File: IncidenceMatrix.h

package info (click to toggle)
polymake 4.14-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 35,888 kB
  • sloc: cpp: 168,933; perl: 43,407; javascript: 31,575; ansic: 3,007; java: 2,654; python: 632; sh: 268; xml: 117; makefile: 61
file content (1147 lines) | stat: -rw-r--r-- 43,769 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
/* Copyright (c) 1997-2024
   Ewgenij Gawrilow, Michael Joswig, and the polymake team
   Technische Universität Berlin, Germany
   https://polymake.org

   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 2, or (at your option) any
   later version: http://www.gnu.org/licenses/gpl.txt.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
--------------------------------------------------------------------------------
*/

#pragma once
/** @file IncidenceMatrix.h
    @brief Implementation of pm::IncidenceMatrix class
*/



#include "polymake/internal/sparse2d.h"
#include "polymake/Set.h"
#include "polymake/GenericIncidenceMatrix.h"
#include "polymake/permutations.h"

namespace pm {

template <typename Set>
class incidence_proxy_base {
protected:
   Set* s;
   Int j;

   bool get() const { return s->exists(j); }

   void insert() { s->insert(j); }

   void erase() { s->erase(j); }

   void toggle() { s->toggle(j); }
public:
   typedef bool value_type;

   incidence_proxy_base(Set& s_arg, Int j_arg)
      : s(&s_arg), j(j_arg) {}
};

template <typename TreeRef> class incidence_line;
template <bool rowwise, typename BaseRef = void> class incidence_line_factory;
template <typename symmetric> class IncidenceMatrix_base;

template <typename TreeRef>
struct incidence_line_params
   : mlist_concat< typename sparse2d::line_params<TreeRef>::type,
                   OperationTag< BuildUnaryIt<operations::index2element> > > {};

template <typename TreeRef>
class incidence_line_base
   : public modified_tree< incidence_line<TreeRef>, typename incidence_line_params<TreeRef>::type > {
protected:
   typedef nothing first_arg_type;
   typedef nothing second_arg_type;
   ~incidence_line_base();
public:
   Int index() const { return this->get_container().get_line_index(); }
};

template <typename Tree>
class incidence_line_base<Tree&>
   : public modified_tree< incidence_line<Tree&>, typename incidence_line_params<Tree&>::type > {
protected:
   using tree_type = typename deref<Tree>::type;
   using symmetric = std::conditional_t<Tree::symmetric, Symmetric, NonSymmetric>;
   using matrix_ref = typename inherit_ref<IncidenceMatrix_base<symmetric>, Tree&>::type;
   using alias_t = alias<matrix_ref>;

   alias_t matrix;
   Int line_index;

public:
   template <typename Arg, typename = std::enable_if_t<std::is_constructible<alias_t, Arg>::value>>
   incidence_line_base(Arg&& matrix_arg, Int index_arg)
      : matrix(std::forward<Arg>(matrix_arg))
      , line_index(index_arg) {}

   decltype(auto) get_container()
   {
      return matrix->get_table().get_line(line_index, (tree_type*)nullptr);
   }
   decltype(auto) get_container() const
   {
      return matrix->get_table().get_line(line_index, (tree_type*)nullptr);
   }

   Int index() const { return line_index; }
};

template <typename TreeRef>
class incidence_line
   : public incidence_line_base<TreeRef>
   , public GenericMutableSet<incidence_line<TreeRef>, Int, operations::cmp>
{
   using base_t = incidence_line_base<TreeRef>;
   friend class GenericMutableSet<incidence_line>;
   template <typename> friend class IncidenceMatrix;
   template <sparse2d::restriction_kind> friend class RestrictedIncidenceMatrix;
public:
   using incidence_line_base<TreeRef>::incidence_line_base;

   incidence_line& operator= (const incidence_line& other)
   {
      return incidence_line::generic_mutable_type::operator=(other);
   }

   // TODO: investigate whether the dimension check is active?
   template <typename Set>
   incidence_line& operator= (const GenericSet<Set, Int, operations::cmp>& other)
   {
      return incidence_line::generic_mutable_type::operator=(other);
   }

   incidence_line& operator= (std::initializer_list<Int> l)
   {
      return incidence_line::generic_mutable_type::operator=(l);
   }

protected:
   template <typename Iterator>
   void fill(Iterator src)
   {
      this->clear();
      for (; !src.at_end(); ++src)
         this->insert(*src);
   }
};

template <typename TreeRef>
struct check_container_feature<incidence_line<TreeRef>, sparse_compatible> : std::true_type {};

template <typename TreeRef>
struct spec_object_traits< incidence_line<TreeRef> >
   : spec_object_traits<is_container> {
   static constexpr bool is_temporary = attrib<TreeRef>::is_reference, is_always_const = attrib<TreeRef>::is_const;
   using masquerade_for = std::conditional_t<is_temporary, void, typename deref<TreeRef>::type>;
   static constexpr int is_resizeable = 0;
};

template <typename Iterator>
using is_sequence_of_sets=std::is_same<typename object_traits<typename iterator_traits<Iterator>::value_type>::generic_tag, is_set>;

template <typename Container>
using fits_for_append_to_IM
   = mlist_or<isomorphic_to_container_of<Container, Int, allow_conversion>,
              isomorphic_to_container_of<Container, Set<Int>, allow_conversion>,
              isomorphic_to_container_of<Container, IncidenceMatrix<>, allow_conversion>,
              std::is_same<typename object_traits<Container>::generic_tag, is_incidence_matrix> >;

template <sparse2d::restriction_kind restriction = sparse2d::only_rows>
class RestrictedIncidenceMatrix
   : public matrix_methods<RestrictedIncidenceMatrix<restriction>, bool> {
protected:
   typedef sparse2d::restriction_const<restriction> my_restriction;
   typedef sparse2d::restriction_const<(restriction==sparse2d::only_rows ? sparse2d::only_cols : sparse2d::only_rows)> cross_restriction;

   typedef sparse2d::Table<nothing, false, restriction> table_type;
   table_type data;

   table_type& get_table() { return data; }
   const table_type& get_table() const { return data; }

   template <typename Iterator, typename TLines>
   static
   void copy_linewise(Iterator&& src, TLines& lines, my_restriction, std::true_type)
   {
      copy_range(std::forward<Iterator>(src), entire(lines));
   }

   template <typename Iterator, typename TLines>
   static
   void copy_linewise(Iterator&& src, TLines& lines, my_restriction, std::false_type)
   {
      for (auto l_i=entire(lines); !l_i.at_end(); ++l_i, ++src)
         l_i->fill(entire(*src));
   }

   template <typename Iterator, typename TLines, typename TSourceOrdered>
   static
   void copy_linewise(Iterator&& src, TLines& lines, cross_restriction, TSourceOrdered)
   {
      for (Int i = 0; !src.at_end(); ++src, ++i)
         append_across(lines, *src, i);
   }

   template <typename TLines, typename TSet>
   static
   void append_across(TLines& lines, const TSet& set, Int i)
   {
      for (auto s = entire(set); !s.at_end(); ++s)
         lines[*s].push_back(i);
   }

   using proxy_base = incidence_proxy_base< incidence_line<typename table_type::primary_tree_type> >;

public:
   using value_type = bool;
   using reference = sparse_elem_proxy<proxy_base>;
   using const_reference = bool;

   explicit RestrictedIncidenceMatrix(Int n = 0) : data(n) {}

   RestrictedIncidenceMatrix(Int r, Int c) : data(r, c) {}

   template <typename Iterator, typename How,
             typename = std::enable_if_t<is_among<How, sparse2d::rowwise, sparse2d::columnwise>::value &&
                                                 assess_iterator_value<Iterator, can_initialize, Set<Int>>::value &&
                                                 (How::value == restriction || assess_iterator<Iterator, check_iterator_feature, end_sensitive>::value)>>
   RestrictedIncidenceMatrix(Int n, How how, Iterator&& src)
      : data(n)
   {
      copy_linewise(ensure_private_mutable(std::forward<Iterator>(src)), lines(*this, my_restriction()),
                    how, is_sequence_of_sets<Iterator>());
   }

   template <typename Iterator, typename How,
             typename=std::enable_if_t<is_among<How, sparse2d::rowwise, sparse2d::columnwise>::value &&
                                                assess_iterator_value<Iterator, can_initialize, Set<Int>>::value &&
                                                (How::value==restriction || assess_iterator<Iterator, check_iterator_feature, end_sensitive>::value)>>
   RestrictedIncidenceMatrix(Int r, Int c, How how, Iterator&& src)
      : data(r, c)
   {
      copy_linewise(ensure_private_mutable(std::forward<Iterator>(src)), lines(*this, my_restriction()),
                    how, is_sequence_of_sets<Iterator>());
   }

   template <typename How, typename... Sources,
             typename=std::enable_if_t<is_among<How, sparse2d::rowwise, sparse2d::columnwise>::value &&
                                                mlist_and_nonempty<fits_for_append_to_IM<Sources>...>::value>>
   RestrictedIncidenceMatrix(How how, const Sources&... src)
      : data(0)
   {
      append_impl(how, src...);
   }

   RestrictedIncidenceMatrix(std::initializer_list<std::initializer_list<Int>> l)
      : data(l.size())
   {
      static_assert(restriction==sparse2d::only_rows, "a column-only restricted incidence matrix can't be constructed from an initializer list");
      copy_linewise(l.begin(), pm::rows(*this), my_restriction(), std::false_type());
   }

   RestrictedIncidenceMatrix(RestrictedIncidenceMatrix&& M)
      : data(std::move(M.data)) {}

   void swap(RestrictedIncidenceMatrix& M) { data.swap(M.data); }

   void clear() { data.clear(); }

protected:
   proxy_base random_impl(Int i, Int j, std::false_type)
   {
      return proxy_base(this->row(i), j);
   }
   proxy_base random_impl(Int i, Int j, std::true_type)
   {
      return proxy_base(this->col(j), i);
   }
   bool random_impl(Int i, Int j, std::false_type) const
   {
      return this->row(i).exists(j);
   }
   bool random_impl(Int i, Int j, std::true_type) const
   {
      return this->col(j).exists(i);
   }
public:
   reference operator() (Int i, Int j)
   {
      return random_impl(i, j, bool_constant<restriction==sparse2d::only_cols>());
   }
   const_reference operator() (Int i, Int j) const
   {
      return random_impl(i, j, bool_constant<restriction==sparse2d::only_cols>());
   }

   bool exists(Int i, Int j) const
   {
      return random_impl(i, j, bool_constant<restriction==sparse2d::only_cols>());
   }

private:
   auto append_lines_start(sparse2d::rowwise, Int n)
   {
      const Int oldrows = data.rows();
      data.resize_rows(oldrows + n);
      return pm::rows(*this).begin() + oldrows;
   }

   auto append_lines_start(sparse2d::columnwise, Int n)
   {
      const Int oldcols=data.cols();
      data.resize_cols(oldcols + n);
      return pm::cols(*this).begin() + oldcols;
   }

   template <typename Container, typename... MoreSources>
   auto append_lines_start(my_restriction how,
                           std::enable_if_t<isomorphic_to_container_of<Container, Int, allow_conversion>::value, Int> n,
                           const Container& c, MoreSources&&... more_src)
   {
      return append_lines_start(how, n+1, std::forward<MoreSources>(more_src)...);
   }

   template <typename Container, typename... MoreSources>
   auto append_lines_start(my_restriction how,
                           std::enable_if_t<isomorphic_to_container_of<Container, Set<Int>, allow_conversion>::value, Int> n,
                           const Container& c, MoreSources&&... more_src)
   {
      return append_lines_start(how, n+c.size(), std::forward<MoreSources>(more_src)...);
   }

   template <typename TMatrix, typename... MoreSources>
   auto append_lines_start(my_restriction how, Int n, const GenericIncidenceMatrix<TMatrix>& m, MoreSources&&... more_src)
   {
      return append_lines_start(how, n+(restriction==sparse2d::only_rows ? m.rows() : m.cols()), std::forward<MoreSources>(more_src)...);
   }

   template <typename Container, typename... MoreSources>
   auto append_lines_start(my_restriction how,
                           std::enable_if_t<isomorphic_to_container_of<Container, IncidenceMatrix<>, allow_conversion>::value, Int> n,
                           const Container& c, MoreSources&&... more_src)
   {
      for (const auto& m : c)
         n += (restriction==sparse2d::only_rows ? m.rows() : m.cols());
      return append_lines_start(how, n, std::forward<MoreSources>(more_src)...);
   }

   template <typename... Sources>
   Int append_lines_start(cross_restriction, Int, Sources&&...)
   {
      return restriction == sparse2d::only_rows ? data.cols() : data.rows();
   }

   template <typename Iterator, typename TSet>
   void append_lines_from(my_restriction, Iterator& dst, const GenericSet<TSet, Int, operations::cmp>& s)
   {
      *dst = s.top();
      ++dst;
   }

   template <typename Iterator, typename Container>
   std::enable_if_t<isomorphic_to_container_of<Container, Int, is_set>::value>
   append_lines_from(my_restriction, Iterator& dst, const Container& c)
   {
      dst->fill(entire(c));
      ++dst;
   }

   template <typename THow, typename Iterator, typename TMatrix>
   void append_lines_from(THow how, Iterator& dst, const GenericIncidenceMatrix<TMatrix>& m)
   {
      for (auto src=entire(sparse2d::lines(m.top(), how)); !src.at_end(); ++src)
         append_lines_from(how, dst, *src);
   }

   template <typename Iterator, typename Container>
   std::enable_if_t<isomorphic_to_container_of<Container, Set<Int>, allow_conversion>::value ||
                    isomorphic_to_container_of<Container, IncidenceMatrix<>, allow_conversion>::value>
   append_lines_from(my_restriction how, Iterator& dst, const Container& c)
   {
      for (auto src = entire(c); !src.at_end(); ++src)
         append_lines_from(how, dst, *src);
   }

   template <typename Container>
   std::enable_if_t<isomorphic_to_container_of<Container, Int, allow_conversion>::value>
   append_lines_from(cross_restriction, Int& r, const Container& c)
   {
      append_across(sparse2d::lines(*this, my_restriction()), c, r);
      ++r;
   }

   template <typename How, typename Iterator>
   void append_lines(How, Iterator&) {}

   template <typename How, typename Iterator, typename Source, typename... MoreSources>
   void append_lines(How how, Iterator&& dst, const Source& src, MoreSources&&... more_src)
   {
      append_lines_from(how, dst, src);
      append_lines(how, dst, std::forward<MoreSources>(more_src)...);
   }

   template <typename How, typename... Sources>
   void append_impl(How how, Sources&&... src)
   {
      append_lines(how, append_lines_start(how, 0, std::forward<Sources>(src)...), std::forward<Sources>(src)...);
   }

public:
   template <typename TMatrix>
   RestrictedIncidenceMatrix& operator/= (const GenericIncidenceMatrix<TMatrix>& m)
   {
      append_impl(sparse2d::rowwise(), m);
      return *this;
   }

   template <typename TSet>
   RestrictedIncidenceMatrix& operator/= (const GenericSet<TSet, Int, operations::cmp>& s)
   {
      append_impl(sparse2d::rowwise(), s.top());
      return *this;
   }

   template <typename TMatrix>
   RestrictedIncidenceMatrix& operator|= (const GenericIncidenceMatrix<TMatrix>& m)
   {
      append_impl(sparse2d::columnwise(), m);
      return *this;
   }

   template <typename TSet>
   RestrictedIncidenceMatrix& operator|= (const GenericSet<TSet, Int, operations::cmp>& s)
   {
      append_impl(sparse2d::columnwise(), s.top());
      return *this;
   }

   /// append one or more rows
   template <typename... Sources,
             typename=std::enable_if_t<mlist_and_nonempty<fits_for_append_to_IM<Sources>...>::value>>
   void append_rows(const Sources&... src)
   {
      append_impl(sparse2d::rowwise(), src...);
   }

   /// append one or more columns
   template <typename... Sources,
             typename=std::enable_if_t<mlist_and_nonempty<fits_for_append_to_IM<Sources>...>::value>>
   void append_columns(const Sources&... src)
   {
      append_impl(sparse2d::columnwise(), src...);
   }

   void squeeze() { data.squeeze(); }

   template <typename Permutation>
   std::enable_if_t<isomorphic_to_container_of<Permutation, Int>::value>
   permute_rows(const Permutation& perm)
   {
      data.permute_rows(perm, std::false_type());
   }

   template <typename Permutation>
   std::enable_if_t<isomorphic_to_container_of<Permutation, Int>::value>
   permute_cols(const Permutation& perm)
   {
      data.permute_cols(perm, std::false_type());
   }

   template <typename InvPermutation>
   std::enable_if_t<isomorphic_to_container_of<InvPermutation, Int>::value>
   permute_inv_rows(const InvPermutation& inv_perm)
   {
      data.permute_rows(inv_perm, std::true_type());
   }

   template <typename InvPermutation>
   std::enable_if_t<isomorphic_to_container_of<InvPermutation, Int>::value>
   permute_inv_cols(const InvPermutation& inv_perm)
   {
      data.permute_cols(inv_perm, std::true_type());
   }

#if POLYMAKE_DEBUG
   void check() const { data.check(); }
#endif
   friend class Rows<RestrictedIncidenceMatrix>;
   friend class Cols<RestrictedIncidenceMatrix>;
   template <typename, typename, bool, sparse2d::restriction_kind, typename> friend class sparse2d::Rows;
   template <typename, typename, bool, sparse2d::restriction_kind, typename> friend class sparse2d::Cols;
   template <typename> friend class IncidenceMatrix;
};

template <sparse2d::restriction_kind restriction>
class Rows< RestrictedIncidenceMatrix<restriction> >
   : public sparse2d::Rows< RestrictedIncidenceMatrix<restriction>, nothing, false, restriction,
                            operations::masquerade<incidence_line> > {
protected:
   ~Rows();
public:
   using container_category = std::conditional_t<restriction==sparse2d::only_rows, random_access_iterator_tag, output_iterator_tag>;
};

template <sparse2d::restriction_kind restriction>
class Cols< RestrictedIncidenceMatrix<restriction> >
   : public sparse2d::Cols< RestrictedIncidenceMatrix<restriction>, nothing, false, restriction,
                            operations::masquerade<incidence_line> > {
protected:
   ~Cols();
public:
   using container_category = std::conditional<restriction==sparse2d::only_cols, random_access_iterator_tag, output_iterator_tag>;
};

template <sparse2d::restriction_kind restriction>
struct spec_object_traits< RestrictedIncidenceMatrix<restriction> >
   : spec_object_traits<is_container> {
   static constexpr int dimension = 2;

   using serialized = std::conditional_t<restriction==sparse2d::only_rows,
                                         Rows< RestrictedIncidenceMatrix<restriction> >,
                                         Cols< RestrictedIncidenceMatrix<restriction> >>;

   static serialized& serialize(RestrictedIncidenceMatrix<restriction>& M)
   {
      return reinterpret_cast<serialized&>(M);
   }
   static const serialized& serialize(const RestrictedIncidenceMatrix<restriction>& M)
   {
      return reinterpret_cast<const serialized&>(M);
   }
};

template <typename symmetric>
class IncidenceMatrix_base {
protected:
   using table_type = sparse2d::Table<nothing, symmetric::value>;
   shared_object<table_type, AliasHandlerTag<shared_alias_handler>> data;

   table_type& get_table() { return *data; }
   const table_type& get_table() const { return *data; }

   friend IncidenceMatrix_base& make_mutable_alias(IncidenceMatrix_base& alias, IncidenceMatrix_base& owner)
   {
      alias.data.make_mutable_alias(owner.data);
      return alias;
   }
   IncidenceMatrix_base() = default;

   IncidenceMatrix_base(Int r, Int c)
      : data(r, c) {}

   template <sparse2d::restriction_kind restriction>
   explicit IncidenceMatrix_base(sparse2d::Table<nothing, symmetric::value, restriction>&& input_data)
      : data(std::move(input_data)) {}

   template <typename> friend class Rows;
   template <typename> friend class Cols;
   template <typename, typename, bool, sparse2d::restriction_kind, typename> friend class sparse2d::Rows;
   template <typename, typename, bool, sparse2d::restriction_kind, typename> friend class sparse2d::Cols;
   template <bool, typename> friend class incidence_line_factory;
   template <typename> friend class incidence_line_base;
   template <typename, alias_kind> friend class alias;
};

template <typename symmetric>
class Rows< IncidenceMatrix_base<symmetric> >
   : public sparse2d::Rows< IncidenceMatrix_base<symmetric>, nothing, symmetric::value, sparse2d::full,
                            operations::masquerade<incidence_line> > {
protected:
   ~Rows();
};

template <typename symmetric>
class Cols< IncidenceMatrix_base<symmetric> >
   : public sparse2d::Cols< IncidenceMatrix_base<symmetric>, nothing, symmetric::value, sparse2d::full,
                            operations::masquerade<incidence_line> > {
protected:
   ~Cols();
};


/** @class IncidenceMatrix
    @brief 0/1 incidence matrix.

   The only @ref persistent class from the incidence matrix family.
   The implementation is based on a two-dimensional grid of <a href="AVL.html">balanced binary search (AVL) trees</a>,
   the same as for @see SparseMatrix. The whole internal data structure
   is attached to a smart pointer with @see {reference counting}.

   A symmetric incidence matrix is a square matrix whose elements `(i,j)` and `(j,i)`
   are always equal. Internally it is stored in a triangular form, avoiding redundant elements, but appears as a full square.

*/

template <typename symmetric>
class IncidenceMatrix
   : public IncidenceMatrix_base<symmetric>
   , public GenericIncidenceMatrix< IncidenceMatrix<symmetric> > {
protected:
   using base_t = IncidenceMatrix_base<symmetric>;

   friend IncidenceMatrix& make_mutable_alias(IncidenceMatrix& alias, IncidenceMatrix& owner)
   {
      return static_cast<IncidenceMatrix&>(make_mutable_alias(static_cast<base_t&>(alias), static_cast<base_t&>(owner)));
   }

   /// initialize from a dense boolean sequence in row order
   template <typename Iterator>
   void init_impl(Iterator&& src, std::true_type)
   {
      const Int n = this->cols();
      for (auto r_i = entire(pm::rows(static_cast<base_t&>(*this))); !r_i.at_end(); ++r_i) {
         Int i = 0;
         if (symmetric::value) {
            i = r_i.index();
            std::advance(src, i);
         }
         for (; i < n; ++i, ++src)
            if (*src) r_i->push_back(i);
      }
   }

   /// input already ordered
   template <typename Iterator>
   void init_rowwise(Iterator&& src, std::true_type)
   {
      copy_range(std::forward<Iterator>(src), entire(pm::rows(static_cast<base_t&>(*this))));
   }

   /// input in uncertain order
   template <typename Iterator>
   void init_rowwise(Iterator&& src, std::false_type)
   {
      for (auto r_i=entire(pm::rows(static_cast<base_t&>(*this))); !r_i.at_end(); ++r_i, ++src)
         r_i->fill(entire(*src));
   }

   /// initialize rowwise from a sequence of sets
   template <typename Iterator>
   void init_impl(Iterator&& src, std::false_type)
   {
      init_rowwise(std::forward<Iterator>(src), is_sequence_of_sets<Iterator>());
   }

   typedef incidence_proxy_base< incidence_line<typename base_t::table_type::primary_tree_type> > proxy_base;
public:
   using unknown_columns_type = std::conditional_t<symmetric::value, void, RestrictedIncidenceMatrix<>>;
   using value_type = bool;
   using reference = sparse_elem_proxy<proxy_base>;
   using const_reference = bool;

   /// Create an empty IncidenceMatrix.
   IncidenceMatrix() {}

   /// Create an empty IncidenceMatrix with @a r rows and @a c columns initialized with zeroes.
   IncidenceMatrix(Int r, Int c)
      : base_t(r,c) {}

   /** @brief Create an IncidenceMatrix IncidenceMatrix with @a r rows and @a c columns and initialize it from a data sequence.

       @a src should iterate either over @a r&times;@a c boolean values, corresponding to the
       elements in the row order (the column index changes first,) or over @a r sets with
       integer elements (or convertible to integer), which are assigned to the matrix rows.

       In the symmetric case the redundant elements must be present in the input sequence; their values are ignored.

       @param r the number of rows
       @param c the number of columns
       @param src an iterator
   */
   template <typename Iterator>
   IncidenceMatrix(Int r, Int c, Iterator&& src)
      : base_t(r, c)
   {
      init_impl(ensure_private_mutable(std::forward<Iterator>(src)),
                bool_constant<(object_traits<typename iterator_traits<Iterator>::value_type>::total_dimension==0)>());
   }

   IncidenceMatrix(const GenericIncidenceMatrix<IncidenceMatrix>& M)
      : base_t(M.top()) {}

   template <typename Matrix2, typename=std::enable_if_t<IncidenceMatrix::template compatible_symmetry_types<Matrix2>()>>
   IncidenceMatrix(const GenericIncidenceMatrix<Matrix2>& M)
      : base_t(M.rows(), M.cols())
   {
      init_impl(pm::rows(M).begin(), std::false_type());
   }

   template <sparse2d::restriction_kind restriction, typename=std::enable_if_t<!symmetric::value && restriction != sparse2d::full>>
   explicit IncidenceMatrix(RestrictedIncidenceMatrix<restriction>&& M)
      : base_t(std::move(M.data)) {}

   /// Construct a matrix by rowwise or columnwise concatenation of given matrices and/or sets.
   /// Dimensions are set automatically to encompass all input elements.
   template <typename How, typename... Sources,
             typename=std::enable_if_t<!symmetric::value && is_among<How, sparse2d::rowwise, sparse2d::columnwise>::value &&
             mlist_and_nonempty<fits_for_append_to_IM<Sources>...>::value>>
   IncidenceMatrix(How how, const Sources&... src)
      : base_t(RestrictedIncidenceMatrix<How::value>(how, src...).data) {}

   /// Construct a matrix from a given sequence of row sets.
   /// Number of columns is set automatically to encompass all input elements.
   template <typename Container, typename=std::enable_if_t<!symmetric::value && isomorphic_to_container_of<Container, Set<Int>, allow_conversion>::value>>
   explicit IncidenceMatrix(const Container& src)
      : base_t(RestrictedIncidenceMatrix<>(src.size(), sparse2d::rowwise(), src.begin()).data) {}

   /// Construct a matrix with a prescribed number of columns from a given sequence of row sets
   template <typename Container,
             typename=std::enable_if_t<!symmetric::value && isomorphic_to_container_of<Container, Set<Int>, allow_conversion>::value>>
   IncidenceMatrix(const Container& src, Int c)
      : base_t(src.size(), c)
   {
      init_impl(src.begin(), std::false_type());
   }

   IncidenceMatrix(Int r, Int c, std::initializer_list<bool> l)
      : base_t(r, c)
   {
      if (POLYMAKE_DEBUG && r*c != l.size())
         throw std::runtime_error("initializer_list size does not match the dimensions");
      init_impl(l.begin(), std::true_type());
   }

   IncidenceMatrix(std::initializer_list<std::initializer_list<Int>> l)
      : base_t(RestrictedIncidenceMatrix<>(l).data) {}

   IncidenceMatrix& operator= (const IncidenceMatrix& other) { assign(other); return *this; }
   using IncidenceMatrix::generic_type::operator=;

   template <sparse2d::restriction_kind restriction, typename=std::enable_if_t<!symmetric::value && restriction != sparse2d::full>>
   IncidenceMatrix& operator= (RestrictedIncidenceMatrix<restriction>&& M)
   {
      this->data.replace(std::move(M.data));
      return *this;
   }

   /// Swap the contents with that of another matrix in an efficient way.
   void swap(IncidenceMatrix& M) { this->data.swap(M.data); }

   friend void relocate(IncidenceMatrix* from, IncidenceMatrix* to)
   {
      relocate(&from->data, &to->data);
   }

   /**  @brief Extend or truncate to new dimensions (@a m rows, @a n columns).
        Surviving elements keep their values, new elements are implicitly @c false.

        @c IncidenceMatrix deploys an adaptive reallocation strategy similar to @c std::vector,
        reserving additional stock memory by every reallocation. If you repeatedly increase the matrix dimensions by one,
        the amortized reallocation costs will be proportional to the logarithm of the final dimension.

        A special case, looking at the first glance like a "no operation": @c{ M.resize(M.rows(), M.cols()) },
        gets rid of this extra allocated storage.
   */
   void resize(Int m, Int n) { this->data->resize(m, n); }

   /// Clear contents.
   void clear() { this->data.apply(shared_clear()); }

   /// Clear contents.
   void clear(Int r, Int c) { this->data.apply(typename base_t::table_type::shared_clear(r, c)); }

   /// Entry at row i column j.
   reference operator() (Int i, Int j)
   {
      if (POLYMAKE_DEBUG) {
         if (i < 0 || i >= this->rows() || j < 0 || j >= this->cols())
            throw std::runtime_error("IncidenceMatrix::operator() - index out of range");
      }
      return proxy_base(pm::rows(static_cast<base_t&>(*this))[i], j);
   }

   /// Entry at row i column j (const).
   const_reference operator() (Int i, Int j) const
   {
      if (POLYMAKE_DEBUG) {
         if (i < 0 || i >= this->rows() || j < 0 || j >= this->cols())
            throw std::runtime_error("IncidenceMatrix::operator() - index out of range");
      }
      return pm::rows(static_cast<const base_t&>(*this))[i].exists(j);
   }

   /// Returns the entry at position (i,j).
   bool exists(Int i, Int j) const { return operator()(i, j); }

   template <typename row_number_consumer, typename col_number_consumer>
   void squeeze(const row_number_consumer& rnc, const col_number_consumer& cnc) { this->data->squeeze(rnc,cnc); }

   template <typename row_number_consumer>
   void squeeze(const row_number_consumer& rnc) { this->data->squeeze(rnc); }

   /// Delete empty rows and columns, renumber the rest and reduce the dimensions.
   void squeeze() { this->data->squeeze(); }

   template <typename row_number_consumer>
   void squeeze_rows(const row_number_consumer& rnc) { this->data->squeeze_rows(rnc); }

   /// Delete empty rows, renumber the rest and reduce the dimensions.
   void squeeze_rows() { this->data->squeeze_rows(); }

   template <typename col_number_consumer>
   void squeeze_cols(const col_number_consumer& cnc) { this->data->squeeze_cols(cnc); }

   /// Delete empty columns, renumber the rest and reduce the dimensions.
   void squeeze_cols() { this->data->squeeze_cols(); }

   /// Permute the rows according to the given permutation.
   template <typename Permutation>
   std::enable_if_t<isomorphic_to_container_of<Permutation, Int>::value>
   permute_rows(const Permutation& perm)
   {
      this->data->permute_rows(perm, std::false_type());
   }

   /// Permute the columns according to the given permutation.
   template <typename Permutation>
   std::enable_if_t<isomorphic_to_container_of<Permutation, Int>::value>
   permute_cols(const Permutation& perm)
   {
      this->data->permute_cols(perm, std::false_type());
   }

   /// Permute the rows according to the inverse of the given permutation.
   template <typename InvPermutation>
   std::enable_if_t<isomorphic_to_container_of<InvPermutation, Int>::value>
   permute_inv_rows(const InvPermutation& inv_perm)
   {
      this->data->permute_rows(inv_perm, std::true_type());
   }

   /// Permute the columns according to the inverse of the given permutation.
   template <typename InvPermutation>
   std::enable_if_t<isomorphic_to_container_of<InvPermutation, Int>::value>
   permute_inv_cols(const InvPermutation& inv_perm)
   {
      this->data->permute_cols(inv_perm, std::true_type());
   }

   template <typename Permutation, typename InvPermutation,
             typename=std::enable_if_t<symmetric::value, typename mproject1st<void, Permutation>::type>>
   IncidenceMatrix copy_permuted(const Permutation& perm, const InvPermutation& inv_perm) const
   {
      const Int n = this->rows();
      IncidenceMatrix result(n, n);
      result.data.get()->copy_permuted(*this->data, perm, inv_perm);
      return result;
   }

#if POLYMAKE_DEBUG
   void check() const { this->data->check(); }
#endif
protected:
   void assign(const GenericIncidenceMatrix<IncidenceMatrix>& M) { this->data=M.top().data; }

   template <typename Matrix>
   void assign(const GenericIncidenceMatrix<Matrix>& M)
   {
      if (this->data.is_shared() || this->rows() != M.rows() || this->cols() != M.cols())
         // circumvent the symmetry checks, they are already done in GenericIncidenceMatrix methods
         assign(IncidenceMatrix(M.rows(), M.cols(), pm::rows(M).begin()));
      else
         GenericIncidenceMatrix<IncidenceMatrix>::assign(M);
   }

   template <typename Matrix2>
   void append_rows(const Matrix2& m)
   {
      const Int old_rows = this->rows();
      this->data.apply(typename base_t::table_type::shared_add_rows(m.rows()));
      copy_range(entire(pm::rows(m)), pm::rows(static_cast<base_t&>(*this)).begin() + old_rows);
   }

   template <typename Set2>
   void append_row(const Set2& s)
   {
      const Int old_rows = this->rows();
      this->data.apply(typename base_t::table_type::shared_add_rows(1));
      this->row(old_rows) = s;
   }

   template <typename Matrix2>
   void append_cols(const Matrix2& m)
   {
      const Int old_cols = this->cols();
      this->data.apply(typename base_t::table_type::shared_add_cols(m.cols()));
      copy_range(entire(pm::cols(m)), pm::cols(static_cast<base_t&>(*this)).begin() + old_cols);
   }

   template <typename Set2>
   void append_col(const Set2& s)
   {
      const Int old_cols = this->cols();
      this->data.apply(typename base_t::table_type::shared_add_cols(1));
      this->col(old_cols) = s;
   }

   template <typename> friend class GenericIncidenceMatrix;
   friend class Rows<IncidenceMatrix>;
   friend class Cols<IncidenceMatrix>;
   template <typename, typename, bool, sparse2d::restriction_kind, typename> friend class sparse2d::Rows;
   template <typename, typename, bool, sparse2d::restriction_kind, typename> friend class sparse2d::Cols;
   template <typename, typename> friend class BlockMatrix;
};

template <typename symmetric>
struct check_container_feature< IncidenceMatrix<symmetric>, Symmetric >
   : bool_constant<symmetric::value> {};

// FIXME: temporary hack until all Vector<IncidenceMatrix> disappear from atint
template <typename symmetric>
struct spec_object_traits<IncidenceMatrix<symmetric>> : spec_object_traits<is_container> {
   static constexpr int is_resizeable = 2 - symmetric::value;
   static const IncidenceMatrix<symmetric>& zero()
   {
      static const IncidenceMatrix<symmetric> z{};
      return z;
   }
};

template <bool rowwise, typename BaseRef>
class incidence_line_factory {
public:
   typedef BaseRef first_argument_type;
   typedef Int second_argument_type;
   using tree_type = std::conditional_t<rowwise, typename pure_type_t<BaseRef>::table_type::row_tree_type,
                                                 typename pure_type_t<BaseRef>::table_type::col_tree_type>;
   typedef incidence_line<typename inherit_ref<tree_type, BaseRef>::type> result_type;

   result_type operator() (BaseRef matrix, Int index) const
   {
      return result_type(matrix, index);
   }
};

template <bool rowwise>
class incidence_line_factory<rowwise, void> : public operations::incomplete {};

template <bool rowwise, typename BaseRef>
struct operation_cross_const_helper< incidence_line_factory<rowwise, BaseRef> > {
   typedef incidence_line_factory<rowwise, typename attrib<BaseRef>::minus_const> operation;
   typedef incidence_line_factory<rowwise, typename attrib<BaseRef>::plus_const> const_operation;
};

template <bool rowwise, typename Iterator1, typename Iterator2, typename Reference1, typename Reference2>
struct binary_op_builder< incidence_line_factory<rowwise>, Iterator1, Iterator2, Reference1, Reference2>
   : empty_op_builder< incidence_line_factory<rowwise,Reference1> > {};

template <typename TSymmetric>
class Rows< IncidenceMatrix<TSymmetric> >
   : public modified_container_pair_impl< Rows< IncidenceMatrix<TSymmetric> >,
                                          mlist< Container1Tag< same_value_container< IncidenceMatrix_base<TSymmetric>& > >,
                                                 Container2Tag< sequence >,
                                                 OperationTag< pair< incidence_line_factory<true>,
                                                                     BuildBinaryIt<operations::dereference2> > >,
                                                 MasqueradedTop > > {
protected:
   ~Rows();
public:
   auto get_container1()
   {
      return same_value_container< IncidenceMatrix_base<TSymmetric>& >(this->hidden());
   }
   auto get_container1() const
   {
      return same_value_container< const IncidenceMatrix_base<TSymmetric>& >(this->hidden());
   }
   sequence get_container2() const
   {
      return sequence(0, this->hidden().get_table().rows());
   }
   void resize(Int n)
   {
      this->hidden().get_table().resize_rows(n);
   }
};

template <typename TSymmetric>
class Cols< IncidenceMatrix<TSymmetric> >
   : public modified_container_pair_impl< Cols< IncidenceMatrix<TSymmetric> >,
                                          mlist< Container1Tag< same_value_container< IncidenceMatrix_base<TSymmetric>& > >,
                                                 Container2Tag< sequence >,
                                                 OperationTag< pair< incidence_line_factory<false>,
                                                                     BuildBinaryIt<operations::dereference2> > >,
                                                 MasqueradedTop > > {
protected:
   ~Cols();
public:
   auto get_container1()
   {
      return same_value_container< IncidenceMatrix_base<TSymmetric>& >(this->hidden());
   }
   auto get_container1() const
   {
      return same_value_container< const IncidenceMatrix_base<TSymmetric>& >(this->hidden());
   }
   sequence get_container2() const
   {
      return sequence(0, this->hidden().get_table().cols());
   }
   void resize(Int n)
   {
      this->hidden().get_table().resize_cols(n);
   }
};

/// Convolution of two incidence relations.
template <typename Matrix1, typename Matrix2>
IncidenceMatrix<>
convolute(const GenericIncidenceMatrix<Matrix1>& m1, const GenericIncidenceMatrix<Matrix2>& m2)
{
   if (POLYMAKE_DEBUG || is_wary<Matrix1>() || is_wary<Matrix2>()) {
      if (m1.cols() != m2.rows())
         throw std::runtime_error("convolute - dimension mismatch");
   }
   IncidenceMatrix<> result(m1.rows(), m2.cols());
   auto r1=rows(m1).begin();
   for (auto dst=entire(rows(result)); !dst.at_end();  ++dst, ++r1)
      accumulate_in(entire(rows(m2.minor(*r1,All))), BuildBinary<operations::add>(), *dst);

   return result;
}

template <typename TMatrix, typename Permutation>
std::enable_if_t<!TMatrix::is_symmetric, typename TMatrix::persistent_type>
permuted_rows(const GenericIncidenceMatrix<TMatrix>& m, const Permutation& perm)
{
   if (POLYMAKE_DEBUG || is_wary<TMatrix>()) {
      if (m.rows() != perm.size())
         throw std::runtime_error("permuted_rows - dimension mismatch");
   }
   return IncidenceMatrix<>(RestrictedIncidenceMatrix<sparse2d::only_rows>(m.rows(), m.cols(), sparse2d::rowwise(), select(rows(m), perm).begin()));
}

template <typename TMatrix, typename Permutation>
std::enable_if_t<!TMatrix::is_symmetric, typename TMatrix::persistent_type>
permuted_cols(const GenericIncidenceMatrix<TMatrix>& m, const Permutation& perm)
{
   if (POLYMAKE_DEBUG || is_wary<TMatrix>()) {
      if (m.cols() != perm.size())
         throw std::runtime_error("permuted_cols - dimension mismatch");
   }
   return IncidenceMatrix<>(RestrictedIncidenceMatrix<sparse2d::only_cols>(m.rows(), m.cols(), sparse2d::columnwise(), select(cols(m), perm).begin()));
}

template <typename TMatrix, typename Permutation>
std::enable_if_t<!TMatrix::is_symmetric, typename TMatrix::persistent_type>
permuted_inv_rows(const GenericIncidenceMatrix<TMatrix>& m, const Permutation& perm)
{
   if (POLYMAKE_DEBUG || is_wary<TMatrix>()) {
      if (m.rows() != perm.size())
         throw std::runtime_error("permuted_inv_rows - dimension mismatch");
   }
   RestrictedIncidenceMatrix<sparse2d::only_rows> result(m.rows(), m.cols());
   copy_range(entire(rows(m)), select(rows(result), perm).begin());
   return IncidenceMatrix<>(std::move(result));
}

template <typename TMatrix, typename Permutation>
std::enable_if_t<!TMatrix::is_symmetric, typename TMatrix::persistent_type>
permuted_inv_cols(const GenericIncidenceMatrix<TMatrix>& m, const Permutation& perm)
{
   if (POLYMAKE_DEBUG || is_wary<TMatrix>()) {
      if (m.cols() != perm.size())
         throw std::runtime_error("permuted_inv_cols - dimension mismatch");
   }
   RestrictedIncidenceMatrix<sparse2d::only_cols> result(m.rows(), m.cols());
   copy_range(entire(cols(m)), select(cols(result), perm).begin());
   return IncidenceMatrix<>(std::move(result));
}

template <typename TMatrix, typename Permutation>
std::enable_if_t<TMatrix::is_symmetric, typename TMatrix::persistent_type>
permuted_rows(const GenericIncidenceMatrix<TMatrix>& m, const Permutation& perm)
{
   if (POLYMAKE_DEBUG || is_wary<TMatrix>()) {
      if (m.rows() != perm.size())
         throw std::runtime_error("permuted_rows - dimension mismatch");
   }
   std::vector<Int> inv_perm(m.rows());
   inverse_permutation(perm,inv_perm);
   return m.top().copy_permuted(perm,inv_perm);
}

template <typename TMatrix, typename Permutation>
std::enable_if_t<TMatrix::is_symmetric && container_traits<Permutation>::is_random, typename TMatrix::persistent_type>
permuted_inv_rows(const GenericIncidenceMatrix<TMatrix>& m, const Permutation& inv_perm)
{
   if (POLYMAKE_DEBUG || is_wary<TMatrix>()) {
      if (m.rows() != inv_perm.size())
         throw std::runtime_error("permuted_inv_rows - dimension mismatch");
   }
   std::vector<Int> perm(m.rows());
   inverse_permutation(inv_perm,perm);
   return m.copy_permuted(perm,inv_perm);
}

template <typename TMatrix, typename Permutation>
std::enable_if_t<TMatrix::is_symmetric && !container_traits<Permutation>::is_random, typename TMatrix::persistent_type>
permuted_inv_rows(const GenericIncidenceMatrix<TMatrix>& m, const Permutation& inv_perm)
{
   if (POLYMAKE_DEBUG || is_wary<TMatrix>()) {
      if (m.rows() != inv_perm.size())
         throw std::runtime_error("permuted_inv_rows - dimension mismatch");
   }
   std::vector<Int> inv_perm_copy(inv_perm.size());
   copy_range(entire(inv_perm), inv_perm_copy.begin());
   return permuted_inv_rows(m,inv_perm_copy);
}

template <typename TMatrix, typename Permutation>
std::enable_if_t<TMatrix::is_symmetric, typename TMatrix::persistent_type>
permuted_cols(const GenericIncidenceMatrix<TMatrix>& m, const Permutation& perm)
{
   return permuted_rows(m,perm);
}

template <typename TMatrix, typename Permutation>
std::enable_if_t<TMatrix::is_symmetric, typename TMatrix::persistent_type>
permuted_inv_cols(const GenericIncidenceMatrix<TMatrix>& m, const Permutation& inv_perm)
{
   return permuted_inv_rows(m,inv_perm);
}

} // end namespace pm

namespace polymake {
   using pm::IncidenceMatrix;
   using pm::RestrictedIncidenceMatrix;
}

namespace std {
   template <typename symmetric>
   void swap(pm::IncidenceMatrix<symmetric>& M1, pm::IncidenceMatrix<symmetric>& M2) { M1.swap(M2); }

   template <pm::sparse2d::restriction_kind restriction>
   void swap(pm::RestrictedIncidenceMatrix<restriction>& M1,
             pm::RestrictedIncidenceMatrix<restriction>& M2)
   {
      M1.swap(M2);
   }

   template <typename TreeRef>
   void swap(pm::incidence_line<TreeRef>& l1, pm::incidence_line<TreeRef>& l2)
   {
      l1.swap(l2);
   }
}


// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End: