1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
/* Copyright (c) 1997-2024
Ewgenij Gawrilow, Michael Joswig, and the polymake team
Technische Universität Berlin, Germany
https://polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#pragma once
#include "polymake/RandomGenerators.h"
#include <cmath>
namespace pm {
using std::log;
/** Generator of floating-point numbers normally distributed in (-1,1).
* The algorithm is taken from Donald E. Knuth, The Art of Computer Programming, vol. II, section 3.4.1.E.6
*/
template <typename Num=AccurateFloat>
class NormalRandom
: public GenericRandomGenerator<NormalRandom<Num>, const Num&> {
public:
static_assert(is_among<Num, AccurateFloat, double>::value, "wrong number type");
explicit NormalRandom(const RandomSeed& seed=RandomSeed())
: uni_src(seed)
{
fill();
}
explicit NormalRandom(const SharedRandomState& s)
: uni_src(s)
{
fill();
}
const Num& get()
{
if (++index==2) fill();
return x[index];
}
protected:
Num x[2];
UniformlyRandom<Num> uni_src;
Int index;
void fill()
{
Num v, u, s;
do {
v = 2*uni_src.get()-1;
u = 2*uni_src.get()-1;
s = u*u + v*v;
} while (s >= 1);
const Num scale = sqrt( (-2*log(s)) / s );
x[0] = v*scale;
x[1] = u*scale;
index=0;
}
};
/// Generator of uniformly distributed random points on the unit sphere in R^d
template <typename FillClass, bool normalize, typename Num=AccurateFloat>
class RandomPoints
: public GenericRandomGenerator<RandomPoints<FillClass, normalize, Num>, const Vector<Num>&> {
public:
explicit RandomPoints(Int dim, const RandomSeed& seed=RandomSeed())
: point(dim), norm_src(seed) {}
RandomPoints(Int dim, const SharedRandomState& s)
: point(dim), norm_src(s) {}
const Vector<Num>& get()
{
fill_point();
return point;
}
void set_precision(int precision)
{
static_assert(std::is_same<Num,AccurateFloat>::value, "RandomPoints.set_precision is defined only for AccurateFloat");
for(auto&& x: point)
x.set_precision(precision);
}
protected:
Vector<Num> point;
NormalRandom<Num> norm_src;
void fill_point()
{
if(normalize) {
Num norm;
do {
copy_range(norm_src.begin(), entire(point));
norm = sqr(point);
} while (norm == 0); // this occurs with very low probability
point /= sqrt(norm);
} else {
copy_range(norm_src.begin(), entire(point));
}
}
};
template<typename Num=AccurateFloat>
class RandomNormalPoints : public RandomPoints<RandomNormalPoints<Num>, false, Num> {
protected:
using Base=RandomPoints<RandomNormalPoints<Num>, false, Num>;
public:
using Base::Base;
};
template<typename Num=AccurateFloat>
class RandomSpherePoints : public RandomPoints<RandomSpherePoints<Num>, true, Num> {
protected:
using Base=RandomPoints<RandomSpherePoints<Num>, true, Num>;
public:
using Base::Base;
};
template <>
class RandomSpherePoints<pm::Rational>
: public GenericRandomGenerator<RandomSpherePoints<Rational>, const Vector<Rational> &> {
public:
explicit RandomSpherePoints(Int dim, const RandomSeed& seed = RandomSeed())
: point(dim), rand_sphere_float(dim, seed) {}
RandomSpherePoints(Int dim, const SharedRandomState& s)
: point(dim), rand_sphere_float(dim, s) {}
const Vector<Rational>& get()
{
fill_point();
return point;
}
void set_precision(int precision)
{
rand_sphere_float.set_precision(precision);
}
protected:
Vector<Rational> point;
RandomSpherePoints<AccurateFloat> rand_sphere_float;
void fill_point()
{
Vector<AccurateFloat> pt_float = rand_sphere_float.get();
// pick the coordinate with maximal abs value:
AccurateFloat max_val {abs(pt_float[0])};
Int max_idx = 0;
for (Int i = 1; i < pt_float.size(); ++i) {
if (abs(pt_float[i]) > max_val) {
max_idx = i;
max_val = pt_float[i];
}
}
std::swap(pt_float[0], pt_float[max_idx]);
pt_float[0] *= -1;
// the distinguished point for the projection is oposite to the argmax;
// the angle of projecion will not be greater than +-pi/4
stereographic_projection<AccurateFloat>(pt_float);
// the first coordinate of pt_float is 0.0 now;
// approximate rationally;
// TODO #1138: bound the height of point based on precision
for (Int i = 0; i != pt_float.size(); ++i) {
point[i] = Rational(pt_float[i]);
}
inv_stereographic_projection(point);
point[0] *= -1; // not really necessary
std::swap(point[0], point[max_idx]);
}
template <typename Num>
void stereographic_projection(Vector<Num>& pt)
{
for (Int i = 1; i < pt.size(); ++i) {
pt[i] /= (1 - pt[0]);
}
pt[0] = 0;
}
template <typename Num>
void inv_stereographic_projection(Vector<Num>& pt)
{
// we assume that the first coordinate is 0;
Num norm2 {sqr(pt)};
for (Int i = 1; i < pt.size(); ++i) {
pt[i] *= 2;
pt[i] /= norm2+1;
}
pt[0] = (norm2-1)/(norm2+1);
}
};
} // end namespace pm
namespace polymake {
using pm::NormalRandom;
using pm::RandomSpherePoints;
using pm::RandomNormalPoints;
}
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|