1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
|
/* Copyright (c) 1997-2024
Ewgenij Gawrilow, Michael Joswig, and the polymake team
Technische Universität Berlin, Germany
https://polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#pragma once
#include "polymake/GenericSet.h"
#include "polymake/internal/Wary.h"
namespace pm {
template <typename Iterator1, typename Iterator2, bool UseIndex1, bool Renumber, bool Reversed=false>
class indexed_selector
: public Iterator1 {
public:
using first_type = Iterator1;
using second_type = Iterator2;
Iterator2 second;
protected:
typedef bool_constant<UseIndex1> pos_discr;
// 0 - general case
// 1 - sequence::iterator
// 2 - series::iterator
static constexpr int step_kind= UseIndex1 ? 0 :
(is_derived_from<Iterator2, sequence::iterator>::value +
is_derived_from<Iterator2, series::iterator>::value) *
std::is_same<typename accompanying_iterator<Iterator2>::type, sequence::iterator>::value;
using step_discr = int_constant<step_kind>;
private:
Int get_pos1(std::false_type) const
{
return *second;
}
static
Int get_pos1(std::false_type, Int expected)
{
return expected;
}
Int get_pos1(std::true_type, Int expected = 0) const
{
return static_cast<const first_type&>(*this).index();
}
void forw_impl(int_constant<0>)
{
const Int pos = get_pos1(pos_discr());
++second;
if (!at_end())
std::advance(static_cast<first_type&>(*this), Reversed ? pos-*second : *second-pos);
}
void forw_impl(int_constant<1>)
{
++second;
first_type::operator++();
}
void forw_impl(int_constant<2>)
{
++second;
if (!at_end())
std::advance(static_cast<first_type&>(*this), second.step());
}
void back_impl(int_constant<0>)
{
if (second.at_end()) {
--second;
} else {
const Int pos = get_pos1(pos_discr());
--second;
std::advance(static_cast<first_type&>(*this), Reversed ? pos-*second : *second-pos);
}
}
void back_impl(int_constant<1>)
{
--second;
first_type::operator--();
}
void back_impl(int_constant<2>)
{
if (second.at_end()) {
--second;
} else {
--second;
std::advance(static_cast<first_type&>(*this), -second.step());
}
}
Int step_impl(Int i, int_constant<0>)
{
const Int pos = second.at_end() ? second[-1] : get_pos1(pos_discr());
second += i;
return Reversed ? pos-(second.at_end() ? second[-1] : *second) : (second.at_end() ? second[-1] : *second)-pos;
}
Int step_impl(Int i, int_constant<1>)
{
second += i;
return i;
}
Int step_impl(Int i, int_constant<2>)
{
second += i;
return second.step() * i;
}
void contract1(Int i, bool, std::false_type)
{
std::advance(static_cast<first_type&>(*this), i);
}
void contract1(Int i, bool renumber, std::true_type)
{
first_type::contract(renumber, i);
}
void contract1(Int i, bool renumber)
{
contract1(Reversed ? -i : i, renumber, bool_constant<check_iterator_feature<Iterator1, contractable>::value>());
}
public:
using iterator_category = typename least_derived_class<typename iterator_traits<Iterator1>::iterator_category,
typename iterator_traits<Iterator2>::iterator_category>::type;
using difference_type = typename iterator_traits<Iterator2>::difference_type;
using iterator = indexed_selector<typename iterator_traits<Iterator1>::iterator, Iterator2, UseIndex1, Renumber, Reversed>;
using const_iterator = indexed_selector<typename iterator_traits<Iterator1>::const_iterator, Iterator2, UseIndex1, Renumber, Reversed>;
indexed_selector() = default;
indexed_selector(const iterator& it)
: first_type(static_cast<const typename iterator::first_type&>(it))
, second(it.second) {}
template <typename SourceIterator1, typename SourceIterator2,
typename = typename suitable_arg_for_iterator<SourceIterator1, Iterator1>::type,
typename = typename suitable_arg_for_iterator<SourceIterator2, Iterator2>::type>
indexed_selector(const SourceIterator1& first_arg, const SourceIterator2& second_arg, bool adjust=false, Int expected_pos1 = 0)
: first_type(prepare_iterator_arg<Iterator1>(first_arg))
, second(prepare_iterator_arg<Iterator2>(second_arg))
{
if (adjust && !at_end()) contract1(*second-get_pos1(pos_discr(), expected_pos1), !Renumber);
}
template <typename SourceIterator1, typename SourceIterator2,
typename = typename suitable_arg_for_iterator<SourceIterator1, Iterator1>::type,
typename = typename suitable_arg_for_iterator<SourceIterator2, Iterator2>::type>
indexed_selector(const SourceIterator1& first_arg, const SourceIterator2& second_arg, Int offset)
: first_type(prepare_iterator_arg<Iterator1>(first_arg))
, second(prepare_iterator_arg<Iterator2>(second_arg))
{
if (offset) contract1(offset, !Renumber);
}
indexed_selector& operator++ ()
{
forw_impl(step_discr());
return *this;
}
const indexed_selector operator++ (int) { indexed_selector copy=*this; operator++(); return copy; }
indexed_selector& operator--()
{
static_assert(iterator_pair_traits<Iterator1, Iterator2>::is_bidirectional, "iterator is not bidirectional");
back_impl(step_discr());
return *this;
}
const indexed_selector operator-- (int) { indexed_selector copy=*this; operator--(); return copy; }
indexed_selector& operator+= (Int i)
{
static_assert(iterator_pair_traits<Iterator1, Iterator2>::is_random, "iterator is not random-access");
static_cast<first_type&>(*this) += step_impl(i, step_discr());
return *this;
}
indexed_selector& operator-= (Int i)
{
static_assert(iterator_pair_traits<Iterator1, Iterator2>::is_random, "iterator is not random-access");
static_cast<first_type&>(*this) += step_impl(-i, step_discr());
return *this;
}
indexed_selector operator+ (Int i) const { indexed_selector copy=*this; return copy+=i; }
indexed_selector operator- (Int i) const { indexed_selector copy=*this; return copy-=i; }
friend indexed_selector operator+ (Int i, const indexed_selector& it) { return it+i; }
template <typename Other>
std::enable_if_t<is_derived_from_any<Other, iterator, const_iterator>::value, bool>
operator- (const Other& it) const
{
static_assert(iterator_traits<second_type>::is_random, "iterator is not random-access");
return second - it.second;
}
typename first_type::reference operator[] (Int i) const
{
static_assert(iterator_pair_traits<Iterator1, Iterator2>::is_random, "iterator is not random-access");
return static_cast<const first_type&>(*this)[ second[i] - (second.at_end() ? second[-1] : get_pos1(pos_discr())) ];
}
template <typename Other>
std::enable_if_t<is_derived_from_any<Other, iterator, const_iterator>::value, bool>
operator== (const Other& it) const
{
return second==it.second;
}
template <typename Other>
std::enable_if_t<is_derived_from_any<Other, iterator, const_iterator>::value, bool>
operator!= (const Other& it) const
{
return !operator==(it);
}
bool at_end() const
{
return second.at_end();
}
private:
Int index_impl(std::false_type) const { return *second; }
Int index_impl(std::true_type) const { return second.index(); }
public:
Int index() const
{
return index_impl(bool_constant<Renumber>());
}
void rewind()
{
static_assert(check_iterator_feature<Iterator1, rewindable>::value && check_iterator_feature<Iterator2, rewindable>::value,
"iterator is not rewindable");
first_type::rewind();
second.rewind();
}
void contract(bool renumber, Int distance_front, Int distance_back = 0)
{
static_assert(check_iterator_feature<Iterator2, contractable>::value, "iterator is not contractable");
const Int pos = get_pos1(pos_discr());
second.contract(Renumber && renumber, distance_front, distance_back);
contract1(*second-pos, !Renumber && renumber);
}
};
template <typename Iterator1, typename Iterator2, bool UseIndex1, bool Renumber, bool Reversed, typename Feature>
struct check_iterator_feature<indexed_selector<Iterator1, Iterator2, UseIndex1, Renumber, Reversed>, Feature>
: bool_constant<((is_among<Feature, end_sensitive, contractable>::value ||
check_iterator_feature<Iterator1, Feature>::value) &&
check_iterator_feature<Iterator2, Feature>::value)> {};
template <typename Iterator1, typename Iterator2, bool UseIndex1, bool Renumber, bool Reversed>
struct check_iterator_feature<indexed_selector<Iterator1, Iterator2, UseIndex1, Renumber, Reversed>, indexed>
: bool_constant<(!Renumber || check_iterator_feature<Iterator2, indexed>::value)> {};
template <bool Renumber, bool Reverse>
struct sparse_indexed_selector_coupler {
using Controller = std::conditional_t<Reverse, reverse_zipper<set_intersection_zipper>, set_intersection_zipper>;
template <typename Iterator1, typename Iterator2, typename ExpectedFeatures>
struct defs {
typedef iterator_zipper<Iterator1, Iterator2, operations::cmp, Controller, true, false> iterator;
using needed_features1 = ExpectedFeatures; // is already sparse
using needed_features2 = typename mix_features<needed_features1,
typename mlist_prepend_if<Renumber, provide_construction<indexed>, end_sensitive>::type>::type;
};
};
template <bool Renumber, bool Reverse>
struct reverse_coupler< sparse_indexed_selector_coupler<Renumber, Reverse> > {
using type = sparse_indexed_selector_coupler<Renumber, !Reverse>;
};
template <typename Top, typename Params> class indexed_subset_typebase;
namespace subset_classifier {
enum kind { generic, sparse, plain, contiguous, range };
template <typename ContainerRef,
bool maybe = is_derived_from_instance_of<typename deref<ContainerRef>::type, modified_container_typebase>::value>
struct detect_set_of_indices : std::false_type {};
template <typename ContainerRef>
struct detect_set_of_indices<ContainerRef, true>
: std::is_same<typename deref<ContainerRef>::type::operation, BuildUnaryIt<operations::index2element> > {};
template <typename ContainerRef,
bool maybe = is_derived_from_instance_of<typename deref<ContainerRef>::type, indexed_subset_typebase>::value>
struct detect_indexed_slice : std::false_type {};
template <typename ContainerRef>
struct detect_indexed_slice<ContainerRef, true>
: is_among< typename deref<ContainerRef>::type::operation,
operations::apply2< BuildUnaryIt<operations::index2element> >,
pair< nothing, operations::apply2< BuildUnaryIt<operations::index2element> > >,
pair< operations::apply2< BuildUnaryIt<operations::index2element> >,
operations::apply2< BuildUnaryIt<operations::index2element> > >
> {};
template <typename ContainerRef,
bool Renumber = true,
typename TTag = typename object_traits<typename deref<ContainerRef>::type>::generic_tag>
struct index2element : std::false_type {};
template <typename ContainerRef>
struct index2element<ContainerRef, true, is_set> {
static const bool value = detect_set_of_indices<ContainerRef>::value || detect_indexed_slice<ContainerRef>::value;
};
template <typename ContainerRef1, typename ContainerRef2, bool Renumber>
struct index_helper {
static constexpr bool random = iterator_traits<typename container_traits<ContainerRef1>::iterator>::is_random;
static constexpr bool use_index1 = Renumber && check_container_feature<typename deref<ContainerRef1>::type, sparse_compatible>::value;
static constexpr kind
value = check_container_feature<typename deref<ContainerRef1>::type, pm::sparse>::value ||
index2element<ContainerRef1, Renumber>::value
? sparse :
std::is_same<typename container_traits<ContainerRef2>::iterator, sequence::iterator>::value && !use_index1
? plain
: generic;
};
template <typename IteratorPair, typename Operation>
struct iterator_helper {
using iterator = binary_transform_iterator<IteratorPair, Operation>;
};
template <typename IteratorPair>
struct iterator_helper<IteratorPair, void> {
using iterator = IteratorPair;
};
}
template <typename> class RenumberTag {};
template <typename> class HintTag {};
template <typename Top, typename Params>
class indexed_subset_typebase : public manip_container_top<Top, Params> {
public:
using container1_ref_raw = typename extract_container_ref<Params, Container1RefTag, Container1Tag>::type;
using container2_ref = typename extract_container_ref<Params, Container2RefTag, Container2Tag>::type;
typedef effectively_const_t<container1_ref_raw> container1_ref;
typedef typename deref<container1_ref>::minus_ref container1;
typedef typename deref<container2_ref>::minus_ref container2;
static constexpr bool renumber=tagged_list_extract_integral<Params, RenumberTag>(false);
using index_helper = subset_classifier::index_helper<container1_ref, container2_ref, renumber>;
using data_container = container1;
using index_container = container2;
using reference = typename container_traits<data_container>::reference;
using const_reference = typename container_traits<data_container>::const_reference;
using value_type = typename container_traits<data_container>::value_type;
using container_category = typename least_derived_class<typename container_traits<data_container>::category,
typename container_traits<index_container>::category>::type;
using operation = typename mselect<std::enable_if< mtagged_list_extract<Params, OperationTag>::is_specified,
typename mtagged_list_extract<Params, OperationTag>::type >,
std::enable_if< subset_classifier::index2element<container1_ref, renumber>::value,
pair< operations::apply2<BuildUnaryIt<operations::index2element>>,
operations::apply2<BuildUnaryIt<operations::index2element>> > >,
std::enable_if< renumber && index_helper::value == subset_classifier::sparse,
pair< nothing,
operations::apply2<BuildUnaryIt<operations::index2element>> > >,
void>::type;
using must_enforce_features = typename mlist_prepend_if<renumber, indexed, mlist<end_sensitive, rewindable>>::type;
using expected_features = typename manip_container_top<Top, Params>::expected_features;
protected:
static constexpr bool at_end_required = mlist_contains<expected_features, end_sensitive, absorbing_feature>::value,
rewind_required = mlist_contains<expected_features, rewindable, absorbing_feature>::value,
index_required = renumber && (mlist_contains<expected_features, indexed, absorbing_feature>::value ||
check_container_feature<data_container, sparse_compatible>::value);
static constexpr subset_classifier::kind suggested_kind=
subset_classifier::kind(std::is_same<typename mtagged_list_extract<Params, HintTag>::type, sparse>::value
? subset_classifier::sparse : index_helper::value);
public:
static constexpr subset_classifier::kind kind=subset_classifier::kind(
suggested_kind == subset_classifier::plain
? ( at_end_required
? (index_helper::random
? subset_classifier::range : subset_classifier::generic) :
index_required
? (index_helper::random
? subset_classifier::contiguous : subset_classifier::generic) :
rewind_required
? subset_classifier::contiguous : subset_classifier::plain )
: suggested_kind);
protected:
using expected_features1 = typename mlist_difference<expected_features, typename mlist_prepend_if<renumber, indexed, end_sensitive>::type>::type;
using needed_features1 = std::conditional_t<rewind_required,
typename mlist_replace<expected_features1, rewindable, provide_construction<rewindable,false> >::type,
expected_features1>;
using needed_features2 = std::conditional_t<index_required,
typename mix_features<expected_features,
mlist<provide_construction<indexed>, end_sensitive> >::type,
typename mix_features<typename mlist_match_all<expected_features, indexed, absorbing_feature>::complement,
end_sensitive >::type >;
static bool constexpr use_index1=index_helper::use_index1;
public:
Int size() const
{
return this->manip_top().get_container2().size();
}
Int max_size() const
{
return size();
}
bool empty() const
{
return this->manip_top().get_container2().empty();
}
};
template <typename Top, typename Params,
subset_classifier::kind Kind=indexed_subset_typebase<Top, Params>::kind,
typename Category=typename indexed_subset_typebase<Top, Params>::container_category>
class indexed_subset_elem_access
: public indexed_subset_typebase<Top, Params> {
using base_t = indexed_subset_typebase<Top, Params>;
public:
using iterator = indexed_selector<typename ensure_features<typename base_t::data_container, typename base_t::needed_features1>::iterator,
typename ensure_features<typename base_t::index_container, typename base_t::needed_features2>::const_iterator,
base_t::use_index1, base_t::renumber>;
using const_iterator = indexed_selector<typename ensure_features<typename base_t::data_container, typename base_t::needed_features1>::const_iterator,
typename ensure_features<typename base_t::index_container, typename base_t::needed_features2>::const_iterator,
base_t::use_index1, base_t::renumber>;
iterator begin()
{
auto&& c1=this->manip_top().get_container1();
return iterator(ensure(c1, typename base_t::needed_features1()).begin(),
ensure(this->manip_top().get_container2(), typename base_t::needed_features2()).begin(),
true, 0);
}
iterator end()
{
auto&& c1 = this->manip_top().get_container1();
const auto& indices = this->manip_top().get_container2();
return iterator(ensure(c1, typename base_t::needed_features1()).end(),
ensure(indices, typename base_t::needed_features2()).end(),
!iterator_traits<typename iterator::first_type>::is_bidirectional || indices.empty() ? 0 : indices.back() - Int(c1.size()));
}
const_iterator begin() const
{
return const_iterator(ensure(this->manip_top().get_container1(), typename base_t::needed_features1()).begin(),
ensure(this->manip_top().get_container2(), typename base_t::needed_features2()).begin(),
true, 0);
}
const_iterator end() const
{
const auto& c1 = this->manip_top().get_container1();
const auto& indices = this->manip_top().get_container2();
return const_iterator(ensure(c1, typename base_t::needed_features1()).end(),
ensure(indices, typename base_t::needed_features2()).end(),
!iterator_traits<typename iterator::first_type>::is_bidirectional || indices.empty() ? 0 : indices.back() - Int(c1.size()));
}
};
template <typename Top, typename Params, subset_classifier::kind Kind>
class indexed_subset_elem_access<Top, Params, Kind, forward_iterator_tag>
: public indexed_subset_elem_access<Top, Params, Kind, input_iterator_tag> {
public:
decltype(auto) front() { return *(this->begin()); }
decltype(auto) front() const { return *(this->begin()); }
};
template <typename Top, typename Params, subset_classifier::kind Kind>
class indexed_subset_rev_elem_access
: public indexed_subset_elem_access<Top, Params, Kind, forward_iterator_tag> {
using base_t = indexed_subset_elem_access<Top, Params, Kind, forward_iterator_tag>;
public:
using reverse_iterator = indexed_selector<typename ensure_features<typename base_t::data_container, typename base_t::needed_features1>::reverse_iterator,
typename ensure_features<typename base_t::index_container, typename base_t::needed_features2>::const_reverse_iterator,
base_t::use_index1, base_t::renumber, true>;
using const_reverse_iterator = indexed_selector<typename ensure_features<typename base_t::data_container, typename base_t::needed_features1>::const_reverse_iterator,
typename ensure_features<typename base_t::index_container, typename base_t::needed_features2>::const_reverse_iterator,
base_t::use_index1, base_t::renumber, true>;
reverse_iterator rbegin()
{
auto&& c1 = this->manip_top().get_container1();
return reverse_iterator(ensure(c1, typename base_t::needed_features1()).rbegin(),
ensure(this->manip_top().get_container2(), typename base_t::needed_features2()).rbegin(),
true, Int(c1.size())-1);
}
reverse_iterator rend()
{
auto&& c1=this->manip_top().get_container1();
const auto& indices=this->manip_top().get_container2();
return reverse_iterator(ensure(c1, typename base_t::needed_features1()).rend(),
ensure(indices, typename base_t::needed_features2()).rend(),
!iterator_traits<typename reverse_iterator::first_type>::is_bidirectional || indices.empty() ? 0 : indices.front()+1);
}
const_reverse_iterator rbegin() const
{
const auto& c1 = this->manip_top().get_container1();
return const_reverse_iterator(ensure(c1, typename base_t::needed_features1()).rbegin(),
ensure(this->manip_top().get_container2(), typename base_t::needed_features2()).rbegin(),
true, Int(c1.size())-1);
}
const_reverse_iterator rend() const
{
const auto& indices=this->manip_top().get_container2();
return const_reverse_iterator(ensure(this->manip_top().get_container1(), typename base_t::needed_features1()).rend(),
ensure(indices, typename base_t::needed_features2()).rend(),
!iterator_traits<typename reverse_iterator::first_type>::is_bidirectional || indices.empty() ? 0 : indices.front()+1);
}
};
template <typename Top, typename Params, subset_classifier::kind Kind>
class indexed_subset_elem_access<Top, Params, Kind, bidirectional_iterator_tag>
: public indexed_subset_rev_elem_access<Top, Params, Kind> {
public:
decltype(auto) back() { return *(this->rbegin()); }
decltype(auto) back() const { return *(this->rbegin()); }
};
template <typename Top, typename Params>
class indexed_subset_elem_access<Top, Params, subset_classifier::plain, input_iterator_tag>
: public indexed_subset_typebase<Top, Params> {
using base_t = indexed_subset_typebase<Top, Params>;
protected:
using needed_features1 = typename base_t::expected_features;
public:
using iterator = typename ensure_features<typename base_t::container1, needed_features1>::iterator;
using const_iterator = typename ensure_features<typename base_t::container1, needed_features1>::const_iterator;
iterator begin()
{
auto&& c1 = this->manip_top().get_container1();
iterator b = ensure(c1, needed_features1()).begin();
std::advance(b, this->manip_top().get_container2().front());
return b;
}
iterator end()
{
auto&& c1 = this->manip_top().get_container1();
if (iterator_traits<iterator>::is_bidirectional) {
iterator e = ensure(c1, needed_features1()).end();
std::advance(e, this->manip_top().get_container2().back()+1-Int(c1.size()));
return e;
} else {
iterator b = ensure(c1, needed_features1()).begin();
std::advance(b, this->manip_top().get_container2().back()+1);
return b;
}
}
const_iterator begin() const
{
const_iterator b=ensure(this->manip_top().get_container1(), needed_features1()).begin();
std::advance(b, this->manip_top().get_container2().front());
return b;
}
const_iterator end() const
{
const auto& c1 = this->manip_top().get_container1();
if (iterator_traits<const_iterator>::is_bidirectional) {
const_iterator e = ensure(c1, needed_features1()).end();
std::advance(e, this->manip_top().get_container2().back()+1-Int(c1.size()));
return e;
} else {
const_iterator b = ensure(c1, needed_features1()).begin();
std::advance(b, this->manip_top().get_container2().back()+1);
return b;
}
}
};
template <typename Top, typename Params>
class indexed_subset_rev_elem_access<Top, Params, subset_classifier::plain>
: public indexed_subset_elem_access<Top, Params, subset_classifier::plain, forward_iterator_tag> {
using base_t = indexed_subset_elem_access<Top, Params, subset_classifier::plain, forward_iterator_tag>;
public:
using reverse_iterator = typename ensure_features<typename base_t::container1, typename base_t::needed_features1>::reverse_iterator;
using const_reverse_iterator = typename ensure_features<typename base_t::container1, typename base_t::needed_features1>::const_reverse_iterator;
reverse_iterator rbegin()
{
auto&& c1 = this->manip_top().get_container1();
reverse_iterator rb = ensure(c1, typename base_t::needed_features1()).rbegin();
std::advance(rb, Int(c1.size())-1-this->manip_top().get_container2().back());
return rb;
}
reverse_iterator rend()
{
auto&& c1 = this->manip_top().get_container1();
if (iterator_traits<reverse_iterator>::is_bidirectional) {
reverse_iterator re = ensure(c1, typename base_t::needed_features1()).rend();
std::advance(re, -this->manip_top().get_container2().front());
return re;
} else {
reverse_iterator rb = ensure(c1, typename base_t::needed_features1()).rbegin();
std::advance(rb, Int(c1.size()) - this->manip_top().get_container2().front());
return rb;
}
}
const_reverse_iterator rbegin() const
{
const auto& c1 = this->manip_top().get_container1();
const_reverse_iterator rb = ensure(c1, typename base_t::needed_features1()).rbegin();
std::advance(rb, Int(c1.size())-1-this->manip_top().get_container2().back());
return rb;
}
const_reverse_iterator rend() const
{
if (iterator_traits<reverse_iterator>::is_bidirectional) {
const_reverse_iterator re = ensure(this->manip_top().get_container1(), typename base_t::needed_features1()).rend();
std::advance(re, -this->manip_top().get_container2().front());
return re;
} else {
const_reverse_iterator rb = ensure(this->manip_top().get_container1(), typename base_t::needed_features1()).rbegin();
std::advance(rb, Int(this->manip_top().get_container1().size()) - this->manip_top().get_container2().front());
return rb;
}
}
};
template <typename Top, typename Params>
class indexed_subset_elem_access<Top, Params, subset_classifier::contiguous, input_iterator_tag>
: public indexed_subset_typebase<Top, Params> {
using base_t = indexed_subset_typebase<Top, Params>;
protected:
using enforce_features1 = typename mlist_prepend_if<mlist_contains<typename base_t::expected_features, indexed, absorbing_feature>::value,
provide_construction<indexed, false>,
typename mlist_prepend_if<mlist_contains<typename base_t::expected_features, rewindable, absorbing_feature>::value,
provide_construction<rewindable, false>,
mlist<>>::type >::type;
using needed_features1 = typename mix_features<typename base_t::expected_features, enforce_features1>::type;
public:
using iterator = typename ensure_features<typename base_t::container1, needed_features1>::iterator;
using const_iterator = typename ensure_features<typename base_t::container1, needed_features1>::const_iterator;
iterator begin()
{
auto&& c1=this->manip_top().get_container1();
iterator b=ensure(c1, needed_features1()).begin();
b.contract(base_t::renumber, this->manip_top().get_container2().front());
return b;
}
iterator end()
{
iterator b=begin();
std::advance(b, this->size());
return b;
}
const_iterator begin() const
{
const_iterator b=ensure(this->manip_top().get_container1(), needed_features1()).begin();
b.contract(base_t::renumber, this->manip_top().get_container2().front());
return b;
}
const_iterator end() const
{
const_iterator b=begin();
std::advance(b, this->size());
return b;
}
};
template <typename Top, typename Params>
class indexed_subset_rev_elem_access<Top, Params, subset_classifier::contiguous>
: public indexed_subset_elem_access<Top, Params, subset_classifier::contiguous, forward_iterator_tag> {
using base_t = indexed_subset_elem_access<Top, Params, subset_classifier::contiguous, forward_iterator_tag>;
public:
using reverse_iterator = typename ensure_features<typename base_t::container1, typename base_t::needed_features1>::reverse_iterator;
using const_reverse_iterator = typename ensure_features<typename base_t::container1, typename base_t::needed_features1>::const_reverse_iterator;
reverse_iterator rbegin()
{
auto&& c1 = this->manip_top().get_container1();
const auto& indices = this->manip_top().get_container2();
reverse_iterator rb = ensure(c1, typename base_t::needed_features1()).rbegin();
rb.contract(base_t::renumber, Int(c1.size())-1-indices.back(), base_t::index_required ? indices.front() : 0);
return rb;
}
reverse_iterator rend()
{
reverse_iterator rb = rbegin();
std::advance(rb, this->size());
return rb;
}
const_reverse_iterator rbegin() const
{
const auto& c1 = this->manip_top().get_container1();
const auto& indices = this->manip_top().get_container2();
const_reverse_iterator rb = ensure(c1, typename base_t::needed_features1()).rbegin();
rb.contract(base_t::renumber, Int(c1.size())-1-indices.back(), base_t::index_required ? indices.front() : 0);
return rb;
}
const_reverse_iterator rend() const
{
const_reverse_iterator rb=rbegin();
std::advance(rb, this->size());
return rb;
}
};
template <typename Top, typename Params>
class indexed_subset_elem_access<Top, Params, subset_classifier::range, input_iterator_tag>
: public indexed_subset_typebase<Top, Params> {
using base_t = indexed_subset_typebase<Top, Params>;
protected:
using enforce_features1 = typename mlist_prepend_if<mlist_contains<typename base_t::expected_features, indexed, absorbing_feature>::value,
provide_construction<indexed, false>,
typename mlist_prepend_if<mlist_contains<typename base_t::expected_features, rewindable, absorbing_feature>::value,
provide_construction<rewindable, false>,
provide_construction<end_sensitive, false> >::type >::type;
using needed_features1 = typename mix_features<typename base_t::expected_features, enforce_features1>::type;
public:
using iterator = typename ensure_features<typename base_t::container1, needed_features1>::iterator;
using const_iterator = typename ensure_features<typename base_t::container1, needed_features1>::const_iterator;
iterator begin()
{
auto&& c1 = this->manip_top().get_container1();
const auto& indices = this->manip_top().get_container2();
iterator b=ensure(c1, needed_features1()).begin();
b.contract(base_t::renumber, indices.front(), Int(c1.size())-1-indices.back());
return b;
}
iterator end()
{
iterator b = begin();
b += this->size();
return b;
}
const_iterator begin() const
{
const auto& c1 = this->manip_top().get_container1();
const auto& indices = this->manip_top().get_container2();
const_iterator b=ensure(c1, needed_features1()).begin();
b.contract(base_t::renumber, indices.front(), Int(c1.size())-1-indices.back());
return b;
}
const_iterator end() const
{
const_iterator b=begin();
b += this->size();
return b;
}
};
template <typename Top, typename Params>
class indexed_subset_rev_elem_access<Top, Params, subset_classifier::range>
: public indexed_subset_elem_access<Top, Params, subset_classifier::range, forward_iterator_tag> {
using base_t = indexed_subset_elem_access<Top, Params, subset_classifier::range, forward_iterator_tag>;
public:
using reverse_iterator = typename ensure_features<typename base_t::container1, typename base_t::needed_features1>::reverse_iterator;
using const_reverse_iterator = typename ensure_features<typename base_t::container1, typename base_t::needed_features1>::const_reverse_iterator;
reverse_iterator rbegin()
{
auto&& c1 = this->manip_top().get_container1();
const auto& indices = this->manip_top().get_container2();
reverse_iterator rb = ensure(c1, typename base_t::needed_features1()).rbegin();
rb.contract(base_t::renumber, Int(c1.size())-1-indices.back(), indices.front());
return rb;
}
reverse_iterator rend()
{
reverse_iterator rb = rbegin();
rb += this->size();
return rb;
}
const_reverse_iterator rbegin() const
{
const auto& c1 = this->manip_top().get_container1();
const auto& indices = this->manip_top().get_container2();
const_reverse_iterator rb = ensure(c1, typename base_t::needed_features1()).rbegin();
rb.contract(base_t::renumber, Int(c1.size())-1-indices.back(), indices.front());
return rb;
}
const_reverse_iterator rend() const
{
const_reverse_iterator rb=rbegin();
rb += this->size();
return rb;
}
};
template <typename Top, typename Params, subset_classifier::kind Kind>
class indexed_subset_elem_access<Top, Params, Kind, random_access_iterator_tag>
: public indexed_subset_elem_access<Top, Params, Kind, bidirectional_iterator_tag> {
public:
decltype(auto) front()
{
return this->manip_top().get_container1()[ this->manip_top().get_container2().front() ];
}
decltype(auto) front() const
{
return this->manip_top().get_container1()[ this->manip_top().get_container2().front() ];
}
decltype(auto) back()
{
return this->manip_top().get_container1()[ this->manip_top().get_container2().back() ];
}
decltype(auto) back() const
{
return this->manip_top().get_container1()[ this->manip_top().get_container2().back() ];
}
decltype(auto) operator[] (Int i)
{
return this->manip_top().get_container1()[ this->manip_top().get_container2()[i] ];
}
decltype(auto) operator[] (Int i) const
{
return this->manip_top().get_container1()[ this->manip_top().get_container2()[i] ];
}
};
template <typename Top, typename Params>
class indexed_subset_elem_access<Top, Params, subset_classifier::sparse, forward_iterator_tag>
: public indexed_subset_typebase<Top, Params> {
using base_t = indexed_subset_typebase<Top, Params>;
protected:
using it_coupler = typename mtagged_list_extract<Params, IteratorCouplerTag, sparse_indexed_selector_coupler<base_t::renumber, false> >::type;
using needed_features1 = typename it_coupler::template defs<typename container_traits<typename base_t::data_container>::iterator,
typename container_traits<typename base_t::index_container>::const_iterator,
typename base_t::expected_features>::needed_features1;
using needed_features2 = typename it_coupler::template defs<typename container_traits<typename base_t::data_container>::const_iterator,
typename container_traits<typename base_t::index_container>::const_iterator,
typename base_t::expected_features>::needed_features2;
using iterator_pair = typename it_coupler::template defs<typename ensure_features<typename base_t::data_container, needed_features1>::iterator,
typename ensure_features<typename base_t::index_container, needed_features2>::const_iterator,
typename base_t::expected_features>::iterator;
using const_iterator_pair = typename it_coupler::template defs<typename ensure_features<typename base_t::data_container, needed_features1>::const_iterator,
typename ensure_features<typename base_t::index_container, needed_features2>::const_iterator,
typename base_t::expected_features>::iterator;
public:
using iterator = typename subset_classifier::iterator_helper<iterator_pair, typename base_t::operation>::iterator;
using const_iterator = typename subset_classifier::iterator_helper<const_iterator_pair, typename base_t::operation>::iterator;
iterator begin()
{
auto&& c1=this->manip_top().get_container1();
return iterator(ensure(c1, needed_features1()).begin(),
ensure(this->manip_top().get_container2(), needed_features2()).begin());
}
iterator end()
{
auto&& c1=this->manip_top().get_container1();
return iterator(ensure(c1, needed_features1()).end(),
ensure(this->manip_top().get_container2(), needed_features2()).end());
}
const_iterator begin() const
{
return const_iterator(ensure(this->manip_top().get_container1(), needed_features1()).begin(),
ensure(this->manip_top().get_container2(), needed_features2()).begin());
}
const_iterator end() const
{
return const_iterator(ensure(this->manip_top().get_container1(), needed_features1()).end(),
ensure(this->manip_top().get_container2(), needed_features2()).end());
}
Int size() const { return count_it(begin()); }
bool empty() const { return begin().at_end(); }
decltype(auto) front() { return *begin(); }
decltype(auto) front() const { return *begin(); }
};
template <typename Top, typename Params>
class indexed_subset_elem_access<Top, Params, subset_classifier::sparse, bidirectional_iterator_tag>
: public indexed_subset_elem_access<Top, Params, subset_classifier::sparse, forward_iterator_tag> {
using base_t = indexed_subset_elem_access<Top, Params, subset_classifier::sparse, forward_iterator_tag>;
protected:
using rev_coupler = typename reverse_coupler<typename base_t::it_coupler>::type;
public:
using reverse_iterator_pair = typename rev_coupler::template defs<typename ensure_features<typename base_t::data_container, typename base_t::needed_features1>::reverse_iterator,
typename ensure_features<typename base_t::index_container, typename base_t::needed_features2>::const_reverse_iterator,
typename base_t::expected_features>::iterator;
using const_reverse_iterator_pair = typename rev_coupler::template defs<typename ensure_features<typename base_t::data_container, typename base_t::needed_features1>::const_reverse_iterator,
typename ensure_features<typename base_t::index_container, typename base_t::needed_features2>::const_reverse_iterator,
typename base_t::expected_features>::iterator;
using reverse_iterator = typename subset_classifier::iterator_helper<reverse_iterator_pair, typename base_t::operation>::iterator;
using const_reverse_iterator = typename subset_classifier::iterator_helper<const_reverse_iterator_pair, typename base_t::operation>::iterator;
reverse_iterator rbegin()
{
auto&& c1=this->manip_top().get_container1();
return reverse_iterator(ensure(c1, typename base_t::needed_features1()).rbegin(),
ensure(this->manip_top().get_container2(), typename base_t::needed_features2()).rbegin());
}
reverse_iterator rend()
{
auto&& c1=this->manip_top().get_container1();
return reverse_iterator(ensure(c1, typename base_t::needed_features1()).rend(),
ensure(this->manip_top().get_container2(), typename base_t::needed_features2()).rend());
}
const_reverse_iterator rbegin() const
{
return const_reverse_iterator(ensure(this->manip_top().get_container1(), typename base_t::needed_features1()).rbegin(),
ensure(this->manip_top().get_container2(), typename base_t::needed_features2()).rbegin());
}
const_reverse_iterator rend() const
{
return const_reverse_iterator(ensure(this->manip_top().get_container1(), typename base_t::needed_features1()).rend(),
ensure(this->manip_top().get_container2(), typename base_t::needed_features2()).rend());
}
decltype(auto) back() { return *rbegin(); }
decltype(auto) back() const { return *rbegin(); }
};
template <typename Top, typename Params=typename Top::manipulator_params>
class indexed_subset_impl
: public indexed_subset_elem_access<Top, Params> {
public:
typedef indexed_subset_impl<Top, Params> manipulator_impl;
typedef Params manipulator_params;
template <typename FeatureCollector>
struct rebind_feature_collector {
typedef indexed_subset_impl<FeatureCollector, Params> type;
};
};
template <typename ContainerRef1, typename ContainerRef2, typename Params=mlist<>> class IndexedSubset;
template <typename ContainerRef1, typename ContainerRef2, typename Params,
typename Generic1=typename object_traits<typename deref<ContainerRef1>::type>::generic_type,
typename Generic2=typename object_traits<typename deref<ContainerRef2>::type>::generic_type>
class generic_of_indexed_subset {};
template <typename ContainerRef1, typename ContainerRef2, typename Params>
class IndexedSubset
: public container_pair_base<ContainerRef1, ContainerRef2>
, public indexed_subset_impl< IndexedSubset<ContainerRef1, ContainerRef2, Params>,
typename mlist_concat< Container1RefTag<ContainerRef1>, Container2RefTag<ContainerRef2>, Params >::type >
, public generic_of_indexed_subset<ContainerRef1, ContainerRef2, Params> {
public:
using container_pair_base<ContainerRef1, ContainerRef2>::container_pair_base;
Int dim() const { return get_dim(this->get_container1()); }
};
template <typename ContainerRef1, typename ContainerRef2, typename Params,
typename Set1, typename E, typename Comparator, typename Set2>
class generic_of_indexed_subset<ContainerRef1, ContainerRef2, Params,
GenericSet<Set1, E, Comparator>, GenericSet<Set2, Int, operations::cmp> >
: public GenericSet<IndexedSubset<ContainerRef1, ContainerRef2, Params>, E, Comparator> {
public:
decltype(auto) get_comparator() const
{
return this->manip_top().get_container1().get_comparator();
}
};
template <typename ContainerRef1, typename ContainerRef2, typename Params>
struct spec_object_traits< IndexedSubset<ContainerRef1, ContainerRef2, Params> >
: spec_object_traits<is_container> {
static constexpr bool
is_temporary = true,
is_lazy = object_traits<typename deref<ContainerRef1>::type>::is_lazy,
is_always_const = is_effectively_const<ContainerRef1>::value || is_generic_set<ContainerRef1>::value;
};
template <typename ContainerRef1, typename ContainerRef2, typename Params>
struct check_container_feature<IndexedSubset<ContainerRef1, ContainerRef2, Params>, sparse_compatible>
: check_container_feature<typename deref<ContainerRef1>::type, sparse_compatible> {};
template <typename ContainerRef1, typename ContainerRef2, typename Params>
struct check_container_feature<IndexedSubset<ContainerRef1, ContainerRef2, Params>, sparse>
: check_container_feature<typename deref<ContainerRef1>::type, sparse> {};
template <typename ContainerRef1, typename ContainerRef2, typename Params>
struct check_container_feature<IndexedSubset<ContainerRef1, ContainerRef2, Params>, pure_sparse>
: check_container_feature<typename deref<ContainerRef1>::type, pure_sparse> {};
// for index sets of slices, minors, and similar contexts with known full range
class OpenRange
: public sequence {
public:
explicit OpenRange(Int start)
: sequence(start, 0) {}
sequence stretch_dim(Int d) const
{
// for empty containers, we ignore the start value,
// because most of the time OpenRange is used instead of a complement ~[0]
return d ? sequence(start_, d-start_) : sequence(0, 0);
}
};
template <>
struct spec_object_traits< OpenRange >
: spec_object_traits<sequence> {};
inline
OpenRange range_from(Int start)
{
return OpenRange(start);
}
template <typename IndexSet>
std::enable_if_t<!check_container_feature<typename Concrete<IndexSet>::type, sparse_compatible>::value, bool>
set_within_range(const IndexSet& s, Int d)
{
const auto& ss = unwary(concrete(s));
return ss.empty() || (ss.front() >= 0 && ss.back() < d);
}
template <typename IndexSet>
std::enable_if_t<check_container_feature<typename Concrete<IndexSet>::type, sparse_compatible>::value, bool>
set_within_range(const IndexSet& s, Int d)
{
return unwary(concrete(s)).dim() <= d;
}
template <typename IndexSet>
bool set_within_range(const Complement<IndexSet>& s, Int d)
{
// as a special case we allow a complement-based slice or minor of an empty vector resp. matrix
return d == 0 || set_within_range(s.base(), d);
}
template <typename IndexSetRef, typename=void>
struct final_index_set {
using type = add_const_t<unwary_t<IndexSetRef>>;
};
template <typename IndexSet, typename GetDim>
decltype(auto) prepare_index_set(IndexSet&& indices, const GetDim&,
std::enable_if_t<!is_instance_of<pure_type_t<unwary_t<IndexSet>>, Complement>::value &&
!std::is_same<pure_type_t<unwary_t<IndexSet>>, OpenRange>::value, void**> =nullptr)
{
return unwary(std::forward<IndexSet>(indices));
}
template <typename IndexSet, typename GetDim>
auto prepare_index_set(IndexSet&& indices, const GetDim& d,
std::enable_if_t<is_instance_of<pure_type_t<unwary_t<IndexSet>>, Complement>::value, void**> =nullptr)
{
return pure_type_t<unwary_t<IndexSet>>(unwary(std::forward<IndexSet>(indices)), d());
}
template <typename IndexSetRef>
struct final_index_set<IndexSetRef, std::enable_if_t<std::is_same<pure_type_t<IndexSetRef>, OpenRange>::value>> {
using type = const sequence;
};
template <typename GetDim>
sequence prepare_index_set(const OpenRange& indices, const GetDim& d)
{
return indices.stretch_dim(d());
}
template <typename Container, typename IndexSet>
auto select(Container&& c, IndexSet&& indices)
{
if (POLYMAKE_DEBUG || is_wary<Container>() || is_wary<IndexSet>()) {
if (!set_within_range(indices, get_dim(unwary(c))))
throw std::runtime_error("select - indices out of range");
}
using result_type = IndexedSubset<unwary_t<Container>, add_const_t<unwary_t<IndexSet>>>;
return result_type(unwary(std::forward<Container>(c)),
prepare_index_set(std::forward<IndexSet>(indices), [&](){ return get_dim(unwary(c)); }));
}
template <typename ContainerRef1, typename ContainerRef2, typename Params=mlist<>>
class IndexedSlice;
template <typename ContainerRef1, typename ContainerRef2, typename Params,
typename Generic1=typename object_traits<typename deref<ContainerRef1>::type>::generic_type,
typename Generic2=typename object_traits<typename deref<ContainerRef2>::type>::generic_type>
class generic_of_indexed_slice
: public inherit_generic< IndexedSlice<ContainerRef1, ContainerRef2, Params>, typename deref<ContainerRef1>::type>::type {};
template <typename ContainerRef1, typename ContainerRef2, typename Params>
struct IndexedSlice_impl {
using type = indexed_subset_impl< IndexedSlice<ContainerRef1, ContainerRef2, Params>,
typename mlist_concat< Container1RefTag<ContainerRef1>, Container2RefTag<ContainerRef2>,
RenumberTag<std::true_type>, Params >::type >;
};
template <typename ContainerRef1, typename ContainerRef2, typename Params,
bool is_immutable=is_effectively_const<ContainerRef1>::value,
bool is_sparse=check_container_ref_feature<ContainerRef1, sparse>::value,
typename tag=typename object_traits<typename deref<ContainerRef1>::type>::generic_tag,
bool is_bidir=is_derived_from<typename IndexedSlice_impl<ContainerRef1, ContainerRef2, Params>::type::container_category,
bidirectional_iterator_tag>::value>
class IndexedSlice_mod {};
template <typename ContainerRef1, typename ContainerRef2, typename Params>
class IndexedSlice
: public container_pair_base<ContainerRef1, ContainerRef2>
, public IndexedSlice_impl<ContainerRef1, ContainerRef2, Params>::type
, public IndexedSlice_mod<ContainerRef1, ContainerRef2, Params>
, public generic_of_indexed_slice<ContainerRef1, ContainerRef2, Params> {
using base_t = container_pair_base<ContainerRef1, ContainerRef2>;
public:
using generic_mutable_type = typename inherit_generic<IndexedSlice, typename deref<ContainerRef1>::type>::type;
using container_pair_base<ContainerRef1, ContainerRef2>::container_pair_base;
IndexedSlice& operator= (const IndexedSlice& other) { return generic_mutable_type::operator=(other); }
using generic_mutable_type::operator=;
public:
Int dim() const
{
return this->get_container2().size();
}
template <typename, typename, typename, bool, bool, typename, bool> friend class IndexedSlice_mod;
};
template <typename ContainerRef1, typename ContainerRef2, typename Params,
typename Set1, typename E, typename Comparator, typename Set2>
class generic_of_indexed_slice<ContainerRef1, ContainerRef2, Params,
GenericSet<Set1, E, Comparator>, GenericSet<Set2, Int, operations::cmp> >
: public inherit_generic< IndexedSlice<ContainerRef1, ContainerRef2, Params>, typename deref<ContainerRef1>::type>::type {
public:
decltype(auto) get_comparator() const
{
return this->top().get_container1().get_comparator();
}
};
// set, forward category
template <typename ContainerRef1, typename ContainerRef2, typename Params>
class IndexedSlice_mod<ContainerRef1, ContainerRef2, Params, false, false, is_set, false> {
using master = IndexedSlice<ContainerRef1, ContainerRef2, Params>;
protected:
using impl_t = typename IndexedSlice_impl<ContainerRef1, ContainerRef2, Params>::type;
private:
typename impl_t::iterator::second_type rewind_index_impl(const typename impl_t::iterator::second_type&, Int i, forward_iterator_tag)
{
master& me = static_cast<master&>(*this);
typename impl_t::iterator::second_type iit=ensure(me.manip_top().get_container2(), typename master::needed_features2()).begin();
while (iit.index() < i) ++iit;
return iit;
}
typename impl_t::iterator::second_type rewind_index_impl(typename impl_t::iterator::second_type iit, Int i, bidirectional_iterator_tag)
{
if (iit.at_end()) --iit;
std::advance(iit, i-iit.index());
return iit;
}
protected:
typename impl_t::iterator::second_type rewind_index(const typename impl_t::iterator::second_type& iit, Int i)
{
return rewind_index_impl(iit, i, typename iterator_traits<typename impl_t::iterator::second_type>::iterator_category());
}
public:
void clear()
{
master& me = static_cast<master&>(*this);
for (typename impl_t::iterator it = me.begin(); !it.at_end(); )
me.get_container1().erase(it++);
}
typename impl_t::iterator insert(const typename impl_t::iterator& pos, Int i)
{
master& me = static_cast<master&>(*this);
typename impl_t::iterator::second_type iit = rewind_index(pos.second, i);
return typename impl_t::iterator(me.get_container1().insert(pos, *iit), iit);
}
typename impl_t::iterator insert(Int i)
{
master& me = static_cast<master&>(*this);
typename impl_t::iterator::second_type iit = rewind_index(ensure(me.manip_top().get_container2(), typename master::needed_features2()).end(), i);
return typename impl_t::iterator(me.get_container1().insert(*iit), iit);
}
void erase(const typename impl_t::iterator& pos)
{
master& me = static_cast<master&>(*this);
me.get_container1().erase(pos);
}
};
// set, bidirectional category
template <typename ContainerRef1, typename ContainerRef2, typename Params>
class IndexedSlice_mod<ContainerRef1, ContainerRef2, Params, false, false, is_set, true>
: public IndexedSlice_mod<ContainerRef1, ContainerRef2, Params, false, false, is_set, false> {
using base_t = IndexedSlice_mod<ContainerRef1, ContainerRef2, Params, false, false, is_set, false>;
using master = IndexedSlice<ContainerRef1, ContainerRef2, Params>;
protected:
using impl_t = typename base_t::impl_t;
private:
typename impl_t::reverse_iterator::second_type rewind_index_impl(const typename impl_t::reverse_iterator::second_type&, Int i, forward_iterator_tag)
{
master& me = static_cast<master&>(*this);
typename impl_t::reverse_iterator::second_type iit = ensure(me.manip_top().get_container2(), typename master::needed_features2()).rbegin();
while (iit.index() > i) ++iit;
return iit;
}
typename impl_t::reverse_iterator::second_type rewind_index_impl(typename impl_t::reverse_iterator::second_type iit, Int i, bidirectional_iterator_tag)
{
if (iit.at_end()) --iit;
std::advance(iit, iit.index() - i);
return iit;
}
protected:
typename impl_t::reverse_iterator::second_type rewind_index(const typename impl_t::reverse_iterator::second_type& iit, Int i)
{
return rewind_index_impl(iit, i, typename iterator_traits<typename impl_t::reverse_iterator::second_type>::iterator_category());
}
using base_t::rewind_index;
public:
typename impl_t::reverse_iterator insert(const typename impl_t::reverse_iterator& pos, Int i)
{
master& me = static_cast<master&>(*this);
typename impl_t::reverse_iterator::second_type iit = rewind_index(pos.second, i);
return typename impl_t::reverse_iterator(me.get_container1().insert(pos, *iit), iit);
}
using base_t::insert;
void erase(const typename impl_t::reverse_iterator& pos)
{
master& me=static_cast<master&>(*this);
me.get_container1().erase(pos);
}
using base_t::erase;
};
// sparse vector, forward category
template <typename ContainerRef1, typename ContainerRef2, typename Params, typename Tag>
class IndexedSlice_mod<ContainerRef1, ContainerRef2, Params, false, true, Tag, false>
: public IndexedSlice_mod<ContainerRef1, ContainerRef2, Params, false, false, is_set> {
using base_t = IndexedSlice_mod<ContainerRef1, ContainerRef2, Params, false, false, is_set>;
using master = IndexedSlice<ContainerRef1, ContainerRef2, Params>;
protected:
using impl_t = typename base_t::impl_t;
public:
template <typename Data>
typename impl_t::iterator insert(const typename impl_t::iterator& pos, Int i, const Data& d)
{
master& me = static_cast<master&>(*this);
typename impl_t::iterator::second_type iit = this->rewind_index(pos.second, i);
return typename impl_t::iterator(me.get_container1().insert(pos, *iit, d), iit);
}
template <typename Data>
typename impl_t::iterator insert(Int i, const Data& d)
{
master& me = static_cast<master&>(*this);
typename impl_t::iterator::second_type iit = this->rewind_index(ensure(me.manip_top().get_container2(), typename master::needed_features2()).end(), i);
return typename impl_t::iterator(me.get_container1().insert(*iit, d), iit);
}
using base_t::insert;
};
// sparse vector, bidirectional category
template <typename ContainerRef1, typename ContainerRef2, typename Params, typename Tag>
class IndexedSlice_mod<ContainerRef1, ContainerRef2, Params, false, true, Tag, true>
: public IndexedSlice_mod<ContainerRef1, ContainerRef2, Params, false, true, Tag, false> {
using base_t = IndexedSlice_mod<ContainerRef1, ContainerRef2, Params, false, true, Tag, false>;
using master = IndexedSlice<ContainerRef1, ContainerRef2, Params>;
protected:
using impl_t = typename base_t::impl_t;
public:
template <typename Data>
typename impl_t::reverse_iterator insert(const typename impl_t::reverse_iterator& pos, Int i, const Data& d)
{
master& me = static_cast<master&>(*this);
typename impl_t::reverse_iterator::second_type iit = this->rewind_index(pos.second, i);
return typename impl_t::reverse_iterator(me.get_container1().insert(pos, *iit, d), iit);
}
using base_t::insert;
};
template <typename ContainerRef1, typename ContainerRef2, typename Params>
struct spec_object_traits< IndexedSlice<ContainerRef1, ContainerRef2, Params> >
: spec_object_traits<is_container> {
static constexpr bool
is_temporary = true,
is_lazy = object_traits<typename deref<ContainerRef1>::type>::is_lazy,
is_always_const = is_effectively_const<ContainerRef1>::value;
};
template <typename ContainerRef1, typename ContainerRef2, typename Params>
struct check_container_feature<IndexedSlice<ContainerRef1, ContainerRef2, Params>, sparse_compatible>
: check_container_ref_feature<ContainerRef1, sparse_compatible> {};
template <typename ContainerRef1, typename ContainerRef2, typename Params>
struct check_container_feature<IndexedSlice<ContainerRef1, ContainerRef2, Params>, sparse>
: check_container_ref_feature<ContainerRef1, sparse> {};
template <typename ContainerRef1, typename ContainerRef2, typename Params>
struct check_container_feature<IndexedSlice<ContainerRef1, ContainerRef2, Params>, pure_sparse>
: check_container_ref_feature<ContainerRef1, pure_sparse> {};
} // end namespace pm
namespace polymake {
using pm::range_from;
using pm::select;
using pm::IndexedSubset;
using pm::IndexedSlice;
}
namespace std {
// due to silly overloading rules
template <typename ContainerRef1, typename ContainerRef2, typename Params>
void swap(pm::IndexedSlice<ContainerRef1, ContainerRef2, Params>& s1,
pm::IndexedSlice<ContainerRef1, ContainerRef2, Params>& s2) { s1.swap(s2); }
}
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|