File: Polynomial.h

package info (click to toggle)
polymake 4.14-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 35,888 kB
  • sloc: cpp: 168,933; perl: 43,407; javascript: 31,575; ansic: 3,007; java: 2,654; python: 632; sh: 268; xml: 117; makefile: 61
file content (1674 lines) | stat: -rw-r--r-- 53,358 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
/* Copyright (c) 1997-2024
   Ewgenij Gawrilow, Michael Joswig, and the polymake team
   Technische Universität Berlin, Germany
   https://polymake.org

   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 2, or (at your option) any
   later version: http://www.gnu.org/licenses/gpl.txt.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
--------------------------------------------------------------------------------
*/

#pragma once

#include "polymake/PolynomialVarNames.h"
#include "polymake/PolynomialImpl.h"
#include "polymake/Rational.h"
#include "polymake/linalg.h"

#ifdef POLYMAKE_WITH_FLINT
#include "polymake/FlintPolynomial.h"

namespace pm {
namespace polynomial_impl {

using FlintImplQ = FlintPolynomial;

template <>
struct impl_chooser<polynomial_impl::UnivariateMonomial<Int>, Rational> {
  typedef FlintImplQ type;
};

} }

#endif

namespace pm {

template <typename Coefficient = Rational, typename Exponent = Int>
class UniPolynomial {
  static_assert(!std::is_same<Exponent, int>::value, "use Int instead");
  friend class RationalFunction<Coefficient, Exponent>;
  template <typename> friend struct spec_object_traits;
public:
  typedef typename polynomial_impl::impl_chooser< polynomial_impl::UnivariateMonomial<Exponent>, Coefficient>::type impl_type;
  typedef typename impl_type::monomial_type monomial_type;
  typedef Coefficient coefficient_type;
  typedef typename impl_type::term_hash term_hash;
  typedef typename impl_type::monomial_list_type monomial_list_type;
  template <typename T>
  using fits_as_coefficient = typename impl_type::template fits_as_coefficient<T>;
  template <typename T>
  using is_deeper_coefficient = typename impl_type::template is_deeper_coefficient<T>;

  ~UniPolynomial() = default;
  UniPolynomial(UniPolynomial&&) = default;
  UniPolynomial& operator=(UniPolynomial&&) = default;
  UniPolynomial(const UniPolynomial& p)
    : impl_ptr{ std::make_unique<impl_type>(*p.impl_ptr) } {}

  UniPolynomial& operator=(const UniPolynomial& p)
  {
    impl_ptr = std::make_unique<impl_type>(*p.impl_ptr);
    return *this;
  }

  /// construct a copy
  explicit UniPolynomial(const impl_type& impl)
    : impl_ptr{std::make_unique<impl_type>(impl)} {}

  /// construct a zero polynomial
  UniPolynomial()
    : impl_ptr{std::make_unique<impl_type>(1)} {}

  /// construct a polynomial of degree 0
  template <typename T, typename = std::enable_if_t<fits_as_coefficient<T>::value>>
  explicit UniPolynomial(const T& c)
    : impl_ptr{std::make_unique<impl_type>(c,1)} {}

  /// construct a polynomial with a single term
  template <typename T, typename = std::enable_if_t<fits_as_coefficient<T>::value>>
  UniPolynomial(const T& c, const Exponent& exp)
    : UniPolynomial(same_element_vector(static_cast<Coefficient>(c), 1), same_element_vector(exp, 1)) {}

  template <typename Container1, typename Container2,
            typename = std::enable_if_t<(isomorphic_to_container_of<Container1, Coefficient>::value &&
                                         isomorphic_to_container_of<Container2, Exponent>::value)>>
  UniPolynomial(const Container1& coefficients, const Container2& monomials)
    : impl_ptr{std::make_unique<impl_type>(coefficients, monomials, 1)} {}

  explicit UniPolynomial(const term_hash& terms, Int nvars = 1)
    : impl_ptr{std::make_unique<impl_type>(terms,1)} {}

  /// construct a monomial of degree 1
  static UniPolynomial monomial() { return UniPolynomial(one_value<Coefficient>(), 1); }

  // Interface forwarding
  void swap(UniPolynomial& p) { impl_ptr.swap(p.impl_ptr); }
  void clear() { impl_ptr->clear(); }

  template <typename Other>
  void croak_if_incompatible(const Other& other) const
  {
    impl_ptr->croak_if_incompatible(other);
  }

  Int n_vars() const { return 1; }
  Int n_terms() const { return impl_ptr->n_terms(); }
  const term_hash& get_terms() const { return impl_ptr->get_terms(); }
  bool trivial() const { return impl_ptr->trivial(); }
  bool is_one() const { return impl_ptr->is_one(); }
  Vector<Coefficient> coefficients_as_vector() const { return impl_ptr->coefficients_as_vector(); }

  bool operator== (const UniPolynomial& p2) const { return impl_ptr->operator==(*p2.impl_ptr); }
  bool operator!= (const UniPolynomial& p2) const { return !operator==(p2); }

  template <typename T>
  std::enable_if_t<fits_as_coefficient<T>::value, bool>
  operator== (const T& c) const { return impl_ptr->operator==(c); }

  template <typename T>
  std::enable_if_t<fits_as_coefficient<T>::value, bool>
  operator!= (const T& c) const { return !operator==(c); }

  template <typename T> friend
  std::enable_if_t<fits_as_coefficient<T>::value, bool>
  operator==(const T&c, const UniPolynomial& p) { return p.operator==(c); }

  template <typename T> friend
  std::enable_if_t<fits_as_coefficient<T>::value, bool>
  operator!=(const T&c, const UniPolynomial& p) { return p.operator!=(c); }

  Coefficient get_coefficient(const monomial_type& m) const { return impl_ptr->get_coefficient(m); }

  bool exists(const monomial_type& m) const { return impl_ptr->exists(m); }

  Exponent deg() const { return impl_ptr->deg(); }
  Exponent lower_deg() const { return impl_ptr->lower_deg(); }
  UniPolynomial lt() const { return UniPolynomial(impl_ptr->lt()); }

  UniPolynomial lt(const Exponent& order) const
  {
    return UniPolynomial(impl_ptr->lt(order));
  }

  monomial_type lm() const { return impl_ptr->lm(); }
  monomial_type lm(const Exponent& order) const { return impl_ptr->lm(order); }
  Coefficient lc() const { return impl_ptr->lc(); }
  Coefficient lc(const Exponent& order) const { return impl_ptr->lc(order); }
  Coefficient constant_coefficient() const { return impl_ptr->get_coefficient(0); }

  UniPolynomial initial_form(const Exponent& weights) const
  {
    return UniPolynomial(impl_ptr->initial_form(weights));
  }

  // compatibility with Polynomial zero for correct n_vars
  UniPolynomial zero() const
  {
     return zero_value<UniPolynomial>();
  }

  template <typename T>
  auto substitute(const T& t, std::enable_if_t<(std::is_same<Exponent, Int>::value &&
                                                std::is_same<typename object_traits<T>::generic_tag, is_scalar>::value),
                              std::nullptr_t> = nullptr) const
  {
    typename impl_type::sorted_terms_type temp = impl_ptr->get_sorted_terms();
    // using the return type of a product allows upgrades in both directions:
    // e.g. T=Int upgraded to coefficient type,
    //      or Coeff=Rational to T=QuadraticExtension
    using ret_type = pure_type_t<decltype(std::declval<T>() * std::declval<Coefficient>())>;
    ret_type result;
    Exponent previous_exp = this->deg();
    for (const auto& exp : temp) {
      while (previous_exp > exp) {
        result *= t;
        previous_exp--;
      }
      result += this->get_coefficient(exp);
    }
    result *= pm::pow(convert_to<ret_type>(t), previous_exp);
    return result;
  }

  template <typename T>
  auto substitute(const T& t, std::enable_if_t<(std::is_same<Exponent, Int>::value &&
                                                std::is_same<typename object_traits<T>::generic_tag, is_matrix>::value),
                              std::nullptr_t> = nullptr) const
  {
    if (POLYMAKE_DEBUG || is_wary<T>()) {
      if (t.rows() != t.cols())
        throw std::runtime_error("polynomial substitute: matrix must be square");
    }
    const auto& temp = impl_ptr->get_sorted_terms();
    Exponent previous_exp = this->deg();
    using ret_type = typename T::persistent_nonsymmetric_type;
    ret_type result(t.rows(), t.rows());
    for (const auto& exp : temp) {
      while (previous_exp > exp) {
        result = result * t;
        --previous_exp;
      }
      result += this->get_coefficient(exp) * unit_matrix<typename T::value_type>(t.rows());
    }
    result = result * pm::pow<ret_type>(t, previous_exp);
    return result;
  }

  template <template <typename, typename> class T, typename TCoeff, typename TExp,
            typename = std::enable_if_t<
               std::is_same<Exponent, Int>::value &&
               std::is_same<typename object_traits<T<TCoeff, TExp>>::generic_tag, is_polynomial>::value>>
  auto
  substitute(const T<TCoeff, TExp>& t) const
  {
    using ret_coeff = pure_type_t<decltype(std::declval<TCoeff>() * std::declval<Coefficient>())>;
    using ret_type = T<ret_coeff, TExp>;
    const auto& temp = impl_ptr->get_sorted_terms();
    Exponent previous_exp = this->deg();
    ret_type result = convert_to<ret_coeff>(t.zero());
    for (const auto& exp : temp) {
      while (previous_exp > exp) {
        result *= convert_to<ret_coeff>(t);
        --previous_exp;
      }
      result += ret_coeff(this->get_coefficient(exp));
    }
    result *= convert_to<ret_coeff>(t).pow(previous_exp);
    return result;
  }

  // more efficient variant of the above for substituting x^exp
  template <typename Exp, typename T>
  UniPolynomial<Coefficient, Exp> substitute_monomial(const T& exponent) const
  {
    return UniPolynomial<Coefficient, Exp>(impl_ptr->template substitute_monomial<Exp, T>(exponent));
  }

  template <typename T>
  std::enable_if_t<is_field_of_fractions<Exponent>::value && fits_as_coefficient<T>::value,
                   typename algebraic_traits<T>::field_type>
  evaluate(const T& t, const Int exp_lcm = 1) const
  {
    using field = typename algebraic_traits<T>::field_type;
    field res;
    for (const auto& term : get_terms())
    {
      const Exponent exp = exp_lcm * term.first;
      if (denominator(exp) != 1)
        throw std::runtime_error("Exponents non-integral, larger exp_lcm needed.");
      res += term.second * field::pow(t, static_cast<long>(exp));
    }
    return res;
  }

  template <typename T>
  std::enable_if_t<std::numeric_limits<Exponent>::is_integer && fits_as_coefficient<T>::value,
                   typename algebraic_traits<T>::field_type>
  evaluate(const T& t, const Int exp_lcm = 1) const
  {
    using field = typename algebraic_traits<T>::field_type;
    if (exp_lcm == 1)
       return substitute<field>(field::pow(t, exp_lcm));
    else
       return substitute<field>(t);
  }

  double evaluate_float(const double a) const
  {
    double res = 0;
    for (const auto& term : get_terms())
    {
      // we do the terms separately here to keep it working for rational exponents
      res += convert_to<double>(term.second) * std::pow(a, convert_to<double>(term.first));
    }
    return res;
  }

  /*! Perform the polynomial division and assign the quotient to *this.
   *  Like in the free function of the same name, you can pass an arbitrary polynomial to this method,
   *  not only a factor of *this.
   */
  UniPolynomial& div_exact(const UniPolynomial& b)
  {
    croak_if_incompatible(b);
    if (b.trivial()) throw GMP::ZeroDivide();

    impl_ptr = std::make_unique<impl_type>(impl_ptr->div_exact(*b.impl_ptr));
    return *this;
  }

  UniPolynomial operator% (const UniPolynomial& b) const
  {
    UniPolynomial tmp(*this);
    return tmp %= b;
  }

  UniPolynomial& operator%= (const UniPolynomial& b)
  {
    croak_if_incompatible(b);
    if (b.trivial()) throw GMP::ZeroDivide();
    if (!trivial()) {
       *impl_ptr %= *b.impl_ptr;
    }
    return *this;
  }

  template <typename T>
  std::enable_if_t<fits_as_coefficient<T>::value, UniPolynomial>
  operator*(const T& c) const
  {
    return UniPolynomial(impl_ptr->operator*(c));
  }

  template <typename T>
  std::enable_if_t<fits_as_coefficient<T>::value, UniPolynomial>
  mult_from_right(const T& c) const
  {
    return UniPolynomial(impl_ptr->mult_from_right(c));
  }

  template <typename T>
  std::enable_if_t<fits_as_coefficient<T>::value, UniPolynomial&>
  operator*= (const T& c)
  {
    impl_ptr->operator*=(c);
    return *this;
  }

  template <typename T>
  std::enable_if_t<fits_as_coefficient<T>::value, UniPolynomial>
  operator/ (const T& c) const
  {
    return UniPolynomial(impl_ptr->operator/(c));
  }

  template <typename T>
  std::enable_if_t<fits_as_coefficient<T>::value, UniPolynomial&>
  operator/= (const T& c)
  {
    impl_ptr->operator/=(c);
    return *this;
  }

  Polynomial<Coefficient, Exponent> homogenize(Int new_variable_index = 0) const
  {
    return Polynomial<Coefficient, Exponent>(impl_ptr->homogenize(new_variable_index));
  }

  UniPolynomial& normalize()
  {
    impl_ptr->normalize();
    return *this;
  }

  UniPolynomial operator* (const UniPolynomial& p2) const
  {
    return UniPolynomial(impl_ptr->operator*(*p2.impl_ptr));
  }

  template <typename E>
  UniPolynomial pow(const E& exp) const
  {
    return UniPolynomial(impl_ptr->pow(exp));
  }

  template <typename E>
  UniPolynomial operator^(const E& exp) const
  {
    return pow(exp);
  }

  template <typename E>
  UniPolynomial& operator^= (const E& exp)
  {
    *this = pow(exp);
    return *this;
  }

  UniPolynomial& operator*= (const UniPolynomial& p2)
  {
    impl_ptr->operator*=(*p2.impl_ptr); return *this;
  }

  UniPolynomial operator-() const
  {
    return UniPolynomial(impl_ptr->operator-());
  }

  UniPolynomial& negate()
  {
    impl_ptr->negate();
    return *this;
  }

  template <typename T>
  std::enable_if_t<fits_as_coefficient<T>::value, UniPolynomial>
  operator+ (const T& c) const
  {
    return UniPolynomial(impl_ptr->operator+(c));
  }

  template <typename T>
  std::enable_if_t<fits_as_coefficient<T>::value, UniPolynomial&>
  operator+= (const T& c)
  {
    impl_ptr->operator+=(c);
    return *this;
  }

  template <typename T>
  std::enable_if_t<fits_as_coefficient<T>::value, UniPolynomial>
  operator- (const T& c) const
  {
    return UniPolynomial(impl_ptr->operator-(c));
  }

  template <typename T>
  std::enable_if_t<fits_as_coefficient<T>::value, UniPolynomial&>
  operator-= (const T& c)
  {
    impl_ptr->operator-=(c);
    return *this;
  }

  UniPolynomial operator+ (const UniPolynomial& p) const
  {
    return UniPolynomial(impl_ptr->operator+(*p.impl_ptr));
  }

  UniPolynomial& operator+= (const UniPolynomial& p)
  {
    impl_ptr->operator+=(*p.impl_ptr); return *this;
  }

  UniPolynomial operator- (const UniPolynomial& p) const
  {
    return UniPolynomial(impl_ptr->operator-(*p.impl_ptr));
  }

  UniPolynomial& operator-=(const UniPolynomial& p)
  {
    impl_ptr->operator-=(*p.impl_ptr);
    return *this;
  }

  template <typename Comparator>
  cmp_value compare_ordered(const UniPolynomial& p, const Comparator& cmp_order) const
  {
    return impl_ptr->compare_ordered(*p.impl_ptr, cmp_order);
  }

  cmp_value compare(const UniPolynomial& p) const
  {
    return impl_ptr->compare(*p.impl_ptr);
  }

  friend bool operator< (const UniPolynomial& p1, const UniPolynomial& p2)
  {
    return *p1.impl_ptr < *p2.impl_ptr;
  }

  friend bool operator> (const UniPolynomial& p1, const UniPolynomial& p2)
  {
    return *p1.impl_ptr > *p2.impl_ptr;
  }

  friend bool operator<= (const UniPolynomial& p1, const UniPolynomial& p2)
  {
    return *p1.impl_ptr <= *p2.impl_ptr;
  }

  friend bool operator>= (const UniPolynomial& p1, const UniPolynomial& p2)
  {
    return *p1.impl_ptr >= *p2.impl_ptr;
  }

#if POLYMAKE_DEBUG
  void dump() const __attribute__((used)) { cerr << *this << std::flush; }
#endif

  monomial_list_type monomials_as_vector() const { return impl_ptr->monomials(); }

  static
  const Array<std::string>& get_var_names()
  {
    return impl_type::var_names().get_names();
  }

  static
  void set_var_names(const Array<std::string>& names)
  {
    impl_type::var_names().set_names(names);
  }

  static
  void reset_var_names()
  {
    impl_type::reset_var_names();
  }

  static
  void swap_var_names(PolynomialVarNames& other_names)
  {
    impl_type::var_names().swap(other_names);
  }

  template <typename Output> friend
  Output& operator<< (GenericOutput<Output>& out, const UniPolynomial& me)
  {
    me.impl_ptr->pretty_print(out.top(), polynomial_impl::cmp_monomial_ordered_base<Exponent>());
    return out.top();
  }

  template <typename Output>
  void print_ordered(GenericOutput<Output>& out, const Exponent& order) const
  {
    impl_ptr->pretty_print(out.top(), polynomial_impl::cmp_monomial_ordered<Exponent>(order));
  }

  void print_ordered(const Exponent& order) const
  {
    print_ordered(cout, order);
    cout << std::flush;
  }

  size_t get_hash() const noexcept { return impl_ptr->get_hash(); }

  friend
  Div<UniPolynomial> div<>(const UniPolynomial& a, const UniPolynomial& b);

  friend
  UniPolynomial gcd<>(const UniPolynomial& a, const UniPolynomial& b);

  friend
  ExtGCD<UniPolynomial> ext_gcd<>(const UniPolynomial& a, const UniPolynomial& b, bool normalize_gcd);

  friend
  UniPolynomial lcm<>(const UniPolynomial& a, const UniPolynomial& b);

protected:
  std::unique_ptr<impl_type> impl_ptr;

  term_hash& get_mutable_terms() const { return impl_ptr->get_mutable_terms(); }

  impl_type& get_impl() {
      return *impl_ptr;
  }

  const impl_type& get_impl() const {
      return *impl_ptr;
  }

};

template <typename Coefficient, typename Exponent>
Div< UniPolynomial<Coefficient, Exponent> >
div(const UniPolynomial<Coefficient, Exponent>& num, const UniPolynomial<Coefficient, Exponent>& den)
{
  typedef typename UniPolynomial<Coefficient,Exponent>::impl_type impl_type;
  num.croak_if_incompatible(den);
  if (den.trivial()) throw GMP::ZeroDivide();
  Div< UniPolynomial<Coefficient, Exponent> > res;
  res.rem.impl_ptr=std::make_unique<impl_type>(*num.impl_ptr);
  res.rem.impl_ptr->remainder(*den.impl_ptr, *res.quot.impl_ptr);
  return res;
}

template <typename Coefficient, typename Exponent>
UniPolynomial<Coefficient, Exponent>
gcd(const UniPolynomial<Coefficient, Exponent>& a, const UniPolynomial<Coefficient, Exponent>& b)
{
  a.croak_if_incompatible(b);
  if (a.trivial()) return b;
  if (b.trivial()) return a;

  const bool sw = a.lm() < b.lm();
  UniPolynomial<Coefficient, Exponent> p1(*(sw ? b : a).impl_ptr),
                                       p2(*(sw ? a : b).impl_ptr);

  typename polynomial_impl::GenericImpl<polynomial_impl::UnivariateMonomial<Exponent>,Coefficient>::quot_black_hole black_hole;
  while (!p2.trivial() && !is_zero(p2.lm())) {
    p1.impl_ptr->remainder(*p2.impl_ptr, black_hole);
    p1.swap(p2);
  }
  if (p2.trivial())
    return p1.normalize();
  else
    return UniPolynomial<Coefficient, Exponent>(one_value<Coefficient>());  // =1
}

template <typename Coefficient, typename Exponent>
ExtGCD< UniPolynomial<Coefficient, Exponent> >
ext_gcd(const UniPolynomial<Coefficient, Exponent>& a, const UniPolynomial<Coefficient, Exponent>& b,
        bool normalize_gcd)
{
  a.croak_if_incompatible(b);

  typedef UniPolynomial<Coefficient, Exponent> XUPolynomial;

  ExtGCD<XUPolynomial> res;
  if (a.trivial()) {
    res.g=b;
    res.p=res.q=res.k2=XUPolynomial(one_value<Coefficient>());
    res.k1 = XUPolynomial();

  } else if (b.trivial()) {
    res.g=a;
    res.p=res.q=res.k1=XUPolynomial(one_value<Coefficient>());
    res.k2 = XUPolynomial();

  } else {
    XUPolynomial U[2][2]={ { XUPolynomial(one_value<Coefficient>()),  XUPolynomial() },
                           { XUPolynomial(),  XUPolynomial(one_value<Coefficient>()) } };

    const bool sw = a.lm() < b.lm();
    XUPolynomial p1(*(sw ? b : a).impl_ptr),
                 p2(*(sw ? a : b).impl_ptr),
                 k;

    for (;;) {
      k.clear();
      p1.impl_ptr->remainder(*p2.impl_ptr, *k.impl_ptr);
      // multiply U from left with { {1, -k}, {0, 1} }
      U[0][0] -= k*U[1][0];
      U[0][1] -= k*U[1][1];
      if (p1.trivial()) {
        res.g.swap(p2);
        res.p.swap(U[1][sw]);  res.q.swap(U[1][1-sw]);
        res.k2.swap(U[0][sw]);  res.k1.swap(U[0][1-sw]);
        (sw ? res.k2 : res.k1).negate();
        break;
      }

      k.clear();
      p2.impl_ptr->remainder(*p1.impl_ptr, *k.impl_ptr);
      // multiply U from left with { {1, 0}, {-k, 1} }
      U[1][0] -= k*U[0][0];
      U[1][1] -= k*U[0][1];
      if (p2.trivial()) {
        res.g.swap(p1);
        res.p.swap(U[0][sw]);  res.q.swap(U[0][1-sw]);
        res.k2.swap(U[1][sw]);  res.k1.swap(U[1][1-sw]);
        (sw ? res.k1 : res.k2).negate();
        break;
      }
    }

    if (normalize_gcd) {
      const Coefficient lead=res.g.lc();
      if (!is_one(lead)) {
        res.g /= lead;
        res.p /= lead;
        res.q /= lead;
        res.k1 *= lead;
        res.k2 *= lead;
      }
    }
  }

  return res;
}


template <typename Coefficient, typename Exponent>
UniPolynomial<Coefficient, Exponent>
lcm(const UniPolynomial<Coefficient, Exponent>& a, const UniPolynomial<Coefficient, Exponent>& b)
{
  const ExtGCD< UniPolynomial<Coefficient, Exponent> > x = ext_gcd(a, b);
  return a*x.k2;
}

/*! Perform the polynomial division, discarding the remainder.
 *  Although the name suggests that the divisor must be a factor of the divident,
 *  you can put arbitrary polynomials here.
 *  The name is rather chosen for compatibility with the Integer class.
 */
template <typename Coefficient, typename Exponent>
UniPolynomial<Coefficient, Exponent> div_exact(const UniPolynomial<Coefficient, Exponent>& a, const UniPolynomial<Coefficient, Exponent>& b)
{
  UniPolynomial<Coefficient, Exponent> tmp(a);
  return tmp.div_exact(b);
}


template <typename Coefficient = Rational, typename Exponent = Int>
class Polynomial {
  static_assert(!std::is_same<Exponent, int>::value, "use Int instead");
  template <typename> friend struct spec_object_traits;
public:
  typedef typename polynomial_impl::impl_chooser< polynomial_impl::MultivariateMonomial<Exponent>, Coefficient>::type impl_type;
  typedef typename impl_type::monomial_type monomial_type;
  typedef Coefficient coefficient_type;
  typedef typename impl_type::term_hash term_hash;
  typedef typename impl_type::monomial_list_type monomial_list_type;

  template <typename T>
  using fits_as_coefficient = typename impl_type::template fits_as_coefficient<T>;
  template <typename T>
  using is_deeper_coefficient = typename impl_type::template is_deeper_coefficient<T>;

  // for reading from perl::Value
  Polynomial() {}

  ~Polynomial() = default;
  Polynomial(Polynomial&&) = default;
  Polynomial& operator=(Polynomial&&) = default;
  Polynomial(const Polynomial& p)
    : impl_ptr{ std::make_unique<impl_type>(*p.impl_ptr)} {}

  Polynomial& operator=(const Polynomial& p)
  {
    impl_ptr = std::make_unique<impl_type>(*p.impl_ptr);
    return *this;
  }

  /// construct a copy
  explicit Polynomial(const impl_type& impl)
    : impl_ptr{std::make_unique<impl_type>(impl)} {}

  /// construct a zero polynomial with the given number of variables
  explicit Polynomial(const Int n_vars)
    : impl_ptr{std::make_unique<impl_type>(n_vars)} {}

  /// construct a polynomial of degree 0 with the given number of variables
  template <typename T, typename = std::enable_if_t<fits_as_coefficient<T>::value>>
  Polynomial(const T& c, const Int n_vars)
    : impl_ptr{std::make_unique<impl_type>(c, n_vars)} {}

  /// construct a polynomial with a single term
  template <typename T, typename TVector, typename = std::enable_if_t<fits_as_coefficient<T>::value>>
  Polynomial(const T& c, const GenericVector<TVector>& monomial)
    : Polynomial(same_element_vector(c, 1), vector2row(monomial)) {}

  template <typename Container, typename TMatrix, typename = std::enable_if_t<isomorphic_to_container_of<Container, Coefficient>::value>>
  Polynomial(const Container& coefficients, const GenericMatrix<TMatrix, Exponent>& monomials)
    : impl_ptr{std::make_unique<impl_type>(coefficients, rows(monomials), monomials.cols())} {}

  Polynomial(const term_hash& terms, const Int nvars)
    : impl_ptr{std::make_unique<impl_type>(terms,nvars)} {}

  /// construct a monomial of the given variable
  static Polynomial monomial(Int var_index, Int n_vars)
  {
    return Polynomial(one_value<Coefficient>(), unit_vector<Exponent>(n_vars, var_index));
  }

  // non-static zero with correct n_vars
  Polynomial zero() const
  {
     return Polynomial(this->n_vars());
  }

  // Interface forwarding
  void swap(Polynomial& p) { impl_ptr.swap(p.impl_ptr); }
  void clear() { impl_ptr->clear(); }

  template <typename Other>
  void croak_if_incompatible(const Other& other) const
  {
    impl_ptr->croak_if_incompatible(other);
  }

  const Int& n_vars() const { return impl_ptr->n_vars(); }
  Int n_terms() const { return impl_ptr->n_terms(); }
  const term_hash& get_terms() const { return impl_ptr->get_terms(); }
  bool trivial() const { return impl_ptr->trivial(); }
  bool is_one() const { return impl_ptr->is_one(); }

  Vector<Coefficient> coefficients_as_vector() const { return impl_ptr->coefficients_as_vector(); }

  bool operator== (const Polynomial& p2) const { return impl_ptr->operator==(*p2.impl_ptr); }
  bool operator!= (const Polynomial& p2) const { return !operator==(p2); }

  template <typename T>
  std::enable_if_t<fits_as_coefficient<T>::value, bool>
  operator== (const T& c) const { return impl_ptr->operator==(c); }

  template <typename T>
  std::enable_if_t<fits_as_coefficient<T>::value, bool>
  operator!= (const T& c) const { return !operator==(c); }

  template <typename T> friend
  std::enable_if_t<fits_as_coefficient<T>::value, bool>
  operator==(const T&c, const Polynomial& p) { return p.operator==(c); }

  template <typename T> friend
  std::enable_if_t<fits_as_coefficient<T>::value, bool>
  operator!=(const T&c, const Polynomial& p) { return p.operator!=(c); }

  Coefficient get_coefficient(const monomial_type& m) const { return impl_ptr->get_coefficient(m); }
  bool exists(const monomial_type& m) const { return impl_ptr->exists(m); }

  Exponent deg() const { return impl_ptr->deg(); }
  Exponent lower_deg() const { return impl_ptr->lower_deg(); }

  bool homogeneous() const { return impl_ptr->homogeneous(); }

  Polynomial lt() const { return Polynomial(impl_ptr->lt()); }

  template <typename TMatrix>
  Polynomial lt(const GenericMatrix<TMatrix, Exponent>& order) const
  {
    return Polynomial(impl_ptr->lt(order));
  }

  monomial_type lm() const { return impl_ptr->lm(); }

  template <typename TMatrix>
  monomial_type lm(const GenericMatrix<TMatrix, Exponent>& order) const
  {
    return impl_ptr->lm(order);
  }

  Coefficient lc() const { return impl_ptr->lc(); }

  template <typename TMatrix>
  Coefficient lc(const GenericMatrix<TMatrix, Exponent>& order) const
  {
    return impl_ptr->lc(order);
  }

  template <typename TVector>
  Polynomial initial_form(const GenericVector<TVector, Exponent>& weights) const
  {
    return Polynomial(impl_ptr->initial_form(weights));
  }

  Coefficient constant_coefficient() const { return get_coefficient(monomial_type(n_vars())); }

  template <typename T>
  std::enable_if_t<fits_as_coefficient<T>::value, Polynomial>
  operator*(const T& c) const
  {
    return Polynomial(impl_ptr->operator*(c));
  }

  template <typename T>
  std::enable_if_t<fits_as_coefficient<T>::value, Polynomial>
  mult_from_right(const T& c) const
  {
    return Polynomial(impl_ptr->mult_from_right(c));
  }

  template <typename T>
  std::enable_if_t<fits_as_coefficient<T>::value, Polynomial&>
  operator*=(const T& c)
  {
    impl_ptr->operator*=(c); return *this;
  }

  template <typename T>
  std::enable_if_t<fits_as_coefficient<T>::value, Polynomial>
  operator/(const T& c) const
  {
    return Polynomial(impl_ptr->operator/(c));
  }

  template <typename T>
  std::enable_if_t<fits_as_coefficient<T>::value, Polynomial&>
  operator/=(const T& c)
  {
    impl_ptr->operator/=(c); return *this;
  }

  Polynomial<Coefficient, Exponent> homogenize(Int new_variable_index = 0) const
  {
    return Polynomial<Coefficient, Exponent>(impl_ptr->homogenize(new_variable_index));
  }

  Polynomial& normalize() { impl_ptr->normalize(); return *this; }

  Polynomial operator* (const Polynomial& p2) const
  {
    return Polynomial(impl_ptr->operator*(*p2.impl_ptr));
  }

  Polynomial& operator*= (const Polynomial& p2)
  {
    impl_ptr->operator*=(*p2.impl_ptr); return *this;
  }

  template <typename E>
  Polynomial pow(const E& exp) const
  {
    return Polynomial(impl_ptr->pow(exp));
  }

  template <typename E>
  Polynomial operator^(const E& exp) const
  {
    return pow(exp);
  }

  template <typename E>
  Polynomial& operator^=(const E& exp)
  {
    *this = pow(exp);
    return *this;
  }

  Polynomial operator-() const
  {
    return Polynomial(impl_ptr->operator-());
  }

  Polynomial& negate()
  {
    impl_ptr->negate();
    return *this;
  }

  template <typename T>
  std::enable_if_t<fits_as_coefficient<T>::value, Polynomial>
  operator+(const T& c) const
  {
    return Polynomial(impl_ptr->operator+(c));
  }

  template <typename T>
  std::enable_if_t<fits_as_coefficient<T>::value, Polynomial&>
  operator+= (const T& c)
  {
    impl_ptr->operator+=(c); return *this;
  }

  template <typename T>
  std::enable_if_t<fits_as_coefficient<T>::value, Polynomial>
  operator- (const T& c) const
  {
    return Polynomial(impl_ptr->operator-(c));
  }

  template <typename T>
  std::enable_if_t<fits_as_coefficient<T>::value, Polynomial&>
  operator-= (const T& c)
  {
    impl_ptr->operator-=(c); return *this;
  }

  Polynomial operator+ (const Polynomial& p) const
  {
    return Polynomial(impl_ptr->operator+(*p.impl_ptr));
  }

  Polynomial& operator+= (const Polynomial& p)
  {
    impl_ptr->operator+=(*p.impl_ptr);
    return *this;
  }

  Polynomial operator-(const Polynomial& p) const
  {
    return Polynomial(impl_ptr->operator-(*p.impl_ptr));
  }

  Polynomial& operator-=(const Polynomial& p)
  {
    impl_ptr->operator-=(*p.impl_ptr);
    return *this;
  }

  template <typename Comparator>
  cmp_value compare_ordered(const Polynomial& p, const Comparator& cmp_order) const
  {
    return impl_ptr->compare_ordered(*p.impl_ptr, cmp_order);
  }

  cmp_value compare(const Polynomial& p) const
  {
    return impl_ptr->compare(*p.impl_ptr);
  }

  friend
  bool operator< (const Polynomial& p1, const Polynomial& p2)
  {
    return p1.impl_ptr->compare(*p2.impl_ptr) == cmp_lt;
  }
  friend
  bool operator> (const Polynomial& p1, const Polynomial& p2)
  {
    return p1.impl_ptr->compare(*p2.impl_ptr) == cmp_gt;
  }
  friend
  bool operator<= (const Polynomial& p1, const Polynomial& p2)
  {
    return p1.impl_ptr->compare(*p2.impl_ptr) != cmp_gt;
  }
  friend
  bool operator>= (const Polynomial& p1, const Polynomial& p2)
  {
    return p1.impl_ptr->compare(*p2.impl_ptr) != cmp_lt;
  }

  template <typename Container>
  auto substitute(const Container& values,
                  std::enable_if_t<(std::is_same<Exponent, Int>::value &&
                                    std::is_same<typename object_traits<typename Container::value_type>::generic_tag,is_scalar>::value),
                                   std::nullptr_t> = nullptr) const
  {
    if (values.size() != n_vars())
       throw std::runtime_error("substitute polynomial: number of values does not match variables");
    using T = typename Container::value_type;
    // using the return type of a product allows upgrades in both directions:
    // e.g. T=Int upgraded to coefficient type,
    //      or Coeff=Rational to T=QuadraticExtension
    using ret_type = pure_type_t<decltype(std::declval<T>() * std::declval<Coefficient>())>;
    ret_type result;
    for (auto t = entire(this->get_terms()); !t.at_end(); ++t)
    {
      ret_type term(t->second);
      accumulate_in(entire(attach_operation(values,t->first, operations::pow<T, long>())), BuildBinary<operations::mul>(),term);
      result += term;
    }
    return result;
  }

  template <template <typename, typename...> class Container,
            template <typename, typename> class Poly,
            typename Coeff,
            typename Exp,
            typename... Args>
  auto
  substitute(const Container<Poly<Coeff, Exp>, Args...>& values,
             std::enable_if_t<(std::is_same<Exponent, Int>::value &&
                               std::is_same<typename object_traits<Poly<Coeff, Exp>>::generic_tag, is_polynomial>::value),
                              std::nullptr_t> = nullptr) const
  {
    if (values.size() != n_vars())
       throw std::runtime_error("substitute polynomial: number of values does not match variables");
    using ret_coeff = pure_type_t<decltype(std::declval<Coeff>() * std::declval<Coefficient>())>;
    using ret_type = Poly<ret_coeff, Exp>;
    ret_type result = convert_to<ret_coeff>(values.begin()->zero());
    for (auto t = entire(this->get_terms()); !t.at_end(); ++t)
    {
      ret_type term(t->second);
      accumulate_in(entire(attach_operation(values,t->first,operations::pow<ret_type, long>())), BuildBinary<operations::mul>(),term);
      result += term;
    }
    return result;
  }

  // more efficient variant of the above for substituting x^exp
  template <typename Exp = Exponent, typename T>
  Polynomial<Coefficient, Exp> substitute_monomial(const T& exponent) const
  {
    return Polynomial<Coefficient, Exp>(impl_ptr->template substitute_monomial<Exp, T>(exponent));
  }


  template <typename MapType>
  auto substitute(const MapType& values,
                  std::enable_if_t<(std::is_same<Exponent, Int>::value &&
                                    std::is_same<typename object_traits<MapType>::generic_tag, is_map>::value &&
                                    std::is_same<typename MapType::key_type, Int>::value &&
                                    std::is_same<typename object_traits<typename MapType::mapped_type>::generic_tag, is_scalar>::value),
                                   std::nullptr_t> = nullptr) const
  {
    using ret_coeff = pure_type_t<decltype(std::declval<typename MapType::mapped_type>() * std::declval<Coefficient>())>;
    Polynomial<ret_coeff, Int> result(this->n_vars());
    Set<Int> indices(keys(values));
    for (auto t = entire(this->get_terms()); !t.at_end(); ++t)
    {
      ret_coeff coeff(t->second);
      for (auto v = entire(values); !v.at_end(); ++v) {
         coeff *= pm::pow<ret_coeff>(v->second, t->first[v->first]);
      }
      SparseVector<Int> exps(t->first);
      exps.slice(indices) = zero_vector<Int>(indices.size());
      result += Polynomial<ret_coeff, Int>(coeff,exps);
    }
    return result;
  }

  template <typename Container,
            typename = std::enable_if_t<isomorphic_to_container_of<Container, Int>::value>>
  auto
  project(const Container& indices) const
  {
    return Polynomial<Coefficient, Exponent>(
        this->coefficients_as_vector(),
        this->monomials_as_matrix().minor(All, indices)
      );
  }

  template <typename Container,
            typename = std::enable_if_t<isomorphic_to_container_of<Container, Int>::value>>
  auto
  mapvars(const Container& indices, Int vars = -1) const
  {
    if (indices.size() != this->n_vars())
       throw std::runtime_error("polynomial mapvars: number of indices does not match variables");
    Int maxind = 0;
    for (auto i : indices)
       assign_max(maxind, i);
    if (vars != -1) {
       if (maxind+1 > vars)
          throw std::runtime_error("polynomial mapvars: indices exceed given number of variables");
    } else {
      vars = maxind+1;
    }
    SparseMatrix<Exponent> oldexps = this->monomials_as_matrix();
    SparseMatrix<Exponent> exps(this->n_terms(),vars);
    Int j = 0;
    for (auto i = entire(indices); !i.at_end(); ++i, ++j)
       exps.col(*i) += oldexps.col(j);
    return Polynomial<Coefficient, Exponent>(this->coefficients_as_vector(), exps);
  }

#if POLYMAKE_DEBUG
   void dump() const __attribute__((used)) { cerr << *this << std::flush; }
#endif

  template <typename TMatrix = SparseMatrix<Exponent>>
  TMatrix monomials_as_matrix() const
  {
    return TMatrix(this->n_terms(), this->n_vars(),
                   entire(attach_operation(this->get_terms(), BuildUnary<operations::take_first>())));
  }

  static
  const Array<std::string>& get_var_names()
  {
    return impl_type::var_names().get_names();
  }

  static
  void set_var_names(const Array<std::string>& names)
  {
    impl_type::var_names().set_names(names);
  }

  static
  void reset_var_names()
  {
    impl_type::reset_var_names();
  }

  static
  void swap_var_names(PolynomialVarNames& other_names)
  {
    impl_type::var_names().swap(other_names);
  }

  template <typename Output> friend
  Output& operator<< (GenericOutput<Output>& out, const Polynomial& p)
  {
    p.impl_ptr->pretty_print(out.top(), polynomial_impl::cmp_monomial_ordered_base<Exponent>());
    return out.top();
  }

  template <typename Output, typename TMatrix>
  void print_ordered(GenericOutput<Output>& out, const GenericMatrix<TMatrix, Exponent>& order)
  {
    impl_ptr->pretty_print(out.top(), polynomial_impl::cmp_monomial_ordered<TMatrix>(order.top()));
  }

  template <typename TMatrix>
  void print_ordered(const GenericMatrix<TMatrix, Exponent>& order)
  {
    print_ordered(cout, order);
    cout << std::flush;
  }

  size_t get_hash() const { return impl_ptr->get_hash(); }

protected:
  std::unique_ptr<impl_type> impl_ptr;

  impl_type& get_impl() {
      return *impl_ptr;
  }

  const impl_type& get_impl() const {
      return *impl_ptr;
  }

};

template <typename Coefficient, typename Exponent>
struct is_gcd_domain< UniPolynomial<Coefficient, Exponent> >
  : is_field<Coefficient> {};

template <typename Coefficient, typename Exponent, bool has_gcd = is_gcd_domain<UniPolynomial<Coefficient, Exponent>>::value>
struct algebraic_traits_for_UniPolynomial {};

template <typename Coefficient, typename Exponent>
struct algebraic_traits_for_UniPolynomial<Coefficient, Exponent, true> {
  using field_type = RationalFunction<typename algebraic_traits<Coefficient>::field_type, Exponent>;
};

template <typename Coefficient, typename Exponent>
struct algebraic_traits<UniPolynomial<Coefficient, Exponent>> : algebraic_traits_for_UniPolynomial<Coefficient, Exponent> {};

template <typename Coefficient, typename Exponent, typename T>
using compatible_with_polynomial = bool_constant<(isomorphic_types<Coefficient, T>::value ||
                                                  Polynomial<Coefficient, Exponent>::template is_deeper_coefficient<T>::value)>;

template <typename Coefficient, typename Exponent, typename T>
using compatible_with_unipolynomial = bool_constant<(isomorphic_types<Coefficient, T>::value ||
                                                     UniPolynomial<Coefficient, Exponent>::template is_deeper_coefficient<T>::value)>;

template <typename Coefficient, typename Exponent, typename T, typename TModel>
struct isomorphic_types_impl<Polynomial<Coefficient, Exponent>, T,
                             std::enable_if_t<compatible_with_polynomial<Coefficient, Exponent, T>::value, is_polynomial>,
                             TModel>
: std::false_type {
  typedef cons<is_polynomial, is_scalar> discriminant;
};

template <typename Coefficient, typename Exponent, typename T, typename TModel>
struct isomorphic_types_impl<T, Polynomial<Coefficient, Exponent>, TModel,
                             std::enable_if_t<compatible_with_polynomial<Coefficient, Exponent, T>::value, is_polynomial>>
: std::false_type {
  typedef cons<is_scalar, is_polynomial> discriminant;
};

template <typename Coefficient, typename Exponent>
struct isomorphic_types_impl<Polynomial<Coefficient,Exponent>, Polynomial<Coefficient,Exponent>, is_polynomial, is_polynomial>
  : std::true_type {
  typedef cons<is_polynomial, is_polynomial> discriminant;
};

template <typename Coefficient, typename Exponent, typename T, typename TModel>
struct isomorphic_types_impl<UniPolynomial<Coefficient, Exponent>, T,
                             std::enable_if_t<compatible_with_unipolynomial<Coefficient, Exponent, T>::value, is_polynomial>,
                             TModel>
: std::false_type {
  typedef cons<is_polynomial, is_scalar> discriminant;
};

template <typename Coefficient, typename Exponent, typename T, typename TModel>
struct isomorphic_types_impl<T, UniPolynomial<Coefficient, Exponent>, TModel,
                             std::enable_if_t<compatible_with_unipolynomial<Coefficient, Exponent, T>::value, is_polynomial>>
: std::false_type {
  typedef cons<is_scalar, is_polynomial> discriminant;
};

template <typename Coefficient, typename Exponent>
struct isomorphic_types_impl<UniPolynomial<Coefficient,Exponent>, UniPolynomial<Coefficient,Exponent>, is_polynomial, is_polynomial>
  : std::true_type {
  typedef cons<is_polynomial, is_polynomial> discriminant;
};


template <typename Coefficient, typename Exponent>
struct choose_generic_object_traits< Polynomial<Coefficient, Exponent>, false, false >
  : spec_object_traits< Polynomial<Coefficient, Exponent> > {

  typedef void generic_type;
  typedef is_polynomial generic_tag;
  typedef Polynomial<Coefficient, Exponent> persistent_type;

  static
  bool is_zero(const persistent_type& p)
  {
    return p.trivial();
  }

  static
  bool is_one(const persistent_type& p)
  {
    return p.is_one();
  }

  // FIXME Dirty hack to allow printing of zero and one values of multivariate polynomials
  // (for which the number of variables is entirely irrelevant)

  static
  const persistent_type& zero()
  {
    static const persistent_type x = persistent_type(1);
    return x;
  }

  static
  const persistent_type& one()
  {
    static const persistent_type x = persistent_type(one_value<Coefficient>(),1);
    return x;
  }
};

template <typename Coefficient, typename Exponent>
struct choose_generic_object_traits< UniPolynomial<Coefficient, Exponent>, false, false >
  : spec_object_traits< UniPolynomial<Coefficient, Exponent> > {
  typedef void generic_type;
  typedef is_polynomial generic_tag;
  typedef UniPolynomial<Coefficient, Exponent> persistent_type;

  static
  bool is_zero(const persistent_type& p)
  {
    return p.trivial();
  }

  static
  bool is_one(const persistent_type& p)
  {
    return p.is_one();
  }

  static
  const persistent_type& zero()
  {
    static const persistent_type x = persistent_type();
    return x;
  }

  static
  const persistent_type& one()
  {
    static const persistent_type x(one_value<Coefficient>());
    return x;
  }

  static
  const persistent_type& variable() {
    static const persistent_type var(same_element_vector<Coefficient>(1,1), same_element_vector<Exponent>(1,1));
    return var;
  }
};

template <typename Coefficient, typename Exponent>
struct has_zero_value<Polynomial<Coefficient, Exponent>> : std::true_type {};

template <typename Coefficient, typename Exponent>
struct has_zero_value<UniPolynomial<Coefficient, Exponent>> : std::true_type {};

namespace polynomial_impl {

template <typename Coefficient, typename Exponent>
struct nesting_level<UniPolynomial<Coefficient, Exponent>>
  : int_constant<nesting_level<Coefficient>::value+1> {};

template <typename Coefficient, typename Exponent>
struct nesting_level<Polynomial<Coefficient, Exponent>>
  : int_constant<nesting_level<Coefficient>::value+1> {};

}

namespace operations {

// these operations will be required e.g. for Vector<Polynomial> or Matrix<Polynomial>

template <typename OpRef>
struct neg_impl<OpRef, is_polynomial> {
  typedef OpRef argument_type;
  typedef typename deref<OpRef>::type result_type;

  result_type operator() (typename function_argument<OpRef>::const_type x) const
  {
    return -x;
  }

  void assign(typename lvalue_arg<OpRef>::type x) const
  {
    x.negate();
  }
};

template <typename LeftRef, class RightRef>
struct add_impl<LeftRef, RightRef, cons<is_polynomial, is_polynomial> > {
  typedef LeftRef first_argument_type;
  typedef RightRef second_argument_type;
  typedef typename deref<LeftRef>::type result_type;

  result_type operator() (typename function_argument<LeftRef>::const_type l,
                          typename function_argument<RightRef>::const_type r) const
  {
    return l+r;
  }

  void assign(typename lvalue_arg<LeftRef>::type l, typename function_argument<RightRef>::const_type r) const
  {
    l+=r;
  }
};

template <typename LeftRef, class RightRef>
struct sub_impl<LeftRef, RightRef, cons<is_polynomial, is_polynomial> > {
  typedef LeftRef first_argument_type;
  typedef RightRef second_argument_type;
  typedef typename deref<LeftRef>::type result_type;

  result_type operator() (typename function_argument<LeftRef>::const_type l,
                          typename function_argument<RightRef>::const_type r) const
  {
    return l-r;
  }

  void assign(typename lvalue_arg<LeftRef>::type l, typename function_argument<RightRef>::const_type r) const
  {
    l-=r;
  }
};

template <typename LeftRef, class RightRef>
struct mul_impl<LeftRef, RightRef, cons<is_polynomial, is_polynomial> > {
  typedef LeftRef first_argument_type;
  typedef RightRef second_argument_type;
  typedef typename deref<LeftRef>::type result_type;

  result_type operator() (typename function_argument<LeftRef>::const_type l,
                          typename function_argument<RightRef>::const_type r) const
  {
    return l*r;
  }

  void assign(typename lvalue_arg<LeftRef>::type l, typename function_argument<RightRef>::const_type r) const
  {
    l*=r;
  }
};

template <typename LeftRef, class RightRef>
struct mul_impl<LeftRef, RightRef, cons<is_polynomial, is_scalar> > {
  typedef LeftRef first_argument_type;
  typedef RightRef second_argument_type;
  typedef typename deref<LeftRef>::type result_type;

  result_type operator() (typename function_argument<LeftRef>::const_type l,
                          typename function_argument<RightRef>::const_type r) const
  {
    return l*r;
  }

  void assign(typename lvalue_arg<LeftRef>::type l, typename function_argument<RightRef>::const_type r) const
  {
    l*=r;
  }
};

template <typename LeftRef, class RightRef>
struct mul_impl<LeftRef, RightRef, cons<is_scalar, is_polynomial> > {
  typedef LeftRef first_argument_type;
  typedef RightRef second_argument_type;
  typedef typename deref<RightRef>::type result_type;

  result_type operator() (typename function_argument<LeftRef>::const_type l,
                          typename function_argument<RightRef>::const_type r) const
  {
    return l*r;
  }
};

template <typename LeftRef, class RightRef>
struct div_impl<LeftRef, RightRef, cons<is_polynomial, is_scalar> > {
  typedef LeftRef first_argument_type;
  typedef RightRef second_argument_type;
  typedef typename deref<LeftRef>::type result_type;

  result_type operator() (typename function_argument<LeftRef>::const_type l,
                          typename function_argument<RightRef>::const_type r) const
  {
    return l/r;
  }

  void assign(typename lvalue_arg<LeftRef>::type l, typename function_argument<RightRef>::const_type r) const
  {
    l/=r;
  }
};

template <typename T>
struct cmp_polynomial {
  typedef T first_argument_type;
  typedef T second_argument_type;
  typedef cmp_value result_type;

  template <typename Left, typename Right>
  cmp_value operator() (const Left& p1, const Right& p2) const
  {
    return p1.compare(p2);
  }
};

template <typename Coefficient, typename Exponent>
struct cmp_basic<Polynomial<Coefficient, Exponent>, Polynomial<Coefficient, Exponent>>
  : cmp_polynomial<Polynomial<Coefficient, Exponent>> {};

template <typename Coefficient, typename Exponent>
struct cmp_basic<UniPolynomial<Coefficient, Exponent>, UniPolynomial<Coefficient, Exponent>>
  : cmp_polynomial<UniPolynomial<Coefficient, Exponent>> {};

} // end namespace operations

template <typename Coefficient, typename Exponent>
struct spec_object_traits< Serialized< UniPolynomial<Coefficient,Exponent> > >
  : spec_object_traits<is_composite> {

  using impl_type = typename UniPolynomial<Coefficient,Exponent>::impl_type;

  using masquerade_for = UniPolynomial<Coefficient, Exponent>;

  using terms_type = typename polynomial_impl::GenericImpl<polynomial_impl::UnivariateMonomial<Exponent>,Coefficient>::term_hash;

  using elements = terms_type;

  template <typename Visitor>
  static void visit_elements(Serialized<masquerade_for> & me, Visitor& v)
  {
    terms_type terms;
    v << terms;
    me.impl_ptr = std::make_unique<impl_type>(terms,1);
  }

  template <typename Visitor>
  static void visit_elements(const Serialized<masquerade_for>& me, Visitor& v)
  {
    v << me.get_impl().get_terms();
  }
};

template <typename Coefficient, typename Exponent>
struct spec_object_traits< Serialized< Polynomial<Coefficient,Exponent> > >
  : spec_object_traits<is_composite> {

  using impl_type = typename Polynomial<Coefficient,Exponent>::impl_type;

  using masquerade_for = Polynomial<Coefficient, Exponent>;

  using terms_type = typename polynomial_impl::GenericImpl<polynomial_impl::MultivariateMonomial<Exponent>,Coefficient>::term_hash;

  using elements = cons<terms_type, Int>;

  template <typename Visitor>
  static void visit_elements(Serialized<masquerade_for>& me, Visitor& v)
  {
     terms_type terms;
     Int nvars = 0;
     v << terms << nvars;
     me.impl_ptr = std::make_unique<impl_type>(terms, nvars);
  }

  template <typename Visitor>
  static void visit_elements(const Serialized<masquerade_for>& me, Visitor& v)
  {
     v << me.get_terms() << me.n_vars();
  }
};


template <typename PolynomialType>
struct hash_func<PolynomialType, is_polynomial> {
  size_t operator() (const PolynomialType& p) const noexcept
  {
    return p.get_hash();
  }
};

template <typename C, typename E, typename T>
std::enable_if_t<UniPolynomial<C,E>::template fits_as_coefficient<T>::value, UniPolynomial<C, E>>
operator+ (const T& c, const UniPolynomial<C, E>& p)
{
  return p+c;
}

template <typename C, typename E, typename T>
std::enable_if_t<Polynomial<C,E>::template fits_as_coefficient<T>::value, Polynomial<C, E>>
operator+ (const T& c, const Polynomial<C, E>& p)
{
  return p+c;
}

template <typename C, typename E, typename T>
std::enable_if_t<UniPolynomial<C, E>::template fits_as_coefficient<T>::value, UniPolynomial<C, E>>
operator- (const T& c, const UniPolynomial<C, E>& p)
{
  return (-p)+=c;
}

template <typename C, typename E, typename T>
std::enable_if_t<Polynomial<C, E>::template fits_as_coefficient<T>::value, Polynomial<C, E>>
operator- (const T& c, const Polynomial<C, E>& p)
{
  return (-p)+=c;
}

template <typename C, typename E, typename T>
std::enable_if_t<UniPolynomial<C, E>::template fits_as_coefficient<T>::value, UniPolynomial<C, E>>
operator* (const T& c, const UniPolynomial<C, E>& p)
{
  return p.mult_from_right(c);
}

template <typename C, typename E, typename T>
std::enable_if_t<Polynomial<C, E>::template fits_as_coefficient<T>::value, Polynomial<C, E>>
operator* (const T& c, const Polynomial<C, E>& p)
{
  return p.mult_from_right(c);
}

template <typename C, typename E>
UniPolynomial<C, E> pow(const UniPolynomial<C, E> & base, long exp)
{
  return base.pow(exp);
}

template <typename C, typename E>
Polynomial<C, E> pow(const Polynomial<C, E> & base, long exp)
{
  return base.pow(exp);
}


/// explicit conversion of polynomial coefficients to another type
template <typename TargetType, typename Exponent>
const Polynomial<TargetType, Exponent>&
convert_to(const Polynomial<TargetType, Exponent>& p)
{
   return p;
}

template <typename TargetType, typename Exponent>
const UniPolynomial<TargetType,Exponent>&
convert_to(const UniPolynomial<TargetType, Exponent>& p)
{
   return p;
}

template <typename TargetType, typename Coefficient, typename Exponent,
          typename = std::enable_if_t<can_initialize<Coefficient, TargetType>::value && !std::is_same<Coefficient, TargetType>::value>>
Polynomial<TargetType, Exponent>
convert_to(const Polynomial<Coefficient, Exponent>& p)
{
   return Polynomial<TargetType,Exponent>(convert_to<TargetType>(p.coefficients_as_vector()),p.monomials_as_matrix());
}

template <typename TargetType, typename Coefficient, typename Exponent,
          typename = std::enable_if_t<can_initialize<Coefficient, TargetType>::value && !std::is_same<Coefficient, TargetType>::value>>
UniPolynomial<TargetType, Exponent>
convert_to(const UniPolynomial<Coefficient, Exponent>& p)
{
   return UniPolynomial<TargetType,Exponent>(convert_to<TargetType>(p.coefficients_as_vector()),p.monomials_as_vector());
}

// flint specializations 
#ifdef POLYMAKE_WITH_FLINT

template <>
UniPolynomial<Rational, Int>
gcd(const UniPolynomial<Rational, Int>& a, const UniPolynomial<Rational, Int>& b);

template <>
ExtGCD< UniPolynomial<Rational, Int> >
ext_gcd(const UniPolynomial<Rational, Int>& a, const UniPolynomial<Rational, Int>& b, bool normalize_gcd);

#endif

} // end namespace pm

namespace polymake {
   using pm::Polynomial;
   using pm::UniPolynomial;
   using pm::convert_to;
}

namespace std {

template <typename Coefficient, typename Exponent>
void swap(pm::UniPolynomial<Coefficient, Exponent>& x1, pm::UniPolynomial<Coefficient, Exponent> & x2) { x1.swap(x2); }

template <typename Coefficient, typename Exponent>
void swap(pm::Polynomial<Coefficient, Exponent>& x1, pm::Polynomial<Coefficient, Exponent> & x2) { x1.swap(x2); }

}