1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
|
/* Copyright (c) 1997-2024
Ewgenij Gawrilow, Michael Joswig, and the polymake team
Technische Universität Berlin, Germany
https://polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#pragma once
/** @file IncidenceMatrix.h
@brief Implementation of pm::IncidenceMatrix class
*/
#include "polymake/internal/sparse2d.h"
#include "polymake/Set.h"
#include "polymake/GenericIncidenceMatrix.h"
#include "polymake/permutations.h"
namespace pm {
template <typename Set>
class incidence_proxy_base {
protected:
Set* s;
Int j;
bool get() const { return s->exists(j); }
void insert() { s->insert(j); }
void erase() { s->erase(j); }
void toggle() { s->toggle(j); }
public:
typedef bool value_type;
incidence_proxy_base(Set& s_arg, Int j_arg)
: s(&s_arg), j(j_arg) {}
};
template <typename TreeRef> class incidence_line;
template <bool rowwise, typename BaseRef = void> class incidence_line_factory;
template <typename symmetric> class IncidenceMatrix_base;
template <typename TreeRef>
struct incidence_line_params
: mlist_concat< typename sparse2d::line_params<TreeRef>::type,
OperationTag< BuildUnaryIt<operations::index2element> > > {};
template <typename TreeRef>
class incidence_line_base
: public modified_tree< incidence_line<TreeRef>, typename incidence_line_params<TreeRef>::type > {
protected:
typedef nothing first_arg_type;
typedef nothing second_arg_type;
~incidence_line_base();
public:
Int index() const { return this->get_container().get_line_index(); }
};
template <typename Tree>
class incidence_line_base<Tree&>
: public modified_tree< incidence_line<Tree&>, typename incidence_line_params<Tree&>::type > {
protected:
using tree_type = typename deref<Tree>::type;
using symmetric = std::conditional_t<Tree::symmetric, Symmetric, NonSymmetric>;
using matrix_ref = typename inherit_ref<IncidenceMatrix_base<symmetric>, Tree&>::type;
using alias_t = alias<matrix_ref>;
alias_t matrix;
Int line_index;
public:
template <typename Arg, typename = std::enable_if_t<std::is_constructible<alias_t, Arg>::value>>
incidence_line_base(Arg&& matrix_arg, Int index_arg)
: matrix(std::forward<Arg>(matrix_arg))
, line_index(index_arg) {}
decltype(auto) get_container()
{
return matrix->get_table().get_line(line_index, (tree_type*)nullptr);
}
decltype(auto) get_container() const
{
return matrix->get_table().get_line(line_index, (tree_type*)nullptr);
}
Int index() const { return line_index; }
};
template <typename TreeRef>
class incidence_line
: public incidence_line_base<TreeRef>
, public GenericMutableSet<incidence_line<TreeRef>, Int, operations::cmp>
{
using base_t = incidence_line_base<TreeRef>;
friend class GenericMutableSet<incidence_line>;
template <typename> friend class IncidenceMatrix;
template <sparse2d::restriction_kind> friend class RestrictedIncidenceMatrix;
public:
using incidence_line_base<TreeRef>::incidence_line_base;
incidence_line& operator= (const incidence_line& other)
{
return incidence_line::generic_mutable_type::operator=(other);
}
// TODO: investigate whether the dimension check is active?
template <typename Set>
incidence_line& operator= (const GenericSet<Set, Int, operations::cmp>& other)
{
return incidence_line::generic_mutable_type::operator=(other);
}
incidence_line& operator= (std::initializer_list<Int> l)
{
return incidence_line::generic_mutable_type::operator=(l);
}
protected:
template <typename Iterator>
void fill(Iterator src)
{
this->clear();
for (; !src.at_end(); ++src)
this->insert(*src);
}
};
template <typename TreeRef>
struct check_container_feature<incidence_line<TreeRef>, sparse_compatible> : std::true_type {};
template <typename TreeRef>
struct spec_object_traits< incidence_line<TreeRef> >
: spec_object_traits<is_container> {
static constexpr bool is_temporary = attrib<TreeRef>::is_reference, is_always_const = attrib<TreeRef>::is_const;
using masquerade_for = std::conditional_t<is_temporary, void, typename deref<TreeRef>::type>;
static constexpr int is_resizeable = 0;
};
template <typename Iterator>
using is_sequence_of_sets=std::is_same<typename object_traits<typename iterator_traits<Iterator>::value_type>::generic_tag, is_set>;
template <typename Container>
using fits_for_append_to_IM
= mlist_or<isomorphic_to_container_of<Container, Int, allow_conversion>,
isomorphic_to_container_of<Container, Set<Int>, allow_conversion>,
isomorphic_to_container_of<Container, IncidenceMatrix<>, allow_conversion>,
std::is_same<typename object_traits<Container>::generic_tag, is_incidence_matrix> >;
template <sparse2d::restriction_kind restriction = sparse2d::only_rows>
class RestrictedIncidenceMatrix
: public matrix_methods<RestrictedIncidenceMatrix<restriction>, bool> {
protected:
typedef sparse2d::restriction_const<restriction> my_restriction;
typedef sparse2d::restriction_const<(restriction==sparse2d::only_rows ? sparse2d::only_cols : sparse2d::only_rows)> cross_restriction;
typedef sparse2d::Table<nothing, false, restriction> table_type;
table_type data;
table_type& get_table() { return data; }
const table_type& get_table() const { return data; }
template <typename Iterator, typename TLines>
static
void copy_linewise(Iterator&& src, TLines& lines, my_restriction, std::true_type)
{
copy_range(std::forward<Iterator>(src), entire(lines));
}
template <typename Iterator, typename TLines>
static
void copy_linewise(Iterator&& src, TLines& lines, my_restriction, std::false_type)
{
for (auto l_i=entire(lines); !l_i.at_end(); ++l_i, ++src)
l_i->fill(entire(*src));
}
template <typename Iterator, typename TLines, typename TSourceOrdered>
static
void copy_linewise(Iterator&& src, TLines& lines, cross_restriction, TSourceOrdered)
{
for (Int i = 0; !src.at_end(); ++src, ++i)
append_across(lines, *src, i);
}
template <typename TLines, typename TSet>
static
void append_across(TLines& lines, const TSet& set, Int i)
{
for (auto s = entire(set); !s.at_end(); ++s)
lines[*s].push_back(i);
}
using proxy_base = incidence_proxy_base< incidence_line<typename table_type::primary_tree_type> >;
public:
using value_type = bool;
using reference = sparse_elem_proxy<proxy_base>;
using const_reference = bool;
explicit RestrictedIncidenceMatrix(Int n = 0) : data(n) {}
RestrictedIncidenceMatrix(Int r, Int c) : data(r, c) {}
template <typename Iterator, typename How,
typename = std::enable_if_t<is_among<How, sparse2d::rowwise, sparse2d::columnwise>::value &&
assess_iterator_value<Iterator, can_initialize, Set<Int>>::value &&
(How::value == restriction || assess_iterator<Iterator, check_iterator_feature, end_sensitive>::value)>>
RestrictedIncidenceMatrix(Int n, How how, Iterator&& src)
: data(n)
{
copy_linewise(ensure_private_mutable(std::forward<Iterator>(src)), lines(*this, my_restriction()),
how, is_sequence_of_sets<Iterator>());
}
template <typename Iterator, typename How,
typename=std::enable_if_t<is_among<How, sparse2d::rowwise, sparse2d::columnwise>::value &&
assess_iterator_value<Iterator, can_initialize, Set<Int>>::value &&
(How::value==restriction || assess_iterator<Iterator, check_iterator_feature, end_sensitive>::value)>>
RestrictedIncidenceMatrix(Int r, Int c, How how, Iterator&& src)
: data(r, c)
{
copy_linewise(ensure_private_mutable(std::forward<Iterator>(src)), lines(*this, my_restriction()),
how, is_sequence_of_sets<Iterator>());
}
template <typename How, typename... Sources,
typename=std::enable_if_t<is_among<How, sparse2d::rowwise, sparse2d::columnwise>::value &&
mlist_and_nonempty<fits_for_append_to_IM<Sources>...>::value>>
RestrictedIncidenceMatrix(How how, const Sources&... src)
: data(0)
{
append_impl(how, src...);
}
RestrictedIncidenceMatrix(std::initializer_list<std::initializer_list<Int>> l)
: data(l.size())
{
static_assert(restriction==sparse2d::only_rows, "a column-only restricted incidence matrix can't be constructed from an initializer list");
copy_linewise(l.begin(), pm::rows(*this), my_restriction(), std::false_type());
}
RestrictedIncidenceMatrix(RestrictedIncidenceMatrix&& M)
: data(std::move(M.data)) {}
void swap(RestrictedIncidenceMatrix& M) { data.swap(M.data); }
void clear() { data.clear(); }
protected:
proxy_base random_impl(Int i, Int j, std::false_type)
{
return proxy_base(this->row(i), j);
}
proxy_base random_impl(Int i, Int j, std::true_type)
{
return proxy_base(this->col(j), i);
}
bool random_impl(Int i, Int j, std::false_type) const
{
return this->row(i).exists(j);
}
bool random_impl(Int i, Int j, std::true_type) const
{
return this->col(j).exists(i);
}
public:
reference operator() (Int i, Int j)
{
return random_impl(i, j, bool_constant<restriction==sparse2d::only_cols>());
}
const_reference operator() (Int i, Int j) const
{
return random_impl(i, j, bool_constant<restriction==sparse2d::only_cols>());
}
bool exists(Int i, Int j) const
{
return random_impl(i, j, bool_constant<restriction==sparse2d::only_cols>());
}
private:
auto append_lines_start(sparse2d::rowwise, Int n)
{
const Int oldrows = data.rows();
data.resize_rows(oldrows + n);
return pm::rows(*this).begin() + oldrows;
}
auto append_lines_start(sparse2d::columnwise, Int n)
{
const Int oldcols=data.cols();
data.resize_cols(oldcols + n);
return pm::cols(*this).begin() + oldcols;
}
template <typename Container, typename... MoreSources>
auto append_lines_start(my_restriction how,
std::enable_if_t<isomorphic_to_container_of<Container, Int, allow_conversion>::value, Int> n,
const Container& c, MoreSources&&... more_src)
{
return append_lines_start(how, n+1, std::forward<MoreSources>(more_src)...);
}
template <typename Container, typename... MoreSources>
auto append_lines_start(my_restriction how,
std::enable_if_t<isomorphic_to_container_of<Container, Set<Int>, allow_conversion>::value, Int> n,
const Container& c, MoreSources&&... more_src)
{
return append_lines_start(how, n+c.size(), std::forward<MoreSources>(more_src)...);
}
template <typename TMatrix, typename... MoreSources>
auto append_lines_start(my_restriction how, Int n, const GenericIncidenceMatrix<TMatrix>& m, MoreSources&&... more_src)
{
return append_lines_start(how, n+(restriction==sparse2d::only_rows ? m.rows() : m.cols()), std::forward<MoreSources>(more_src)...);
}
template <typename Container, typename... MoreSources>
auto append_lines_start(my_restriction how,
std::enable_if_t<isomorphic_to_container_of<Container, IncidenceMatrix<>, allow_conversion>::value, Int> n,
const Container& c, MoreSources&&... more_src)
{
for (const auto& m : c)
n += (restriction==sparse2d::only_rows ? m.rows() : m.cols());
return append_lines_start(how, n, std::forward<MoreSources>(more_src)...);
}
template <typename... Sources>
Int append_lines_start(cross_restriction, Int, Sources&&...)
{
return restriction == sparse2d::only_rows ? data.cols() : data.rows();
}
template <typename Iterator, typename TSet>
void append_lines_from(my_restriction, Iterator& dst, const GenericSet<TSet, Int, operations::cmp>& s)
{
*dst = s.top();
++dst;
}
template <typename Iterator, typename Container>
std::enable_if_t<isomorphic_to_container_of<Container, Int, is_set>::value>
append_lines_from(my_restriction, Iterator& dst, const Container& c)
{
dst->fill(entire(c));
++dst;
}
template <typename THow, typename Iterator, typename TMatrix>
void append_lines_from(THow how, Iterator& dst, const GenericIncidenceMatrix<TMatrix>& m)
{
for (auto src=entire(sparse2d::lines(m.top(), how)); !src.at_end(); ++src)
append_lines_from(how, dst, *src);
}
template <typename Iterator, typename Container>
std::enable_if_t<isomorphic_to_container_of<Container, Set<Int>, allow_conversion>::value ||
isomorphic_to_container_of<Container, IncidenceMatrix<>, allow_conversion>::value>
append_lines_from(my_restriction how, Iterator& dst, const Container& c)
{
for (auto src = entire(c); !src.at_end(); ++src)
append_lines_from(how, dst, *src);
}
template <typename Container>
std::enable_if_t<isomorphic_to_container_of<Container, Int, allow_conversion>::value>
append_lines_from(cross_restriction, Int& r, const Container& c)
{
append_across(sparse2d::lines(*this, my_restriction()), c, r);
++r;
}
template <typename How, typename Iterator>
void append_lines(How, Iterator&) {}
template <typename How, typename Iterator, typename Source, typename... MoreSources>
void append_lines(How how, Iterator&& dst, const Source& src, MoreSources&&... more_src)
{
append_lines_from(how, dst, src);
append_lines(how, dst, std::forward<MoreSources>(more_src)...);
}
template <typename How, typename... Sources>
void append_impl(How how, Sources&&... src)
{
append_lines(how, append_lines_start(how, 0, std::forward<Sources>(src)...), std::forward<Sources>(src)...);
}
public:
template <typename TMatrix>
RestrictedIncidenceMatrix& operator/= (const GenericIncidenceMatrix<TMatrix>& m)
{
append_impl(sparse2d::rowwise(), m);
return *this;
}
template <typename TSet>
RestrictedIncidenceMatrix& operator/= (const GenericSet<TSet, Int, operations::cmp>& s)
{
append_impl(sparse2d::rowwise(), s.top());
return *this;
}
template <typename TMatrix>
RestrictedIncidenceMatrix& operator|= (const GenericIncidenceMatrix<TMatrix>& m)
{
append_impl(sparse2d::columnwise(), m);
return *this;
}
template <typename TSet>
RestrictedIncidenceMatrix& operator|= (const GenericSet<TSet, Int, operations::cmp>& s)
{
append_impl(sparse2d::columnwise(), s.top());
return *this;
}
/// append one or more rows
template <typename... Sources,
typename=std::enable_if_t<mlist_and_nonempty<fits_for_append_to_IM<Sources>...>::value>>
void append_rows(const Sources&... src)
{
append_impl(sparse2d::rowwise(), src...);
}
/// append one or more columns
template <typename... Sources,
typename=std::enable_if_t<mlist_and_nonempty<fits_for_append_to_IM<Sources>...>::value>>
void append_columns(const Sources&... src)
{
append_impl(sparse2d::columnwise(), src...);
}
void squeeze() { data.squeeze(); }
template <typename Permutation>
std::enable_if_t<isomorphic_to_container_of<Permutation, Int>::value>
permute_rows(const Permutation& perm)
{
data.permute_rows(perm, std::false_type());
}
template <typename Permutation>
std::enable_if_t<isomorphic_to_container_of<Permutation, Int>::value>
permute_cols(const Permutation& perm)
{
data.permute_cols(perm, std::false_type());
}
template <typename InvPermutation>
std::enable_if_t<isomorphic_to_container_of<InvPermutation, Int>::value>
permute_inv_rows(const InvPermutation& inv_perm)
{
data.permute_rows(inv_perm, std::true_type());
}
template <typename InvPermutation>
std::enable_if_t<isomorphic_to_container_of<InvPermutation, Int>::value>
permute_inv_cols(const InvPermutation& inv_perm)
{
data.permute_cols(inv_perm, std::true_type());
}
#if POLYMAKE_DEBUG
void check() const { data.check(); }
#endif
friend class Rows<RestrictedIncidenceMatrix>;
friend class Cols<RestrictedIncidenceMatrix>;
template <typename, typename, bool, sparse2d::restriction_kind, typename> friend class sparse2d::Rows;
template <typename, typename, bool, sparse2d::restriction_kind, typename> friend class sparse2d::Cols;
template <typename> friend class IncidenceMatrix;
};
template <sparse2d::restriction_kind restriction>
class Rows< RestrictedIncidenceMatrix<restriction> >
: public sparse2d::Rows< RestrictedIncidenceMatrix<restriction>, nothing, false, restriction,
operations::masquerade<incidence_line> > {
protected:
~Rows();
public:
using container_category = std::conditional_t<restriction==sparse2d::only_rows, random_access_iterator_tag, output_iterator_tag>;
};
template <sparse2d::restriction_kind restriction>
class Cols< RestrictedIncidenceMatrix<restriction> >
: public sparse2d::Cols< RestrictedIncidenceMatrix<restriction>, nothing, false, restriction,
operations::masquerade<incidence_line> > {
protected:
~Cols();
public:
using container_category = std::conditional<restriction==sparse2d::only_cols, random_access_iterator_tag, output_iterator_tag>;
};
template <sparse2d::restriction_kind restriction>
struct spec_object_traits< RestrictedIncidenceMatrix<restriction> >
: spec_object_traits<is_container> {
static constexpr int dimension = 2;
using serialized = std::conditional_t<restriction==sparse2d::only_rows,
Rows< RestrictedIncidenceMatrix<restriction> >,
Cols< RestrictedIncidenceMatrix<restriction> >>;
static serialized& serialize(RestrictedIncidenceMatrix<restriction>& M)
{
return reinterpret_cast<serialized&>(M);
}
static const serialized& serialize(const RestrictedIncidenceMatrix<restriction>& M)
{
return reinterpret_cast<const serialized&>(M);
}
};
template <typename symmetric>
class IncidenceMatrix_base {
protected:
using table_type = sparse2d::Table<nothing, symmetric::value>;
shared_object<table_type, AliasHandlerTag<shared_alias_handler>> data;
table_type& get_table() { return *data; }
const table_type& get_table() const { return *data; }
friend IncidenceMatrix_base& make_mutable_alias(IncidenceMatrix_base& alias, IncidenceMatrix_base& owner)
{
alias.data.make_mutable_alias(owner.data);
return alias;
}
IncidenceMatrix_base() = default;
IncidenceMatrix_base(Int r, Int c)
: data(r, c) {}
template <sparse2d::restriction_kind restriction>
explicit IncidenceMatrix_base(sparse2d::Table<nothing, symmetric::value, restriction>&& input_data)
: data(std::move(input_data)) {}
template <typename> friend class Rows;
template <typename> friend class Cols;
template <typename, typename, bool, sparse2d::restriction_kind, typename> friend class sparse2d::Rows;
template <typename, typename, bool, sparse2d::restriction_kind, typename> friend class sparse2d::Cols;
template <bool, typename> friend class incidence_line_factory;
template <typename> friend class incidence_line_base;
template <typename, alias_kind> friend class alias;
};
template <typename symmetric>
class Rows< IncidenceMatrix_base<symmetric> >
: public sparse2d::Rows< IncidenceMatrix_base<symmetric>, nothing, symmetric::value, sparse2d::full,
operations::masquerade<incidence_line> > {
protected:
~Rows();
};
template <typename symmetric>
class Cols< IncidenceMatrix_base<symmetric> >
: public sparse2d::Cols< IncidenceMatrix_base<symmetric>, nothing, symmetric::value, sparse2d::full,
operations::masquerade<incidence_line> > {
protected:
~Cols();
};
/** @class IncidenceMatrix
@brief 0/1 incidence matrix.
The only @ref persistent class from the incidence matrix family.
The implementation is based on a two-dimensional grid of <a href="AVL.html">balanced binary search (AVL) trees</a>,
the same as for @see SparseMatrix. The whole internal data structure
is attached to a smart pointer with @see {reference counting}.
A symmetric incidence matrix is a square matrix whose elements `(i,j)` and `(j,i)`
are always equal. Internally it is stored in a triangular form, avoiding redundant elements, but appears as a full square.
*/
template <typename symmetric>
class IncidenceMatrix
: public IncidenceMatrix_base<symmetric>
, public GenericIncidenceMatrix< IncidenceMatrix<symmetric> > {
protected:
using base_t = IncidenceMatrix_base<symmetric>;
friend IncidenceMatrix& make_mutable_alias(IncidenceMatrix& alias, IncidenceMatrix& owner)
{
return static_cast<IncidenceMatrix&>(make_mutable_alias(static_cast<base_t&>(alias), static_cast<base_t&>(owner)));
}
/// initialize from a dense boolean sequence in row order
template <typename Iterator>
void init_impl(Iterator&& src, std::true_type)
{
const Int n = this->cols();
for (auto r_i = entire(pm::rows(static_cast<base_t&>(*this))); !r_i.at_end(); ++r_i) {
Int i = 0;
if (symmetric::value) {
i = r_i.index();
std::advance(src, i);
}
for (; i < n; ++i, ++src)
if (*src) r_i->push_back(i);
}
}
/// input already ordered
template <typename Iterator>
void init_rowwise(Iterator&& src, std::true_type)
{
copy_range(std::forward<Iterator>(src), entire(pm::rows(static_cast<base_t&>(*this))));
}
/// input in uncertain order
template <typename Iterator>
void init_rowwise(Iterator&& src, std::false_type)
{
for (auto r_i=entire(pm::rows(static_cast<base_t&>(*this))); !r_i.at_end(); ++r_i, ++src)
r_i->fill(entire(*src));
}
/// initialize rowwise from a sequence of sets
template <typename Iterator>
void init_impl(Iterator&& src, std::false_type)
{
init_rowwise(std::forward<Iterator>(src), is_sequence_of_sets<Iterator>());
}
typedef incidence_proxy_base< incidence_line<typename base_t::table_type::primary_tree_type> > proxy_base;
public:
using unknown_columns_type = std::conditional_t<symmetric::value, void, RestrictedIncidenceMatrix<>>;
using value_type = bool;
using reference = sparse_elem_proxy<proxy_base>;
using const_reference = bool;
/// Create an empty IncidenceMatrix.
IncidenceMatrix() {}
/// Create an empty IncidenceMatrix with @a r rows and @a c columns initialized with zeroes.
IncidenceMatrix(Int r, Int c)
: base_t(r,c) {}
/** @brief Create an IncidenceMatrix IncidenceMatrix with @a r rows and @a c columns and initialize it from a data sequence.
@a src should iterate either over @a r×@a c boolean values, corresponding to the
elements in the row order (the column index changes first,) or over @a r sets with
integer elements (or convertible to integer), which are assigned to the matrix rows.
In the symmetric case the redundant elements must be present in the input sequence; their values are ignored.
@param r the number of rows
@param c the number of columns
@param src an iterator
*/
template <typename Iterator>
IncidenceMatrix(Int r, Int c, Iterator&& src)
: base_t(r, c)
{
init_impl(ensure_private_mutable(std::forward<Iterator>(src)),
bool_constant<(object_traits<typename iterator_traits<Iterator>::value_type>::total_dimension==0)>());
}
IncidenceMatrix(const GenericIncidenceMatrix<IncidenceMatrix>& M)
: base_t(M.top()) {}
template <typename Matrix2, typename=std::enable_if_t<IncidenceMatrix::template compatible_symmetry_types<Matrix2>()>>
IncidenceMatrix(const GenericIncidenceMatrix<Matrix2>& M)
: base_t(M.rows(), M.cols())
{
init_impl(pm::rows(M).begin(), std::false_type());
}
template <sparse2d::restriction_kind restriction, typename=std::enable_if_t<!symmetric::value && restriction != sparse2d::full>>
explicit IncidenceMatrix(RestrictedIncidenceMatrix<restriction>&& M)
: base_t(std::move(M.data)) {}
/// Construct a matrix by rowwise or columnwise concatenation of given matrices and/or sets.
/// Dimensions are set automatically to encompass all input elements.
template <typename How, typename... Sources,
typename=std::enable_if_t<!symmetric::value && is_among<How, sparse2d::rowwise, sparse2d::columnwise>::value &&
mlist_and_nonempty<fits_for_append_to_IM<Sources>...>::value>>
IncidenceMatrix(How how, const Sources&... src)
: base_t(RestrictedIncidenceMatrix<How::value>(how, src...).data) {}
/// Construct a matrix from a given sequence of row sets.
/// Number of columns is set automatically to encompass all input elements.
template <typename Container, typename=std::enable_if_t<!symmetric::value && isomorphic_to_container_of<Container, Set<Int>, allow_conversion>::value>>
explicit IncidenceMatrix(const Container& src)
: base_t(RestrictedIncidenceMatrix<>(src.size(), sparse2d::rowwise(), src.begin()).data) {}
/// Construct a matrix with a prescribed number of columns from a given sequence of row sets
template <typename Container,
typename=std::enable_if_t<!symmetric::value && isomorphic_to_container_of<Container, Set<Int>, allow_conversion>::value>>
IncidenceMatrix(const Container& src, Int c)
: base_t(src.size(), c)
{
init_impl(src.begin(), std::false_type());
}
IncidenceMatrix(Int r, Int c, std::initializer_list<bool> l)
: base_t(r, c)
{
if (POLYMAKE_DEBUG && r*c != l.size())
throw std::runtime_error("initializer_list size does not match the dimensions");
init_impl(l.begin(), std::true_type());
}
IncidenceMatrix(std::initializer_list<std::initializer_list<Int>> l)
: base_t(RestrictedIncidenceMatrix<>(l).data) {}
IncidenceMatrix& operator= (const IncidenceMatrix& other) { assign(other); return *this; }
using IncidenceMatrix::generic_type::operator=;
template <sparse2d::restriction_kind restriction, typename=std::enable_if_t<!symmetric::value && restriction != sparse2d::full>>
IncidenceMatrix& operator= (RestrictedIncidenceMatrix<restriction>&& M)
{
this->data.replace(std::move(M.data));
return *this;
}
/// Swap the contents with that of another matrix in an efficient way.
void swap(IncidenceMatrix& M) { this->data.swap(M.data); }
friend void relocate(IncidenceMatrix* from, IncidenceMatrix* to)
{
relocate(&from->data, &to->data);
}
/** @brief Extend or truncate to new dimensions (@a m rows, @a n columns).
Surviving elements keep their values, new elements are implicitly @c false.
@c IncidenceMatrix deploys an adaptive reallocation strategy similar to @c std::vector,
reserving additional stock memory by every reallocation. If you repeatedly increase the matrix dimensions by one,
the amortized reallocation costs will be proportional to the logarithm of the final dimension.
A special case, looking at the first glance like a "no operation": @c{ M.resize(M.rows(), M.cols()) },
gets rid of this extra allocated storage.
*/
void resize(Int m, Int n) { this->data->resize(m, n); }
/// Clear contents.
void clear() { this->data.apply(shared_clear()); }
/// Clear contents.
void clear(Int r, Int c) { this->data.apply(typename base_t::table_type::shared_clear(r, c)); }
/// Entry at row i column j.
reference operator() (Int i, Int j)
{
if (POLYMAKE_DEBUG) {
if (i < 0 || i >= this->rows() || j < 0 || j >= this->cols())
throw std::runtime_error("IncidenceMatrix::operator() - index out of range");
}
return proxy_base(pm::rows(static_cast<base_t&>(*this))[i], j);
}
/// Entry at row i column j (const).
const_reference operator() (Int i, Int j) const
{
if (POLYMAKE_DEBUG) {
if (i < 0 || i >= this->rows() || j < 0 || j >= this->cols())
throw std::runtime_error("IncidenceMatrix::operator() - index out of range");
}
return pm::rows(static_cast<const base_t&>(*this))[i].exists(j);
}
/// Returns the entry at position (i,j).
bool exists(Int i, Int j) const { return operator()(i, j); }
template <typename row_number_consumer, typename col_number_consumer>
void squeeze(const row_number_consumer& rnc, const col_number_consumer& cnc) { this->data->squeeze(rnc,cnc); }
template <typename row_number_consumer>
void squeeze(const row_number_consumer& rnc) { this->data->squeeze(rnc); }
/// Delete empty rows and columns, renumber the rest and reduce the dimensions.
void squeeze() { this->data->squeeze(); }
template <typename row_number_consumer>
void squeeze_rows(const row_number_consumer& rnc) { this->data->squeeze_rows(rnc); }
/// Delete empty rows, renumber the rest and reduce the dimensions.
void squeeze_rows() { this->data->squeeze_rows(); }
template <typename col_number_consumer>
void squeeze_cols(const col_number_consumer& cnc) { this->data->squeeze_cols(cnc); }
/// Delete empty columns, renumber the rest and reduce the dimensions.
void squeeze_cols() { this->data->squeeze_cols(); }
/// Permute the rows according to the given permutation.
template <typename Permutation>
std::enable_if_t<isomorphic_to_container_of<Permutation, Int>::value>
permute_rows(const Permutation& perm)
{
this->data->permute_rows(perm, std::false_type());
}
/// Permute the columns according to the given permutation.
template <typename Permutation>
std::enable_if_t<isomorphic_to_container_of<Permutation, Int>::value>
permute_cols(const Permutation& perm)
{
this->data->permute_cols(perm, std::false_type());
}
/// Permute the rows according to the inverse of the given permutation.
template <typename InvPermutation>
std::enable_if_t<isomorphic_to_container_of<InvPermutation, Int>::value>
permute_inv_rows(const InvPermutation& inv_perm)
{
this->data->permute_rows(inv_perm, std::true_type());
}
/// Permute the columns according to the inverse of the given permutation.
template <typename InvPermutation>
std::enable_if_t<isomorphic_to_container_of<InvPermutation, Int>::value>
permute_inv_cols(const InvPermutation& inv_perm)
{
this->data->permute_cols(inv_perm, std::true_type());
}
template <typename Permutation, typename InvPermutation,
typename=std::enable_if_t<symmetric::value, typename mproject1st<void, Permutation>::type>>
IncidenceMatrix copy_permuted(const Permutation& perm, const InvPermutation& inv_perm) const
{
const Int n = this->rows();
IncidenceMatrix result(n, n);
result.data.get()->copy_permuted(*this->data, perm, inv_perm);
return result;
}
#if POLYMAKE_DEBUG
void check() const { this->data->check(); }
#endif
protected:
void assign(const GenericIncidenceMatrix<IncidenceMatrix>& M) { this->data=M.top().data; }
template <typename Matrix>
void assign(const GenericIncidenceMatrix<Matrix>& M)
{
if (this->data.is_shared() || this->rows() != M.rows() || this->cols() != M.cols())
// circumvent the symmetry checks, they are already done in GenericIncidenceMatrix methods
assign(IncidenceMatrix(M.rows(), M.cols(), pm::rows(M).begin()));
else
GenericIncidenceMatrix<IncidenceMatrix>::assign(M);
}
template <typename Matrix2>
void append_rows(const Matrix2& m)
{
const Int old_rows = this->rows();
this->data.apply(typename base_t::table_type::shared_add_rows(m.rows()));
copy_range(entire(pm::rows(m)), pm::rows(static_cast<base_t&>(*this)).begin() + old_rows);
}
template <typename Set2>
void append_row(const Set2& s)
{
const Int old_rows = this->rows();
this->data.apply(typename base_t::table_type::shared_add_rows(1));
this->row(old_rows) = s;
}
template <typename Matrix2>
void append_cols(const Matrix2& m)
{
const Int old_cols = this->cols();
this->data.apply(typename base_t::table_type::shared_add_cols(m.cols()));
copy_range(entire(pm::cols(m)), pm::cols(static_cast<base_t&>(*this)).begin() + old_cols);
}
template <typename Set2>
void append_col(const Set2& s)
{
const Int old_cols = this->cols();
this->data.apply(typename base_t::table_type::shared_add_cols(1));
this->col(old_cols) = s;
}
template <typename> friend class GenericIncidenceMatrix;
friend class Rows<IncidenceMatrix>;
friend class Cols<IncidenceMatrix>;
template <typename, typename, bool, sparse2d::restriction_kind, typename> friend class sparse2d::Rows;
template <typename, typename, bool, sparse2d::restriction_kind, typename> friend class sparse2d::Cols;
template <typename, typename> friend class BlockMatrix;
};
template <typename symmetric>
struct check_container_feature< IncidenceMatrix<symmetric>, Symmetric >
: bool_constant<symmetric::value> {};
// FIXME: temporary hack until all Vector<IncidenceMatrix> disappear from atint
template <typename symmetric>
struct spec_object_traits<IncidenceMatrix<symmetric>> : spec_object_traits<is_container> {
static constexpr int is_resizeable = 2 - symmetric::value;
static const IncidenceMatrix<symmetric>& zero()
{
static const IncidenceMatrix<symmetric> z{};
return z;
}
};
template <bool rowwise, typename BaseRef>
class incidence_line_factory {
public:
typedef BaseRef first_argument_type;
typedef Int second_argument_type;
using tree_type = std::conditional_t<rowwise, typename pure_type_t<BaseRef>::table_type::row_tree_type,
typename pure_type_t<BaseRef>::table_type::col_tree_type>;
typedef incidence_line<typename inherit_ref<tree_type, BaseRef>::type> result_type;
result_type operator() (BaseRef matrix, Int index) const
{
return result_type(matrix, index);
}
};
template <bool rowwise>
class incidence_line_factory<rowwise, void> : public operations::incomplete {};
template <bool rowwise, typename BaseRef>
struct operation_cross_const_helper< incidence_line_factory<rowwise, BaseRef> > {
typedef incidence_line_factory<rowwise, typename attrib<BaseRef>::minus_const> operation;
typedef incidence_line_factory<rowwise, typename attrib<BaseRef>::plus_const> const_operation;
};
template <bool rowwise, typename Iterator1, typename Iterator2, typename Reference1, typename Reference2>
struct binary_op_builder< incidence_line_factory<rowwise>, Iterator1, Iterator2, Reference1, Reference2>
: empty_op_builder< incidence_line_factory<rowwise,Reference1> > {};
template <typename TSymmetric>
class Rows< IncidenceMatrix<TSymmetric> >
: public modified_container_pair_impl< Rows< IncidenceMatrix<TSymmetric> >,
mlist< Container1Tag< same_value_container< IncidenceMatrix_base<TSymmetric>& > >,
Container2Tag< sequence >,
OperationTag< pair< incidence_line_factory<true>,
BuildBinaryIt<operations::dereference2> > >,
MasqueradedTop > > {
protected:
~Rows();
public:
auto get_container1()
{
return same_value_container< IncidenceMatrix_base<TSymmetric>& >(this->hidden());
}
auto get_container1() const
{
return same_value_container< const IncidenceMatrix_base<TSymmetric>& >(this->hidden());
}
sequence get_container2() const
{
return sequence(0, this->hidden().get_table().rows());
}
void resize(Int n)
{
this->hidden().get_table().resize_rows(n);
}
};
template <typename TSymmetric>
class Cols< IncidenceMatrix<TSymmetric> >
: public modified_container_pair_impl< Cols< IncidenceMatrix<TSymmetric> >,
mlist< Container1Tag< same_value_container< IncidenceMatrix_base<TSymmetric>& > >,
Container2Tag< sequence >,
OperationTag< pair< incidence_line_factory<false>,
BuildBinaryIt<operations::dereference2> > >,
MasqueradedTop > > {
protected:
~Cols();
public:
auto get_container1()
{
return same_value_container< IncidenceMatrix_base<TSymmetric>& >(this->hidden());
}
auto get_container1() const
{
return same_value_container< const IncidenceMatrix_base<TSymmetric>& >(this->hidden());
}
sequence get_container2() const
{
return sequence(0, this->hidden().get_table().cols());
}
void resize(Int n)
{
this->hidden().get_table().resize_cols(n);
}
};
/// Convolution of two incidence relations.
template <typename Matrix1, typename Matrix2>
IncidenceMatrix<>
convolute(const GenericIncidenceMatrix<Matrix1>& m1, const GenericIncidenceMatrix<Matrix2>& m2)
{
if (POLYMAKE_DEBUG || is_wary<Matrix1>() || is_wary<Matrix2>()) {
if (m1.cols() != m2.rows())
throw std::runtime_error("convolute - dimension mismatch");
}
IncidenceMatrix<> result(m1.rows(), m2.cols());
auto r1=rows(m1).begin();
for (auto dst=entire(rows(result)); !dst.at_end(); ++dst, ++r1)
accumulate_in(entire(rows(m2.minor(*r1,All))), BuildBinary<operations::add>(), *dst);
return result;
}
template <typename TMatrix, typename Permutation>
std::enable_if_t<!TMatrix::is_symmetric, typename TMatrix::persistent_type>
permuted_rows(const GenericIncidenceMatrix<TMatrix>& m, const Permutation& perm)
{
if (POLYMAKE_DEBUG || is_wary<TMatrix>()) {
if (m.rows() != perm.size())
throw std::runtime_error("permuted_rows - dimension mismatch");
}
return IncidenceMatrix<>(RestrictedIncidenceMatrix<sparse2d::only_rows>(m.rows(), m.cols(), sparse2d::rowwise(), select(rows(m), perm).begin()));
}
template <typename TMatrix, typename Permutation>
std::enable_if_t<!TMatrix::is_symmetric, typename TMatrix::persistent_type>
permuted_cols(const GenericIncidenceMatrix<TMatrix>& m, const Permutation& perm)
{
if (POLYMAKE_DEBUG || is_wary<TMatrix>()) {
if (m.cols() != perm.size())
throw std::runtime_error("permuted_cols - dimension mismatch");
}
return IncidenceMatrix<>(RestrictedIncidenceMatrix<sparse2d::only_cols>(m.rows(), m.cols(), sparse2d::columnwise(), select(cols(m), perm).begin()));
}
template <typename TMatrix, typename Permutation>
std::enable_if_t<!TMatrix::is_symmetric, typename TMatrix::persistent_type>
permuted_inv_rows(const GenericIncidenceMatrix<TMatrix>& m, const Permutation& perm)
{
if (POLYMAKE_DEBUG || is_wary<TMatrix>()) {
if (m.rows() != perm.size())
throw std::runtime_error("permuted_inv_rows - dimension mismatch");
}
RestrictedIncidenceMatrix<sparse2d::only_rows> result(m.rows(), m.cols());
copy_range(entire(rows(m)), select(rows(result), perm).begin());
return IncidenceMatrix<>(std::move(result));
}
template <typename TMatrix, typename Permutation>
std::enable_if_t<!TMatrix::is_symmetric, typename TMatrix::persistent_type>
permuted_inv_cols(const GenericIncidenceMatrix<TMatrix>& m, const Permutation& perm)
{
if (POLYMAKE_DEBUG || is_wary<TMatrix>()) {
if (m.cols() != perm.size())
throw std::runtime_error("permuted_inv_cols - dimension mismatch");
}
RestrictedIncidenceMatrix<sparse2d::only_cols> result(m.rows(), m.cols());
copy_range(entire(cols(m)), select(cols(result), perm).begin());
return IncidenceMatrix<>(std::move(result));
}
template <typename TMatrix, typename Permutation>
std::enable_if_t<TMatrix::is_symmetric, typename TMatrix::persistent_type>
permuted_rows(const GenericIncidenceMatrix<TMatrix>& m, const Permutation& perm)
{
if (POLYMAKE_DEBUG || is_wary<TMatrix>()) {
if (m.rows() != perm.size())
throw std::runtime_error("permuted_rows - dimension mismatch");
}
std::vector<Int> inv_perm(m.rows());
inverse_permutation(perm,inv_perm);
return m.top().copy_permuted(perm,inv_perm);
}
template <typename TMatrix, typename Permutation>
std::enable_if_t<TMatrix::is_symmetric && container_traits<Permutation>::is_random, typename TMatrix::persistent_type>
permuted_inv_rows(const GenericIncidenceMatrix<TMatrix>& m, const Permutation& inv_perm)
{
if (POLYMAKE_DEBUG || is_wary<TMatrix>()) {
if (m.rows() != inv_perm.size())
throw std::runtime_error("permuted_inv_rows - dimension mismatch");
}
std::vector<Int> perm(m.rows());
inverse_permutation(inv_perm,perm);
return m.copy_permuted(perm,inv_perm);
}
template <typename TMatrix, typename Permutation>
std::enable_if_t<TMatrix::is_symmetric && !container_traits<Permutation>::is_random, typename TMatrix::persistent_type>
permuted_inv_rows(const GenericIncidenceMatrix<TMatrix>& m, const Permutation& inv_perm)
{
if (POLYMAKE_DEBUG || is_wary<TMatrix>()) {
if (m.rows() != inv_perm.size())
throw std::runtime_error("permuted_inv_rows - dimension mismatch");
}
std::vector<Int> inv_perm_copy(inv_perm.size());
copy_range(entire(inv_perm), inv_perm_copy.begin());
return permuted_inv_rows(m,inv_perm_copy);
}
template <typename TMatrix, typename Permutation>
std::enable_if_t<TMatrix::is_symmetric, typename TMatrix::persistent_type>
permuted_cols(const GenericIncidenceMatrix<TMatrix>& m, const Permutation& perm)
{
return permuted_rows(m,perm);
}
template <typename TMatrix, typename Permutation>
std::enable_if_t<TMatrix::is_symmetric, typename TMatrix::persistent_type>
permuted_inv_cols(const GenericIncidenceMatrix<TMatrix>& m, const Permutation& inv_perm)
{
return permuted_inv_rows(m,inv_perm);
}
} // end namespace pm
namespace polymake {
using pm::IncidenceMatrix;
using pm::RestrictedIncidenceMatrix;
}
namespace std {
template <typename symmetric>
void swap(pm::IncidenceMatrix<symmetric>& M1, pm::IncidenceMatrix<symmetric>& M2) { M1.swap(M2); }
template <pm::sparse2d::restriction_kind restriction>
void swap(pm::RestrictedIncidenceMatrix<restriction>& M1,
pm::RestrictedIncidenceMatrix<restriction>& M2)
{
M1.swap(M2);
}
template <typename TreeRef>
void swap(pm::incidence_line<TreeRef>& l1, pm::incidence_line<TreeRef>& l2)
{
l1.swap(l2);
}
}
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|