File: PuiseuxFraction.h

package info (click to toggle)
polymake 4.14-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 35,888 kB
  • sloc: cpp: 168,933; perl: 43,407; javascript: 31,575; ansic: 3,007; java: 2,654; python: 632; sh: 268; xml: 117; makefile: 61
file content (1367 lines) | stat: -rw-r--r-- 41,940 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
/* Copyright (c) 1997-2024
   Ewgenij Gawrilow, Michael Joswig, and the polymake team
   Technische Universität Berlin, Germany
   https://polymake.org

   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 2, or (at your option) any
   later version: http://www.gnu.org/licenses/gpl.txt.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
--------------------------------------------------------------------------------
*/

#pragma once

#include <cstddef>
#include "polymake/Rational.h"
#include "polymake/RationalFunction.h"
#include "polymake/TropicalNumber.h"
#include "polymake/linalg.h"


namespace pm {

namespace operations {

template <typename OpRef, typename T>
struct evaluate;

template <typename OpRef>
struct evaluate<OpRef,double>;

}

template <typename MinMax, typename Coefficient, typename Exponent>
class PuiseuxFraction;
template <typename MinMax, typename Coefficient, typename Exponent>
class PuiseuxFraction_generic;
template <typename MinMax>
class PuiseuxFraction_subst;

namespace pf_internal {

template <typename MinMax, typename Coefficient, typename Exponent>
struct impl_chooser {
   using type = PuiseuxFraction_generic<MinMax, Coefficient, Exponent>;
};

template <typename MinMax>
struct impl_chooser<MinMax, Rational, Rational> {
   using type = PuiseuxFraction_subst<MinMax>;
};

template <typename T>
auto exp_to_int(const T& t, Int& exp_den,
                std::enable_if_t<is_unipolynomial_type<T, Rational, Rational>::value, std::nullptr_t> = nullptr)
{
   auto exps = t.monomials_as_vector();
   exp_den = static_cast<Int>(lcm(denominators(exps)|exp_den));
   return UniPolynomial<Rational, Int>(t.coefficients_as_vector(), convert_to<Int>(exps * exp_den));
}

template <typename T>
auto exp_to_int(const T& t1, const T& t2, Int& exp_den,
                std::enable_if_t<is_unipolynomial_type<T, Rational, Rational>::value, std::nullptr_t> = nullptr)
{
   auto exps1 = t1.monomials_as_vector();
   auto exps2 = t2.monomials_as_vector();
   exp_den = static_cast<Int>(lcm(denominators(exps1) | denominators(exps2) | exp_den));
   return RationalFunction<Rational, Int>(
            UniPolynomial<Rational, Int>(t1.coefficients_as_vector(), convert_to<Int>(exps1 * exp_den)),
            UniPolynomial<Rational, Int>(t2.coefficients_as_vector(), convert_to<Int>(exps2 * exp_den))
          );
}

template <typename T>
auto exp_to_int(const T& t, Int& exp_den,
                std::enable_if_t<UniPolynomial<Rational,Rational>::fits_as_coefficient<T>::value, std::nullptr_t> = nullptr)
{
   return UniPolynomial<Rational, Int>(t);
}

inline
auto exp_to_int(const RationalFunction<Rational, Rational>& t, Int& exp_den)
{
   return exp_to_int(numerator(t), denominator(t), exp_den);
}

}


template <typename MinMax, typename Coefficient, typename Exponent>
class PuiseuxFraction_base {
public:
   typedef RationalFunction<Coefficient, Exponent> rf_type;

   typedef typename rf_type::polynomial_type polynomial_type;
   typedef Exponent exponent_type;
   typedef Coefficient coefficient_type;

   template <typename> friend struct spec_object_traits;
   template <typename,bool,bool> friend struct choose_generic_object_traits;
   template <typename> friend class std::numeric_limits;

   template <typename T>
   using fits_as_coefficient = typename rf_type::template fits_as_coefficient<T>;

   template <typename T>
   using fits_as_particle = typename rf_type::template fits_as_particle<T>;

   template <typename T>
   struct is_compatible
      : bool_constant<fits_as_particle<T>::value || std::is_same<T, PuiseuxFraction<MinMax, Coefficient, Exponent>>::value> {};

   template <typename T>
   struct is_comparable
      : bool_constant<fits_as_particle<T>::value || std::is_same<T, TropicalNumber<MinMax, Exponent>>::value> {};

   template <typename T>
   struct is_comparable_or_same
      : bool_constant<is_comparable<T>::value || std::is_same<T, PuiseuxFraction<MinMax,Coefficient,Exponent>>::value> {};

   const int orientation() const
   {
      return MinMax::orientation();
   }


};

template <typename MinMax, typename Coefficient, typename Exponent>
class PuiseuxFraction_generic : public PuiseuxFraction_base<MinMax,Coefficient,Exponent> {
protected:
   using base = PuiseuxFraction_base<MinMax,Coefficient,Exponent>;

public:
   using rf_type = typename base::rf_type;
   using polynomial_type = typename base::polynomial_type;
   template <typename T>
   using fits_as_particle = typename base::template fits_as_particle<T>;
   template <typename T>
   using fits_as_coefficient = typename base::template fits_as_coefficient<T>;
   template <typename T>
   using is_compatible = typename base::template is_compatible<T>;
   template <typename T>
   using is_comparable = typename base::template is_comparable<T>;
   template <typename T>
   using is_comparable_or_same = typename base::template is_comparable_or_same<T>;

protected:
   rf_type rf;

public:
   template <typename> friend struct spec_object_traits;
   template <typename,bool,bool> friend struct choose_generic_object_traits;
   template <typename> friend class std::numeric_limits;

   /// Construct a zero value.
   PuiseuxFraction_generic() : rf() {}

   /// One argument which may be a coefficient-compatible type or a unipolynomial
   template <typename T,
             typename=std::enable_if_t<fits_as_particle<T>::value>>
   explicit PuiseuxFraction_generic(const T& t)
      : rf(t) {}

   PuiseuxFraction_generic(const rf_type& t)
      : rf(numerator(t),denominator(t)) {}

   /// Two arguments which may be coefficient-compatible type or unipolynomial
   template <typename T1, typename T2,
             typename=std::enable_if_t<fits_as_particle<T1>::value && fits_as_particle<T2>::value>>
   PuiseuxFraction_generic(const T1& t1, const T2& t2)
      : rf(t1, t2) {}

   template <typename T,
             typename=std::enable_if_t<fits_as_particle<T>::value>>
   PuiseuxFraction_generic& operator= (const T& t)
   {
      rf = rf_type(t);
      return *this;
   }

   PuiseuxFraction_generic& operator= (const PuiseuxFraction_generic& pf)
   {
      rf = pf.rf;
      return *this;
   }

   friend
   const polynomial_type& numerator(const PuiseuxFraction_generic& me) { return numerator(me.rf); }

   friend
   const polynomial_type& denominator(const PuiseuxFraction_generic& me) { return denominator(me.rf); }

   bool is_zero() const
   {
      return pm::is_zero(rf);
   }

   bool is_one() const
   {
      return pm::is_one(rf);
   }

   void swap(PuiseuxFraction_generic& other)
   {
      rf.swap(other);
   }

   PuiseuxFraction_generic& negate()
   {
      rf.negate();
      return *this;
   }

   friend
   PuiseuxFraction_generic operator- (const PuiseuxFraction_generic& me)
   {
      return PuiseuxFraction_generic(-me.rf);
   }

   /// PLUS

   template <typename T,
             typename=std::enable_if_t<fits_as_particle<T>::value>>
   PuiseuxFraction_generic& operator+= (const T& r)
   {
      rf += r;
      return *this;
   }

   PuiseuxFraction_generic& operator+= (const PuiseuxFraction_generic& r)
   {
      rf += r.rf;
      return *this;
   }


   /// MINUS

   template <typename T,
             typename=std::enable_if_t<fits_as_particle<T>::value>>
   PuiseuxFraction_generic& operator-= (const T& r)
   {
      rf -= r;
      return *this;
   }

   PuiseuxFraction_generic& operator-= (const PuiseuxFraction_generic& r)
   {
      rf -= r.rf;
      return *this;
   }



   /// MULTIPLICATION
   template <typename T,
             typename=std::enable_if_t<fits_as_particle<T>::value>>
   PuiseuxFraction_generic& operator*= (const T& r)
   {
      rf *= r;
      return *this;
   }

   PuiseuxFraction_generic& operator*= (const PuiseuxFraction_generic& r)
   {
      rf *= r.rf;
      return *this;
   }

   /// DIVISION
   template <typename T,
             typename=std::enable_if_t<fits_as_particle<T>::value>>
   PuiseuxFraction_generic& operator/= (const T& r)
   {
      rf /= r;
      return *this;
   }

   PuiseuxFraction_generic& operator/= (const PuiseuxFraction_generic& r)
   {
      rf /= r.rf;
      return *this;
   }

   /// EQUALITY
   bool operator== (const PuiseuxFraction_generic& r) const
   {
      return rf == r.rf;
   }

   template <typename T,
             typename=std::enable_if_t<fits_as_particle<T>::value>>
   bool operator== (const T& r) const
   {
      return rf == r;
   }

   template <typename T,
             typename=std::enable_if_t<is_comparable<T>::value>>
   friend
   bool operator== (const T& l, const PuiseuxFraction_generic& r)
   {
      return r==l;
   }


   const rf_type& to_rationalfunction() const
   {
      return rf;
   }

   template <typename Exp=Exponent, typename T>
   PuiseuxFraction_generic<MinMax,Coefficient,Exp> substitute_monomial(const T& t) const
   {
      return PuiseuxFraction_generic<MinMax,Coefficient,Exp>(rf.template substitute_monomial<Exp>(t));
   }

   size_t get_hash() const noexcept { return rf.get_hash(); }

#if POLYMAKE_DEBUG
   void dump() const __attribute__((used)) { rf.dump(); }
#endif

   template <typename,typename,typename>
   friend class PuiseuxFraction;
};



template <typename MinMax>
class PuiseuxFraction_subst : public PuiseuxFraction_base<MinMax,Rational,Rational> {
public:
   using pf_type = PuiseuxFraction_generic<MinMax, Rational, Rational>;
   using rf_type = typename pf_type::rf_type;
   using polynomial_type = typename pf_type::polynomial_type;
   using Coefficient = Rational;
   using Exponent = Rational;
protected:
   using base = PuiseuxFraction_base<MinMax,Rational,Rational>;
   using subst_exponent = Int;
   using subst_pf_type = PuiseuxFraction<MinMax, Coefficient, subst_exponent>;
   using subst_rf_type = typename subst_pf_type::rf_type;
   using subst_poly_type = UniPolynomial<Coefficient, subst_exponent>;

public:
   template <typename T>
   using fits_as_coefficient = typename base::template fits_as_coefficient<T>;
   template <typename T>
   using fits_as_particle = typename base::template fits_as_particle<T>;
   template <typename T>
   using is_compatible = typename base::template is_compatible<T>;
   template <typename T>
   using is_comparable = typename base::template is_comparable<T>;
   template <typename T>
   using is_comparable_or_same = typename base::template is_comparable_or_same<T>;
   template <typename T>
   using is_subst_polynomial = is_unipolynomial_type<T,Coefficient,subst_exponent>;
   template <typename T>
   using is_base_polynomial = is_unipolynomial_type<T,Coefficient,Exponent>;

protected:

   // the exp_den must be the first member
   Int exp_den = 1;
   subst_pf_type subst_pf;

   mutable std::unique_ptr<rf_type> rf_cache;

   template <typename T, std::enable_if_t<is_subst_polynomial<T>::value, std::nullptr_t> = nullptr>
   explicit PuiseuxFraction_subst(const T& t)
      : exp_den(1)
      , subst_pf(t)
   { }

   template <typename T, std::enable_if_t<is_subst_polynomial<T>::value, std::nullptr_t> = nullptr>
   PuiseuxFraction_subst(const T& num, const T& den)
      : exp_den(1)
      , subst_pf(num,den)
   { }

   template <typename T, std::enable_if_t<is_among<T, subst_rf_type, subst_pf_type>::value, std::nullptr_t> = nullptr>
   explicit PuiseuxFraction_subst(const T& rf)
      : exp_den(1)
      , subst_pf(rf)
   { }

   void normalize_den()
   {
      if (exp_den == 1)
         return;
      auto exps1 = numerator(subst_pf).monomials_as_vector();
      auto exps2 = denominator(subst_pf).monomials_as_vector();
      Int expgcd = gcd(exps1 | exps2 | exp_den);
      if (expgcd == 1)
         return;
      subst_pf = subst_pf.template substitute_monomial<Int>(Rational(1, expgcd));
      exp_den /= expgcd;
   }

public:

   /// Construct a zero value.
   PuiseuxFraction_subst()
      : exp_den(1)
      , subst_pf() {}

   /// copy
   PuiseuxFraction_subst(const PuiseuxFraction_subst& pf)
      : exp_den(pf.exp_den)
      , subst_pf(pf.subst_pf) {}

   PuiseuxFraction_subst(const subst_pf_type& pf, Int expden)
      : exp_den(expden)
      , subst_pf(pf) {}

   /// construct from coefficient or unipolynomial
   template <typename T,
             std::enable_if_t<fits_as_particle<T>::value, std::nullptr_t> = nullptr>
   explicit PuiseuxFraction_subst(const T& t)
      : exp_den(1)
      , subst_pf(pf_internal::exp_to_int(t, exp_den)) {}

   /// construct from two coefficient or unipolynomial
   template <typename T1, typename T2,
             std::enable_if_t<fits_as_particle<T1>::value && fits_as_particle<T2>::value, std::nullptr_t> = nullptr>
   PuiseuxFraction_subst(const T1& t1, const T2& t2)
      : exp_den(1)
      , subst_pf(pf_internal::exp_to_int(polynomial_type(t1), polynomial_type(t2), exp_den)) {}

   /// construct from rational function
   explicit PuiseuxFraction_subst(const rf_type& t)
      : exp_den(1)
      , subst_pf(pf_internal::exp_to_int(t, exp_den)) {}

   template <typename T,
             std::enable_if_t<fits_as_particle<T>::value || std::is_same<T,rf_type>::value, std::nullptr_t> = nullptr>
   PuiseuxFraction_subst& operator= (const T& t)
   {
      exp_den = 1;
      subst_pf = subst_pf_type(pf_internal::exp_to_int(t, exp_den));
      rf_cache.reset(nullptr);
      return *this;
   }

   PuiseuxFraction_subst& operator= (const PuiseuxFraction_subst& pf)
   {
      exp_den = pf.exp_den;
      subst_pf = pf.subst_pf;
      rf_cache.reset(nullptr);
      return *this;
   }

   friend
   const polynomial_type& numerator(const PuiseuxFraction_subst& me)
   {
      return numerator(me.to_rationalfunction());
   }

   friend
   const polynomial_type& denominator(const PuiseuxFraction_subst& me)
   {
      return denominator(me.to_rationalfunction());
   }

   bool is_zero() const
   {
      return pm::is_zero(subst_pf);
   }

   bool is_one() const
   {
      return pm::is_one(subst_pf);
   }

   const rf_type& to_rationalfunction() const
   {
      if (!rf_cache)
         rf_cache.reset(new rf_type(numerator(subst_pf).template substitute_monomial<Rational>(Rational(1,exp_den)),
                                    denominator(subst_pf).template substitute_monomial<Rational>(Rational(1,exp_den))));
      return *rf_cache;
   }

   void swap(PuiseuxFraction_subst& other)
   {
      std::swap(exp_den,other.exp_den);
      subst_pf.swap(other);
      std::swap(rf_cache,other.rf_cache);
   }

   PuiseuxFraction_subst& negate()
   {
      subst_pf.negate();
      rf_cache.reset(nullptr);
      return *this;
   }

   friend
   PuiseuxFraction_subst operator- (const PuiseuxFraction_subst& me)
   {
      return PuiseuxFraction_subst(-me.subst_pf,me.exp_den);
   }


   /// PLUS
   template <typename T>
   std::enable_if_t<fits_as_coefficient<T>::value, PuiseuxFraction_subst&>
   operator+= (const T& r)
   {
      subst_pf += r;
      normalize_den();
      rf_cache.reset(nullptr);
      return *this;
   }

   template <typename T>
   std::enable_if_t<is_base_polynomial<T>::value, PuiseuxFraction_subst&>
   operator+= (const T& r)
   {
      const Int old_den = exp_den;
      auto poly_int = pf_internal::exp_to_int(r, exp_den);
      if (old_den != exp_den)
         subst_pf = subst_pf.template substitute_monomial<Int>(exp_den/old_den);
      subst_pf += poly_int;
      normalize_den();
      rf_cache.reset(nullptr);
      return *this;
   }

   PuiseuxFraction_subst& operator+= (const PuiseuxFraction_subst& r)
   {
      const Int new_den = lcm(exp_den, r.exp_den);
      if (new_den != exp_den)
         subst_pf = subst_pf.template substitute_monomial<Int>(new_den/exp_den);
      if (new_den != r.exp_den) {
         subst_pf += r.subst_pf.template substitute_monomial<Int>(new_den/r.exp_den);
      } else {
         subst_pf += r.subst_pf;
      }
      exp_den = new_den;
      normalize_den();
      rf_cache.reset(nullptr);
      return *this;
   }

   /// MINUS
   template <typename T,
             typename = std::enable_if_t<fits_as_particle<T>::value || std::is_same<T, PuiseuxFraction_subst>::value>>
   PuiseuxFraction_subst& operator-= (const T& r)
   {
      subst_pf += -r;
      normalize_den();
      rf_cache.reset(nullptr);
      return *this;
   }

   /// MULTIPLICATION
   template <typename T>
   std::enable_if_t<fits_as_coefficient<T>::value, PuiseuxFraction_subst&>
   operator*= (const T& r)
   {
      subst_pf *= r;
      if (pm::is_zero(r))
         exp_den = 1;
      rf_cache.reset(nullptr);
      return *this;
   }

   template <typename T>
   std::enable_if_t<is_base_polynomial<T>::value, PuiseuxFraction_subst&>
   operator*= (const T& r)
   {
      const Int old_den = exp_den;
      auto poly_int = pf_internal::exp_to_int(r, exp_den);
      if (old_den != exp_den)
         subst_pf = subst_pf.template substitute_monomial<Int>(exp_den/old_den);
      subst_pf *= poly_int;
      normalize_den();
      rf_cache.reset(nullptr);
      return *this;
   }

   PuiseuxFraction_subst& operator*= (const PuiseuxFraction_subst& r)
   {
      const Int new_den = lcm(exp_den, r.exp_den);
      if (new_den != exp_den)
         subst_pf = subst_pf.template substitute_monomial<Int>(new_den / exp_den);
      if (new_den != r.exp_den) {
         subst_pf *= r.subst_pf.template substitute_monomial<Int>(new_den / r.exp_den);
      } else {
         subst_pf *= r.subst_pf;
      }
      exp_den = new_den;
      normalize_den();
      rf_cache.reset(nullptr);
      return *this;
   }

   /// DIVISION
   template <typename T>
   std::enable_if_t<fits_as_coefficient<T>::value, PuiseuxFraction_subst&>
   operator/= (const T& r)
   {
      subst_pf /= r;
      rf_cache.reset(nullptr);
      return *this;
   }

   template <typename T>
   std::enable_if_t<is_base_polynomial<T>::value, PuiseuxFraction_subst&>
   operator/= (const T& r)
   {
      const Int old_den = exp_den;
      auto poly_int = pf_internal::exp_to_int(r, exp_den);
      if (old_den != exp_den)
         subst_pf = subst_pf.template substitute_monomial<Int>(exp_den / old_den);
      subst_pf /= poly_int;
      normalize_den();
      rf_cache.reset(nullptr);
      return *this;
   }

   PuiseuxFraction_subst& operator/= (const PuiseuxFraction_subst& r)
   {
      const Int new_den = lcm(exp_den, r.exp_den);
      if (new_den != exp_den)
         subst_pf = subst_pf.template substitute_monomial<Int>(new_den / exp_den);
      if (new_den != r.exp_den) {
         subst_pf /= r.subst_pf.template substitute_monomial<Int>(new_den / r.exp_den);
      } else {
         subst_pf /= r.subst_pf;
      }
      exp_den = new_den;
      normalize_den();
      rf_cache.reset(nullptr);
      return *this;
   }

   /// EQUALITY
   bool operator== (const PuiseuxFraction_subst& r) const
   {
      return exp_den == r.exp_den && subst_pf == r.subst_pf;
   }

   template <typename T>
   std::enable_if_t<fits_as_coefficient<T>::value, bool>
   operator== (const T& r) const
   {
      return subst_pf == r;
   }

   template <typename T>
   std::enable_if_t<is_base_polynomial<T>::value, bool>
   operator== (const T& r) const
   {
      const Int den = exp_den;
      return subst_pf == pf_internal::exp_to_int(r, den) && exp_den == den;
   }

   template <typename Exp = Exponent, typename T>
   auto substitute_monomial(const T& t, std::enable_if_t<!std::is_same<Exp,Rational>::value, std::nullptr_t> = nullptr) const
   {
      return PuiseuxFraction_generic<MinMax,Coefficient,Exp>(subst_pf.template substitute_monomial<Exp>(t/exp_den));
   }

   template <typename Exp = Exponent,typename T>
   auto substitute_monomial(const T& t, std::enable_if_t<std::is_same<Exp,Rational>::value, std::nullptr_t> = nullptr) const
   {
      Rational exp(t);
      exp /= exp_den;
      return PuiseuxFraction_subst(subst_pf.template substitute_monomial<Int>(numerator(exp)),denominator(exp));
   }


   size_t get_hash() const noexcept { size_t h = exp_den; hash_combine(h,subst_pf.get_hash()); return h; }

#if POLYMAKE_DEBUG
   void dump() const __attribute__((used))
   {
      std::cerr << "exp_den: " << exp_den << std::endl;
      subst_pf.dump();
   }
#endif

   template <typename,typename,typename>
   friend class PuiseuxFraction;
};


template <typename MinMax, typename Coefficient=Rational, typename Exponent=Rational>
class PuiseuxFraction : public pf_internal::impl_chooser<MinMax, Coefficient, Exponent>::type {
protected:
   using impl_type = typename pf_internal::impl_chooser<MinMax, Coefficient, Exponent>::type;
   using base = PuiseuxFraction_base<MinMax, Coefficient, Exponent>;

public:
   using rf_type = typename base::rf_type;
   using polynomial_type = typename base::polynomial_type;
   template <typename T>
   using fits_as_coefficient = typename base::template fits_as_coefficient<T>;
   template <typename T>
   using fits_as_particle = typename base::template fits_as_particle<T>;
   template <typename T>
   using is_compatible = typename base::template is_compatible<T>;
   template <typename T>
   using is_comparable = typename base::template is_comparable<T>;
   template <typename T>
   using is_comparable_or_same = typename base::template is_comparable_or_same<T>;

   // constructors
   using impl_type::impl_type;

   PuiseuxFraction() : impl_type() {}

   // upgrade from impl
   PuiseuxFraction(const impl_type& pf) : impl_type(pf) {}


   template <typename T,
             typename=std::enable_if_t<fits_as_particle<T>::value || std::is_same<T,rf_type>::value>>
   PuiseuxFraction& operator= (const T& t)
   {
      static_cast<impl_type&>(*this) = t;
      return *this;
   }

   // forwards to impl type

   friend
   PuiseuxFraction operator- (const PuiseuxFraction& me)
   {
      return impl_type(me).negate();
   }

   PuiseuxFraction& negate()
   {
      impl_type::negate();
      return *this;
   }

   // PLUS
   template <typename T,
             typename=std::enable_if_t<is_compatible<T>::value>>
   PuiseuxFraction& operator+= (const T& r)
   {
      impl_type::operator+=(r);
      return *this;
   }

   template <typename T,
             typename=std::enable_if_t<fits_as_particle<T>::value>>
   friend
   PuiseuxFraction operator+ (const PuiseuxFraction& l, const T& r)
   {
      return impl_type(l) += r;
   }

   template <typename T,
             typename=std::enable_if_t<fits_as_particle<T>::value>>
   friend
   PuiseuxFraction operator+ (const T& l, const PuiseuxFraction& r)
   {
      return impl_type(l) += r;
   }

   friend
   PuiseuxFraction operator+ (const PuiseuxFraction& l, const PuiseuxFraction& r)
   {
      return impl_type(l) += impl_type(r);
   }

   // MINUS
   template <typename T,
             typename=std::enable_if_t<is_compatible<T>::value>>
   PuiseuxFraction& operator-= (const T& r)
   {
      impl_type::operator+=(-r);
      return *this;
   }

   template <typename T,
             typename=std::enable_if_t<fits_as_particle<T>::value>>
   friend
   PuiseuxFraction operator- (const PuiseuxFraction& l, const T& r)
   {
      return impl_type(l) += -r;
   }

   template <typename T,
             typename=std::enable_if_t<fits_as_particle<T>::value>>
   friend
   PuiseuxFraction operator- (const T& l, const PuiseuxFraction& r)
   {
      return impl_type(l) += -r;
   }

   friend
   PuiseuxFraction operator- (const PuiseuxFraction& l, const PuiseuxFraction& r)
   {
      return impl_type(l) += -r;
   }


   // MULTIPLICATION
   template <typename T,
             typename=std::enable_if_t<is_compatible<T>::value>>
   PuiseuxFraction& operator*= (const T& r)
   {
      impl_type::operator*=(r);
      return *this;
   }

   template <typename T,
             typename=std::enable_if_t<fits_as_particle<T>::value>>
   friend
   PuiseuxFraction operator* (const PuiseuxFraction& l, const T& r)
   {
      return impl_type(l) *= r;
   }

   template <typename T,
             typename=std::enable_if_t<fits_as_particle<T>::value>>
   friend
   PuiseuxFraction operator* (const T& l, const PuiseuxFraction& r)
   {
      return impl_type(l) *= r;
   }

   friend
   PuiseuxFraction operator* (const PuiseuxFraction& l, const PuiseuxFraction& r)
   {
      return impl_type(l) *= r;
   }


   // DIVISION
   template <typename T,
             typename=std::enable_if_t<is_compatible<T>::value>>
   PuiseuxFraction& operator/= (const T& r)
   {
      impl_type::operator/=(r);
      return *this;
   }

   template <typename T,
             typename=std::enable_if_t<fits_as_particle<T>::value>>
   friend
   PuiseuxFraction operator/ (const PuiseuxFraction& l, const T& r)
   {
      return impl_type(l) /= r;
   }

   template <typename T,
             typename=std::enable_if_t<fits_as_particle<T>::value>>
   friend
   PuiseuxFraction operator/ (const T& l, const PuiseuxFraction& r)
   {
      return impl_type(l) /= r;
   }

   friend
   PuiseuxFraction operator/ (const PuiseuxFraction& l, const PuiseuxFraction& r)
   {
      return impl_type(l) /= r;
   }

   // this evaluates at t^exp_lcm and exp_lcm must be large enough such that this makes all needed
   // exponents integral
   template <typename T>
   friend
   typename algebraic_traits<T>::field_type
   evaluate_exp(const PuiseuxFraction& me, const T& t, const Int exp_lcm = 1,
                std::enable_if_t<fits_as_coefficient<T>::value, std::nullptr_t> = nullptr)
   {
      using field = typename algebraic_traits<T>::field_type;
      field val = numerator(me).evaluate(t, exp_lcm);
      val /= denominator(me).evaluate(t, exp_lcm);
      return val;
   }

   template <typename VectorType, typename T>
   friend
   auto evaluate(VectorType&& vec, const T& t, const Int exp = 1,
                 std::enable_if_t<(fits_as_coefficient<T>::value &&
                                   is_field_of_fractions<Exponent>::value &&
                                   is_generic_vector<VectorType, PuiseuxFraction>::value), std::nullptr_t> = nullptr)
   {
      Integer exp_lcm(exp);
      for (auto v = entire(vec.top()); !v.at_end(); ++v)
         exp_lcm = lcm(denominators(numerator(*v).monomials_as_vector() | denominator(*v).monomials_as_vector()) | exp_lcm);

      const double t_approx = std::pow(double(t), 1.0/double(exp_lcm));
      using base_t = typename algebraic_traits<T>::field_type;
      const base_t baseval = exp_lcm == exp ? base_t{t} : base_t{t_approx};

      return LazyVector1<add_const_t<unwary_t<VectorType>>,
                         operations::evaluate<PuiseuxFraction, base_t>>
                        (unwary(std::forward<VectorType>(vec)), operations::evaluate<PuiseuxFraction, base_t>(baseval, Int(exp_lcm)));
   }

   template <typename VectorType, typename T>
   friend
   auto evaluate(VectorType&& vec, const T& t, const Int exp = 1,
                 std::enable_if_t<(fits_as_coefficient<T>::value &&
                                   std::numeric_limits<Exponent>::is_integer &&
                                   is_generic_vector<VectorType, PuiseuxFraction>::value), std::nullptr_t> = nullptr)
   {
      return LazyVector1<add_const_t<unwary_t<VectorType>>, operations::evaluate<PuiseuxFraction, T>>
                        (unwary(std::forward<VectorType>(vec)), operations::evaluate<PuiseuxFraction, T>(t, exp));
   }

   template <typename MatrixType, typename T>
   friend
   auto evaluate(MatrixType&& m, const T& t, const Int exp = 1,
                 std::enable_if_t<(fits_as_coefficient<T>::value &&
                                   is_field_of_fractions<Exponent>::value &&
                                   is_generic_matrix<MatrixType, PuiseuxFraction>::value), std::nullptr_t> = nullptr)
   {
      Integer exp_lcm(exp);
      for (auto e = entire(concat_rows(m.top())); !e.at_end(); ++e)
         exp_lcm = lcm(denominators(numerator(*e).monomials_as_vector() | denominator(*e).monomials_as_vector()) | exp_lcm);

      const double t_approx = std::pow(convert_to<double>(t),1.0/convert_to<double>(exp_lcm));
      using base_t = typename algebraic_traits<T>::field_type;
      const base_t baseval = exp_lcm == exp ? base_t{t} : base_t{t_approx};

      return LazyMatrix1<add_const_t<unwary_t<MatrixType>>,
                         operations::evaluate<PuiseuxFraction, base_t>>
                        (unwary(std::forward<MatrixType>(m)), operations::evaluate<PuiseuxFraction, base_t>(baseval, Int(exp_lcm)));
   }

   template <typename MatrixType, typename T>
   friend   
   auto evaluate(MatrixType&& m, const T& t, const Int exp = 1,
                 std::enable_if_t<(fits_as_coefficient<T>::value &&
                                   std::numeric_limits<Exponent>::is_integer &&
                                   is_generic_matrix<MatrixType, PuiseuxFraction>::value), std::nullptr_t> = nullptr)
   {
      return LazyMatrix1<add_const_t<unwary_t<MatrixType>>, operations::evaluate<PuiseuxFraction, T>>
                        (unwary(std::forward<MatrixType>(m)), operations::evaluate<PuiseuxFraction, T>(t, exp));
   }

   template <typename T>
   friend
   auto evaluate(const PuiseuxFraction& me, const T& t, const Int exp = 1,
                 std::enable_if_t<is_field_of_fractions<Exponent>::value && fits_as_coefficient<T>::value, std::nullptr_t> = nullptr)
   {
      Integer exp_lcm(exp);
      exp_lcm = lcm(denominators(numerator(me).monomials_as_vector() | denominator(me).monomials_as_vector()) | exp_lcm);
      const double t_approx = std::pow(convert_to<double>(t), 1.0 / convert_to<double>(exp_lcm));
      const Coefficient base_coeff = exp_lcm == exp ? Coefficient{t} : Coefficient{t_approx};
      return evaluate_exp(me, base_coeff, Int(exp_lcm));
   }

   template <typename T>
   friend
   auto evaluate(const PuiseuxFraction& me, const T& t, const Int exp = 1,
                 std::enable_if_t<std::numeric_limits<Exponent>::is_integer && fits_as_coefficient<T>::value, std::nullptr_t> = nullptr)
   {
      return evaluate_exp(me, t, exp);
   }

   template <typename VectorType>
   friend
   auto evaluate_float(VectorType&& vec, const double t,
                       std::enable_if_t<is_generic_vector<VectorType, PuiseuxFraction>::value, std::nullptr_t> = nullptr)
   {
      return LazyVector1<add_const_t<unwary_t<VectorType>>, operations::evaluate<PuiseuxFraction, double>>
                        (unwary(std::forward<VectorType>(vec)), operations::evaluate<PuiseuxFraction, double>(t));
   }

   template <typename MatrixType>
   friend
   auto evaluate_float(MatrixType&& m, const double t,
                       std::enable_if_t<is_generic_matrix<MatrixType, PuiseuxFraction>::value, std::nullptr_t> = nullptr)
   {
      return LazyMatrix1<add_const_t<unwary_t<MatrixType>>, operations::evaluate<PuiseuxFraction, double>>
                        (unwary(std::forward<MatrixType>(m)), operations::evaluate<PuiseuxFraction, double>(t));
   }

   friend
   double evaluate_float(const PuiseuxFraction& me, const double arg)
   {
      double val = numerator(me).evaluate_float(arg);
      val /= denominator(me).evaluate_float(arg);
      return val;
   }

   template <typename Exp = Exponent, typename T>
   PuiseuxFraction<MinMax, Coefficient, Exp> substitute_monomial(const T& t) const
   {
      return impl_type::template substitute_monomial<Exp>(t);
   }

   template <typename T,
             typename=std::enable_if_t<is_comparable_or_same<T>::value>>
   friend
   bool operator< (const PuiseuxFraction& l, const T& r)
   {
      return l.compare(r) < 0;
   }

   template <typename T,
             typename=std::enable_if_t<is_comparable<T>::value>>
   friend
   bool operator< (const T& l, const PuiseuxFraction& r)
   {
      return r.compare(l) > 0;
   }

   template <typename T,
             typename=std::enable_if_t<is_comparable_or_same<T>::value>>
   friend
   bool operator<= (const PuiseuxFraction& l, const T& r)
   {
      return l.compare(r) <= 0;
   }

   template <typename T,
             typename=std::enable_if_t<is_comparable<T>::value>>
   friend
   bool operator<= (const T& l, const PuiseuxFraction& r)
   {
      return r.compare(l) >= 0;
   }

   template <typename T,
             typename=std::enable_if_t<is_comparable_or_same<T>::value>>
   friend
   bool operator> (const PuiseuxFraction& l, const T& r)
   {
      return l.compare(r) > 0;
   }

   template <typename T,
             typename=std::enable_if_t<is_comparable<T>::value>>
   friend
   bool operator> (const T& l, const PuiseuxFraction& r)
   {
      return r.compare(l) < 0;
   }

   template <typename T,
             typename=std::enable_if_t<is_comparable_or_same<T>::value>>
   friend
   bool operator>= (const PuiseuxFraction& l, const T& r)
   {
      return l.compare(r) >= 0;
   }

   template <typename T,
             typename=std::enable_if_t<is_comparable<T>::value>>
   friend
   bool operator>= (const T& l, const PuiseuxFraction& r)
   {
      return r.compare(l) <= 0;
   }

   static
   const Array<std::string>& get_var_names()
   {
      return rf_type::get_var_names();
   }

   static
   void set_var_names(const Array<std::string>& names)
   {
      rf_type::set_var_names(names);
   }

   static
   void reset_var_names()
   {
      rf_type::reset_var_names();
   }

   /// COMPARISON depending on Min / Max
   // Max::orientation = -1 and we need the highest term
   // Min::orientation =  1 and we need the lowest term
   Int compare(const PuiseuxFraction& pf) const
   {
      if (std::is_same<Max, MinMax>::value)
         return sign((numerator(*this)*denominator(pf) - numerator(pf)*denominator(*this)).lc());
      else
         return sign(denominator(*this).lc(-1)) * sign(denominator(pf).lc(-1)) *
                sign((numerator(*this)*denominator(pf) - numerator(pf)*denominator(*this)).lc(-1));
   }

   template <typename T>
   std::enable_if_t<fits_as_coefficient<T>::value, Int>
   compare(const T& c) const
   {
      if (std::is_same<Max, MinMax>::value) {
         if (!numerator(*this).trivial() && (is_zero(c) || numerator(*this).deg() > denominator(*this).deg()))
            return sign(numerator(*this).lc());
         else if (numerator(*this).deg() < denominator(*this).deg())
            return -sign(c);
         else
            return sign(numerator(*this).lc()-c);
      } else {
         const Exponent minus_one = -one_value<Exponent>();
         if (!numerator(*this).trivial() && (is_zero(c) || numerator(*this).lower_deg() < denominator(*this).lower_deg()))
            return sign(numerator(*this).lc(minus_one)) * sign(denominator(*this).lc(minus_one));
         else if (numerator(*this).lower_deg() > denominator(*this).lower_deg())
            return -sign(c);
         else
            return sign(numerator(*this).lc(minus_one) * sign(denominator(*this).lc(minus_one)) - c*abs(denominator(*this).lc(minus_one)));
      }
   }


   template <typename T>
   std::enable_if_t<is_unipolynomial_type<T, Coefficient, Exponent>::value, Int>
   compare(const T& c) const
   {
      return compare(PuiseuxFraction(c));
   }

   Int compare(const TropicalNumber<MinMax, Exponent>& c) const
   {
      return val().compare(c);
   }

   template <typename T>
   std::enable_if_t<is_comparable_or_same<T>::value, bool>
   operator== (const T& r) const
   {
      return impl_type::operator==(r);
   }

   template <typename T>
   friend
   std::enable_if_t<is_comparable<T>::value, bool>
   operator== (const T& l, const PuiseuxFraction& r)
   {
      return r.operator==(l);
   }

   template <typename T>
   friend
   std::enable_if_t<is_comparable_or_same<T>::value, bool>
   operator!= (const PuiseuxFraction& l, const T& r)
   {
      return !(l == r);
   }

   template <typename T>
   friend
   std::enable_if_t<is_comparable<T>::value, bool>
   operator!= (const T& l, const PuiseuxFraction& r)
   {
      return !(r == l);
   }

   friend
   bool operator== (const PuiseuxFraction& l, const TropicalNumber<MinMax, Exponent>& r)
   {
      return l.val() == r;
   }

   static
   void swap_var_names(PolynomialVarNames& other_names)
   {
      rf_type::swap_var_names(other_names);
   }

   friend PuiseuxFraction abs(const PuiseuxFraction& pf)
   {
      return pf >= 0 ? pf : -pf;
   }

   friend bool abs_equal(const PuiseuxFraction& pf1, const PuiseuxFraction& pf2)
   {
      return abs(pf1).compare(abs(pf2)) == 0;
   }

   TropicalNumber<MinMax, Exponent> val() const
   {
      if (std::is_same<MinMax, Max>::value)
         return TropicalNumber<MinMax, Exponent>(numerator(*this).deg() - denominator(*this).deg());
      else
         return TropicalNumber<MinMax, Exponent>(numerator(*this).lower_deg() - denominator(*this).lower_deg());
   }

   explicit operator TropicalNumber<MinMax, Exponent> () const
   {
      return val();
   }

   template <typename Output, typename Order>
   void pretty_print(Output& out, const Order& order) const
   {
      out << '(';
      static_cast<polynomial_type>(numerator(*this)).print_ordered(out, order);
      out << ')';
      if (!denominator(*this).is_one()) {
         out << "/(";
         static_cast<polynomial_type>(denominator(*this)).print_ordered(out, order);
         out << ')';
      }
   }

   template <typename Output> friend
   Output& operator<< (GenericOutput<Output>& out, const PuiseuxFraction& pf)
   {
      pf.pretty_print(out.top(),-MinMax::orientation());
      return out.top();
   }

};



template <typename MinMax, typename Coefficient, typename Exponent>
Int sign(const PuiseuxFraction<MinMax, Coefficient, Exponent>& x)
{
   return x.compare(zero_value<Coefficient>());
}

namespace operations {

template <typename OpRef, typename T>
struct evaluate {
   typedef OpRef argument_type;
   typedef typename algebraic_traits<T>::field_type result_type;

   evaluate(const T& t, const long e = 1) : val(t), exp(e) { }

   result_type operator() (typename function_argument<OpRef>::const_type x) const
   {
      return evaluate_exp(x, val,exp);
   }

private:
   const T val;
   const long exp;
};

template <typename OpRef>
struct evaluate<OpRef, double> {
   typedef OpRef argument_type;
   typedef double result_type;

   evaluate(const double& t, const Int e = 1) : val(t), exp(e) { }

   result_type operator() (typename function_argument<OpRef>::const_type x) const
   {
      return evaluate_float(x, std::pow(val, exp));
   }

private:
   const double val;
   const Int exp;
};

}

template <typename MinMax, typename Coefficient, typename Exponent>
struct algebraic_traits< PuiseuxFraction<MinMax, Coefficient, Exponent> > {
   typedef PuiseuxFraction<MinMax,typename algebraic_traits<Coefficient>::field_type,Exponent> field_type;
};


template <typename MinMax, typename Coefficient, typename Exponent>
struct spec_object_traits< Serialized< PuiseuxFraction<MinMax, Coefficient, Exponent> > >
   : spec_object_traits<is_composite> {

   using masquerade_for = PuiseuxFraction<MinMax, Coefficient, Exponent>;
   using rf_type = typename masquerade_for::rf_type;
   using elements = rf_type;

   template <typename Visitor>
   static void visit_elements(Serialized<masquerade_for>& me, Visitor& v)
   {
      rf_type tmp;
      v << tmp;
      me = masquerade_for(tmp);
   }
   template <typename Visitor>
   static void visit_elements(const Serialized<masquerade_for>& me, Visitor& v)
   {
      v << me.to_rationalfunction();
   }
};


template <typename MinMax, typename Coefficient, typename Exponent>
struct choose_generic_object_traits< PuiseuxFraction<MinMax,Coefficient,Exponent>, false, false>
   : spec_object_traits<PuiseuxFraction<MinMax,Coefficient,Exponent> > {
   typedef PuiseuxFraction<MinMax, Coefficient, Exponent> persistent_type;
   typedef void generic_type;
   typedef is_scalar generic_tag;

   static
   bool is_zero(const persistent_type& p)
   {
      return p.is_zero();
   }

   static
   bool is_one(const persistent_type& p)
   {
      return p.is_one();
   }

   static
   const persistent_type& zero()
   {
      static const persistent_type x=persistent_type();
      return x;
   }

   static
   const persistent_type& one()
   {
      static const persistent_type x(1);
      return x;
   }
};

template <typename MinMax, typename Coefficient, typename Exponent>
struct hash_func<PuiseuxFraction<MinMax,Coefficient,Exponent>, is_scalar> {
   size_t operator() (const PuiseuxFraction<MinMax,Coefficient,Exponent>& p) const noexcept
   {
      return p.get_hash();
   }
};

namespace polynomial_impl {

template <typename MinMax, typename Coefficient, typename Exponent>
struct nesting_level< PuiseuxFraction<MinMax, Coefficient, Exponent> >
  : int_constant<nesting_level<Coefficient>::value+1> {};

}
} // end namespace pm

namespace polymake {
   using pm::PuiseuxFraction;
}

namespace std {
   template <typename MinMax, typename Coefficient, typename Exponent>
   void swap(pm::PuiseuxFraction<MinMax,Coefficient,Exponent>& x1, pm::PuiseuxFraction<MinMax,Coefficient,Exponent>& x2) { x1.swap(x2); }

   template <typename MinMax, typename Coefficient, typename Exponent>
   class numeric_limits<pm::PuiseuxFraction<MinMax,Coefficient,Exponent> > : public numeric_limits<Coefficient> {
   public:
      static const bool is_integer=false;
      static pm::PuiseuxFraction<MinMax,Coefficient,Exponent> min() throw() { return pm::PuiseuxFraction<MinMax,Coefficient,Exponent>(numeric_limits<Coefficient>::min()); }
      static pm::PuiseuxFraction<MinMax,Coefficient,Exponent> infinity() throw() { return pm::PuiseuxFraction<MinMax,Coefficient,Exponent>(numeric_limits<Coefficient>::infinity()); }
      static pm::PuiseuxFraction<MinMax,Coefficient,Exponent> max() throw() { return pm::PuiseuxFraction<MinMax,Coefficient,Exponent>(numeric_limits<Coefficient>::max()); }
   };
}


// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End: