_arg) { attach_to(G, std::false_type()); }

      SharedMap(const SharedMap& m) : map(m.map), dflt(m.dflt) { map->refc++; }

      ~SharedMap() { if (map) leave(); }

      SharedMap& operator= (const SharedMap& m)
      {
         if (m.map) m.map->refc++;
         if (map) leave();
         map=m.map;
         dflt=m.dflt;
         return *this;
      }
   public:
      void clear();

      friend class Graph<TDir>;

      friend void relocate(SharedMap* from, SharedMap* to)
      {
         relocate(static_cast<shared_alias_handler*>(from), static_cast<shared_alias_handler*>(to));
         to->dflt=from->dflt;
         to->map=from->map;
      }

      bool invalid_node(Int n) const { return map->ctable().invalid_node(n); }
   };
public:
   template <typename Map>
   void attach(SharedMap<Map>& m) const
   {
      m.attach_to(*this, std::true_type());
      m.map->init();
   }

   template <typename Map, typename Init>
   void attach(SharedMap<Map>& m, Init&& init,
               std::enable_if_t<can_initialize<Init, typename Map::value_type>::value ||
                                assess_iterator_value<Init, can_initialize, typename Map::value_type>::value, void**> =nullptr) const
   {
      m.attach_to(*this, std::true_type());
      m.map->init(std::forward<Init>(init));
   }

protected:
   template <typename TContainer>
   static void prepare_attach_static(TContainer& c, Int, io_test::as_set)
   {
      unwary(c).clear();
   }
   template <typename TContainer, bool TAllowSparse>
   static void prepare_attach_static(TContainer& c, Int n, io_test::as_array<1, TAllowSparse>)
   {
      unwary(c).resize(n);
   }
   template <typename TContainer, bool TAllowSparse>
   static void prepare_attach_static(TContainer& c, Int n, io_test::as_array<0, TAllowSparse>)
   {
      if (POLYMAKE_DEBUG || is_wary<TContainer>()) {
         if (get_dim(unwary(c)) != n)
            throw std::runtime_error("Graph::init_map - dimension mismatch");
      }
   }
public:
   template <typename TContainer>
   void init_node_map(TContainer& c) const
   {
      prepare_attach_static(c, this->nodes(), typename io_test::input_mode<unwary_t<TContainer>>::type());
   }

   template <typename TContainer>
   void init_edge_map(TContainer& c) const
   {
      prepare_attach_static(c, data->get_edge_agent(std::false_type()).n_edges, typename io_test::input_mode<unwary_t<TContainer>>::type());
   }

   /// Provide each edge with a unique integer id.
   /// The ids are assigned in the order of visiting them by Edges<Graph>::iterator,
   /// but you shouldn't rely on any special order later, after having added or deleted
   /// some edges, because the enumeration is effectively performed only once in the life
   /// of a Graph object.  Later calls to this function are no-ops.
   /// Moreover, the edges are also enumerated when an edge attribute map is attached
   /// to the Graph object for the first time.
   void enumerate_edges() const
   {
      data->get_edge_agent(std::false_type());
   }

   friend
   AdjacencyMatrix<Graph, TDir::multigraph>& serialize(Graph& me) { return adjacency_matrix(me); }

   friend
   const AdjacencyMatrix<Graph, TDir::multigraph>& serialize(const Graph& me) { return adjacency_matrix(me); }

protected:
   typedef shared_object<table_type, AliasHandlerTag<shared_alias_handler>, DivorceHandlerTag<divorce_maps>> shared_type;
   shared_type data;

   friend Graph& make_mutable_alias(Graph& alias, Graph& owner)
   {
      alias.data.make_mutable_alias(owner.data);
      return alias;
   }

   template <typename Input>
   void read_with_gaps(Input& in)
   {
      const Int d = in.get_dim(false);
      clear(d);
      table_type& table = *data;

      if (in.is_ordered()) {
         Int n = 0;
         for (auto l = entire(out_edge_lists(*this));  !in.at_end();  ++l, ++n) {
            const Int i = in.index(d);
            while (n < i) {
               ++l;
               table.delete_node(n++);
            }
            in >> *l;
         }
         while (n < d)
            table.delete_node(n++);
      } else {
         Bitset deleted_nodes{sequence(0, d)};
         while (!in.at_end()) {
            const Int n = in.index(d);
            in >> out_edges(n);
            deleted_nodes -= n;
         }
         for (const Int n : deleted_nodes)
            table.delete_node(n);
      }
   }

   template <typename Input>
   void read(Input&& in)
   {
      if (in.sparse_representation()) {
         read_with_gaps(in.set_option(SparseRepresentation<std::true_type>()));
      } else {
         clear(in.size());
         for (auto l = entire(out_edge_lists(*this));  !in.at_end();  ++l)
            in >> *l;
      }
   }

   template <typename NodeIterator, typename need_merge, typename need_contraction>
   void copy_impl(NodeIterator src, need_merge, need_contraction, bool has_gaps)
   {
      if (has_gaps) {
         Int n = 0, end = dim();
         for (auto l = entire(out_edge_lists(*this));  !src.at_end();  ++l, ++src, ++n) {
            const Int i = src.index();
            while (n < i) {
               ++l;
               data.get()->delete_node(n++);
            }
            l->init_from_edge_list(src.out_edges().begin(), need_merge(), need_contraction());
         }
         while (n<end) data.get()->delete_node(n++);
      } else {
         for (auto l = entire(out_edge_lists(*this));  !l.at_end();  ++l, ++src)
            l->init_from_edge_list(src.out_edges().begin(), need_merge(), need_contraction());
      }
   }

   template <typename RowIterator, typename need_merge>
   void copy_impl(RowIterator src, need_merge)
   {
      for (auto l = entire(out_edge_lists(*this));  !l.at_end();  ++l, ++src)
         l->init_from_set(src->begin(), need_merge());
   }

   template <typename, typename, typename...> friend class NodeMap;
   template <typename, typename, typename...> friend class EdgeMap;
   template <typename, typename, typename...> friend class NodeHashMap;
   template <typename, typename, typename...> friend class EdgeHashMap;

   const Graph& get_graph() const { return *this; }     // for HashMaps wanting to attach

#if POLYMAKE_DEBUG
public:
   void check(const char *prefix="") const { data->check(prefix); }
   void dump() const __attribute__((used)) { cerr << adjacency_matrix(*this) << std::flush; }
   void dump_edges() const;
   void dumps() const __attribute__((used)) { dump(); dump_edges(); }
#endif
};

#if POLYMAKE_DEBUG
template <typename TDir>
void Graph<TDir>::dump_edges() const
{
   for (auto e=entire(pretend<const edge_container<TDir>&>()); !e.at_end(); ++e)
      cerr << *e << ':' << e.from_node() << '-' << e.to_node() << '\n';
   cerr << std::flush;
}
#endif


/// data structure to store data at the nodes of a Graph
template <typename TDir, typename E, typename... TParams>
class NodeMap
   : public Graph<TDir>::template SharedMap<typename Graph<TDir>::template NodeMapData<E, TParams...>>
   , public modified_container_impl< NodeMap<TDir, E, TParams...>,
                                     mlist< ContainerRefTag< typename Graph<TDir>::const_node_container_ref >,
                                            OperationTag< operations::random_access<ptr_wrapper<E, false>> > > > {
   typedef modified_container_impl<NodeMap> base_t;
   typedef typename Graph<TDir>::template SharedMap<typename Graph<TDir>::template NodeMapData<E, TParams...>> shared_base;
public:
   typedef typename shared_base::default_value_supplier default_value_supplier;
   typedef Graph<TDir> graph_type;
   typedef random_access_iterator_tag container_category;

   NodeMap() {}

   explicit NodeMap(const default_value_supplier& dflt_arg)
      : shared_base(dflt_arg) {}

   explicit NodeMap(const graph_type& G)
      : shared_base(G)
   {
      this->map->init();
   }

   NodeMap(const graph_type& G, const default_value_supplier& dflt_arg)
      : shared_base(G, dflt_arg)
   {
      this->map->init();
   }

   template <typename Init>
   NodeMap(const graph_type& G, Init&& init,
           std::enable_if_t<can_initialize<Init, E>::value ||
                            assess_iterator_value<Init, can_initialize, E>::value, void**> =nullptr)
      : shared_base(G)
   {
      this->map->init(std::forward<Init>(init));
   }

   template <typename Init>
   NodeMap(const graph_type& G, Init&& init,
           const default_value_supplier& dflt_arg,
           std::enable_if_t<can_initialize<Init, E>::value ||
                            assess_iterator_value<Init, can_initialize, E>::value, void**> =nullptr)
      : shared_base(G, dflt_arg)
   {
      this->map->init(std::forward<Init>(init));
   }

   decltype(auto) get_container()
   {
      return this->mutable_access()->get_index_container();
   }
   decltype(auto) get_container() const
   {
      return this->map->get_index_container();
   }

   auto get_operation()
   {
      return pointer2iterator(this->mutable_access()->data);
   }
   auto get_operation() const
   {
      return pointer2iterator(const_cast<const E*>(this->map->data));
   }

   friend Int index_within_range(const NodeMap& me, Int n)
   {
      if (n < 0) n += me.map->ctable().dim();
      if (me.invalid_node(n))
         throw std::runtime_error("NodeMap::operator[] - node id out of range or deleted");
      return n;
   }

   E& operator[] (Int n)
   {
      return this->mutable_access()->data[n];
   }

   const E& operator[] (Int n) const
   {
      return this->map->data[n];
   }

   friend class Graph<TDir>;

   friend void relocate(NodeMap* from, NodeMap* to)
   {
      relocate(static_cast<shared_base*>(from), static_cast<shared_base*>(to));
   }

#if POLYMAKE_DEBUG
private:
   void dump(std::false_type) const { cerr << "elements are not printable" << std::flush; }
   void dump(std::true_type) const { cerr << *this << std::flush; }
public:
   void dump() const __attribute__((used)) { dump(bool_constant<is_printable<E>::value>()); }
#endif
};

/// data structure to store data at the edges of a Graph
template <typename TDir, typename E, typename... TParams>
class EdgeMap
   : public Graph<TDir>::template SharedMap<typename Graph<TDir>::template EdgeMapData<E, TParams...> >
   , public modified_container_impl< EdgeMap<TDir, E, TParams...>,
                                     mlist< ContainerTag< const edge_container<TDir>& >,
                                            OperationTag< EdgeMapDataAccess<E> > > > {
   typedef typename Graph<TDir>::template SharedMap<typename Graph<TDir>::template EdgeMapData<E, TParams...>> shared_base;
public:
   typedef typename shared_base::default_value_supplier default_value_supplier;
   typedef Graph<TDir> graph_type;
   typedef random_access_iterator_tag container_category;

   EdgeMap() {}

   explicit EdgeMap(const default_value_supplier& dflt_arg)
      : shared_base(dflt_arg) {}

   explicit EdgeMap(const graph_type& G)
      : shared_base(G)
   {
      this->map->init();
   }

   EdgeMap(const graph_type& G, const default_value_supplier& dflt_arg)
      : shared_base(G, dflt_arg)
   {
      this->map->init();
   }

   template <typename Init>
   EdgeMap(const graph_type& G, Init&& init,
           std::enable_if_t<can_initialize<Init, E>::value ||
                            assess_iterator_value<Init, can_initialize, E>::value, void**> =nullptr)
      : shared_base(G)
   {
      this->map->init(std::forward<Init>(init));
   }

   template <typename Init>
   EdgeMap(const graph_type& G, Init&& init,
           const default_value_supplier& dflt_arg,
           std::enable_if_t<can_initialize<Init, E>::value ||
                            assess_iterator_value<Init, can_initialize, E>::value, void**> =nullptr)
      : shared_base(G, dflt_arg)
   {
      this->map->init(std::forward<Init>(init));
   }

   decltype(auto) get_container()
   {
      return this->mutable_access()->get_index_container();
   }
   decltype(auto) get_container() const
   {
      return this->map->get_index_container();
   }

   EdgeMapDataAccess<E> get_operation()
   {
      return this->mutable_access()->buckets;
   }
   EdgeMapDataAccess<const E> get_operation() const
   {
      return this->map->buckets;
   }

   E& operator[] (Int e)
   {
      return *this->mutable_access()->index2addr(e);
   }
   const E& operator[] (Int e) const
   {
      return *this->map->index2addr(e);
   }

   E& operator() (Int n1, Int n2)
   {
      typename graph_type::node_acc n;
      auto m = this->mutable_access();
      return *m->index2addr(n.out_edge(m->table()[n1], n2));
   }

   const E& operator() (Int n1, Int n2) const
   {
      typename graph_type::const_node_acc n;
      return *this->map->index2addr(n.out_edge(this->map->table()[n1], n2));
   }

   friend class Graph<TDir>;

   friend void relocate(EdgeMap* from, EdgeMap* to)
   {
      relocate(static_cast<shared_base*>(from), static_cast<shared_base*>(to));
   }

#if POLYMAKE_DEBUG
private:
   void dump(std::false_type) const { cerr << "elements are not printable" << std::flush; }
   void dump(std::true_type) const { cerr << *this << std::flush; }
public:
   void dump() const __attribute__((used)) { dump(bool_constant<is_printable<E>::value>()); }
#endif
};

template <typename TDir, typename E, typename... TParams>
class NodeHashMap
   : public Graph<TDir>::template SharedMap<typename Graph<TDir>::template NodeHashMapData<E, TParams...> >
   , public redirected_container< NodeHashMap<TDir, E, TParams...>,
                                  mlist< ContainerTag< hash_map<Int, E, TParams...> > > > {
   typedef redirected_container<NodeHashMap> base_t;
   typedef typename Graph<TDir>::template SharedMap<typename Graph<TDir>::template NodeHashMapData<E, TParams...> > shared_base;
public:
   typedef typename shared_base::default_value_supplier default_value_supplier;
   typedef Int key_type;
   typedef E mapped_type;
   typedef hash_map<Int, E, TParams...> hash_map_t;

   NodeHashMap() {}

   explicit NodeHashMap(const default_value_supplier& dflt_arg) : shared_base(dflt_arg) {}

   template <typename Graph2>
   explicit NodeHashMap(const GenericGraph<Graph2, TDir>& G) : shared_base(G.top().get_graph()) {}

   template <typename Graph2>
   NodeHashMap(const GenericGraph<Graph2, TDir>& G, const default_value_supplier& dflt_arg) : shared_base(G.top().get_graph(), dflt_arg) {}

   hash_map_t& get_container()
   {
      return this->mutable_access()->data;
   }
   const hash_map_t& get_container() const
   {
      return this->map->data;
   }

   E& operator[] (Int n)
   {
      if (this->invalid_node(n))
         throw std::runtime_error("NodeHashMap::operator[] - node id out of range or deleted");
      return get_container()[n];
   }

   const E& operator[] (Int n) const
   {
      if (this->invalid_node(n))
         throw std::runtime_error("NodeHashMap::operator[] - node id out of range or deleted");
      typename base_t::const_iterator it=find(n);
      if (it==get_container().end()) throw no_match();
      return it->second;
   }

   typename base_t::iterator insert(Int n, const E& v)
   {
      if (POLYMAKE_DEBUG) {
         if (this->invalid_node(n))
            throw std::runtime_error("NodeHashMap::insert - node index out of range or deleted");
      }
      return get_container().insert(n,v);
   }

   pair<typename base_t::iterator, bool> insert(const typename base_t::value_type& v)
   {
      if (POLYMAKE_DEBUG) {
         if (this->invalid_node(v.first))
            throw std::runtime_error("NodeHashMap::insert - node index out of range or deleted");
      }
      return get_container().insert(v);
   }

   typename base_t::const_iterator find(Int n) const { return get_container().find(n); }
   void erase(Int n) { return get_container().erase(n); }
   typename base_t::iterator erase(typename base_t::iterator where) { return get_container().erase(where); }

   friend class Graph<TDir>;

   friend void relocate(NodeHashMap* from, NodeHashMap* to)
   {
      relocate(static_cast<shared_base*>(from), static_cast<shared_base*>(to));
   }

#if POLYMAKE_DEBUG
private:
   void dump(std::false_type) const { cerr << "elements are not printable" << std::flush; }
   void dump(std::true_type) const { cerr << *this << std::flush; }
public:
   void dump() const __attribute__((used)) { dump(bool_constant<is_printable<E>::value>()); }
#endif
};

template <typename TDir, typename E, typename... TParams>
class EdgeHashMap
   : public Graph<TDir>::template SharedMap<typename Graph<TDir>::template EdgeHashMapData<E, TParams...>>
   , public redirected_container< EdgeHashMap<TDir, E, TParams...>,
                                  mlist< ContainerTag< hash_map<Int, E, TParams...> > > > {
   typedef redirected_container<EdgeHashMap> base_t;
   typedef typename Graph<TDir>::template SharedMap<typename Graph<TDir>::template EdgeHashMapData<E, TParams...>> shared_base;
public:
   typedef typename shared_base::default_value_supplier default_value_supplier;
   typedef Int key_type;
   typedef E mapped_type;
   typedef hash_map<Int, E, TParams...> hash_map_t;

   EdgeHashMap() {}

   explicit EdgeHashMap(const default_value_supplier& dflt_arg) : shared_base(dflt_arg) {}

   template <typename Graph2>
   explicit EdgeHashMap(const GenericGraph<Graph2, TDir>& G) : shared_base(G.top().get_graph()) {}

   template <typename Graph2>
   EdgeHashMap(const GenericGraph<Graph2, TDir>& G, const default_value_supplier& dflt_arg) : shared_base(G.top().get_graph(), dflt_arg) {}

   hash_map_t& get_container()
   {
      return this->mutable_access()->data;
   }
   const hash_map_t& get_container() const
   {
      return this->map->data;
   }

   E& operator[] (Int e) { return get_container()[e]; }

   const E& operator[] (Int e) const
   {
      auto it = find(e);
      if (it==get_container().end()) throw no_match();
      return it->second;
   }

   E& operator() (Int n1, Int n2)
   {
      typename Graph<TDir>::node_acc n;
      return get_container()[n.out_edge(this->map->table()[n1], n2)];
   }

   typename base_t::iterator insert(Int e, const E& v)
   {
      return get_container().insert(e,v);
   }

   pair<typename base_t::iterator, bool> insert(const typename base_t::value_type& v)
   {
      return get_container().insert(v);
   }

   typename base_t::const_iterator find(Int e) const
   {
      return get_container().find(e);
   }

   typename base_t::const_iterator find(Int n1, Int n2) const
   {
      auto e = this->map->table()[n1].out().find(n2);
      return e.at_end() ? get_container().end() : find(*e);
   }

   void erase(Int e)
   {
      return get_container().erase(e);
   }

   typename base_t::iterator erase(typename base_t::iterator where) { return get_container().erase(where); }

   void erase(Int n1, Int n2)
   {
      auto m = this->mutable_access();
      typename Graph<TDir>::node_acc n;
      auto e=n.out_edges(m->table()[n1]).find(n2);
      if (!e.at_end()) m->data.erase(*e);
   }

   friend class Graph<TDir>;

   friend void relocate(EdgeHashMap* from, EdgeHashMap* to)
   {
      relocate(static_cast<shared_base*>(from), static_cast<shared_base*>(to));
   }

#if POLYMAKE_DEBUG
private:
   void dump(std::false_type) const { cerr << "elements are not printable" << std::flush; }
   void dump(std::true_type) const { cerr << *this << std::flush; }
public:
   void dump() const __attribute__((used)) { dump(bool_constant<is_printable<E>::value>()); }
#endif
};

template <typename TDir>
template <typename TMap>
void Graph<TDir>::SharedMap<TMap>::divorce()
{
   map->refc--;
   map=copy(map->ctable());
}

template <typename TDir>
template <typename TMap>
void Graph<TDir>::SharedMap<TMap>::clear()
{
   if (__builtin_expect(map->refc>1,0)) {
      map->refc--;
      const table_type& t=map->ctable();
      map=new map_type(dflt);
      prepare_attach(t, *map, std::false_type());
   } else {
      map->clear();
   }
}

template <typename TDir>
template <typename TMap>
void Graph<TDir>::SharedMap<TMap>::divorce(const typename Graph<TDir>::table_type& t)
{
   if (map->refc>1) {
      map->refc--;
      map=copy(t);
   } else {
      map->table().detach(*map);
      t.attach(*map);
   }
}

} // end namespace graph

template <typename TDir, typename E, typename... TParams>
struct spec_object_traits< graph::NodeMap<TDir, E, TParams...> > : spec_object_traits<is_container> {
   static constexpr int is_resizeable = 0;
};

template <typename TDir, typename E, typename... TParams>
struct check_container_feature< graph::NodeMap<TDir, E, TParams...>, sparse_compatible>
   : std::true_type {};

template <typename TDir, typename E, typename... TParams>
struct spec_object_traits< graph::EdgeMap<TDir, E, TParams...> > : spec_object_traits<is_container> {
   static constexpr int is_resizeable = 0;
};

template <typename TDir>
struct spec_object_traits< graph::Graph<TDir> > : spec_object_traits<is_opaque> {
   static constexpr int is_resizeable = 1;
};

template <typename TDir>
struct spec_object_traits< Serialized<graph::Graph<TDir>> >
   : spec_object_traits< AdjacencyMatrix<graph::Graph<TDir>> > { };

template <typename TGraph, typename TPerm>
typename TGraph::persistent_type
permuted_nodes(const GenericGraph<TGraph>& g, const TPerm& perm)
{
   if (POLYMAKE_DEBUG || is_wary<TGraph>()) {
      if (g.top().dim() != perm.size())
         throw std::runtime_error("permuted_nodes - dimension mismatch");
   }
   std::vector<Int> inv_perm(g.nodes());
   inverse_permutation(perm, inv_perm);
   return g.top().copy_permuted(perm, inv_perm);
}

template <typename TGraph, typename TPerm>
std::enable_if_t<container_traits<TPerm>::is_random, typename TGraph::persistent_type>
permuted_inv_nodes(const GenericGraph<TGraph>& g, const TPerm& inv_perm)
{
   if (POLYMAKE_DEBUG || is_wary<TGraph>()) {
      if (g.top().dim() != inv_perm.size())
         throw std::runtime_error("permuted_inv_nodes - dimension mismatch");
   }
   std::vector<Int> perm(g.nodes());
   inverse_permutation(inv_perm, perm);
   return g.top().copy_permuted(perm, inv_perm);
}

template <typename TGraph, typename TPerm>
std::enable_if_t<!container_traits<TPerm>::is_random, typename TGraph::persistent_type>
permuted_inv_nodes(const GenericGraph<TGraph>& g, const TPerm& inv_perm)
{
   if (POLYMAKE_DEBUG || is_wary<TGraph>()) {
      if (g.top().dim() != inv_perm.size())
         throw std::runtime_error("permuted_inv_nodes - dimension mismatch");
   }
   std::vector<Int> inv_perm_copy(inv_perm.size());
   copy_range(entire(inv_perm), inv_perm_copy.begin());
   return permuted_inv_rows(g,inv_perm_copy);
}

template <typename TDir>
class Wary< graph::Graph<TDir> >
   : public WaryGraph< graph::Graph<TDir> > {
protected:
   Wary();
   ~Wary();
};

template <typename TDir, typename E, typename... TParams>
class Wary< graph::EdgeMap<TDir, E, TParams...> >
   : public Generic< Wary< graph::EdgeMap<TDir, E, TParams...> > > {
protected:
   Wary();
   ~Wary();
public:
   E& operator() (Int n1, Int n2)
   {
      if (this->top().invalid_node(n1) || this->top().invalid_node(n2))
         throw std::runtime_error("EdgeMap::operator() - node id out of range or deleted");
      return this->top()(n1,n2);
   }
   const E& operator() (Int n1, Int n2) const
   {
      if (this->top().invalid_node(n1) || this->top().invalid_node(n2))
         throw std::runtime_error("EdgeMap::operator() - node id out of range or deleted");
      return this->top()(n1,n2);
   }
};

template <typename TDir, typename E, typename... TParams>
class Wary< graph::EdgeHashMap<TDir, E, TParams...> >
   : public Generic< Wary< graph::EdgeHashMap<TDir, E, TParams...> > > {
protected:
   Wary();
   ~Wary();
public:
   E& operator() (Int n1, Int n2)
   {
      if (this->top().invalid_node(n1) || this->top().invalid_node(n2))
         throw std::runtime_error("EdgeHashMap::operator() - node id out of range or deleted");
      return this->top()(n1, n2);
   }
   decltype(auto) find(Int n1, Int n2) const
   {
      if (this->top().invalid_node(n1) || this->top().invalid_node(n2))
         throw std::runtime_error("EdgeHashMap::find - node id out of range or deleted");
      return this->top().find(n1,n2);
   }
   void erase(Int n1, Int n2)
   {
      if (this->top().invalid_node(n1) || this->top().invalid_node(n2))
         throw std::runtime_error("EdgeHashMap::erase - node id out of range or deleted");
      this->top().erase(n1, n2);
   }
};

/// create complete graph on given number of nodes
inline
graph::Graph<> complete_graph(Int n_nodes)
{
   graph::Graph<> G(n_nodes);
   for (Int n = 0; n < n_nodes; ++n)
      G.adjacent_nodes(n) = sequence(0, n_nodes) - n;
   return G;
}

} // end namespace pm

namespace polymake {
   using pm::graph::Graph;
   using pm::graph::NodeMap;
   using pm::graph::EdgeMap;
   using pm::graph::NodeHashMap;
   using pm::graph::EdgeHashMap;
   using pm::complete_graph;
}

namespace std {
   template <typename TDir>
   void swap(pm::graph::Graph<TDir>& G1, pm::graph::Graph<TDir>& G2) { G1.swap(G2); }
}


// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End: