1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
/* Copyright (c) 1997-2024
Ewgenij Gawrilow, Michael Joswig, and the polymake team
Technische Universität Berlin, Germany
https://polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
/*
This file contains a templated version of the reverse search algorithm that
is compatible with the mts framework (https://arxiv.org/abs/1709.07605). The
central classes to implement are:
- Node class: A node in the reverse search tree, that is able to give its
neighbors and predecessor.
- Logger class: Whenever a node is discovered, this logger is called to
record the node. While the algorithm might visit a node several times, the
logger is only called once per node.
If implemented via this template it is possible to make a binary for
parallelizing the algorithm via the mts framework.
The logger can be used to collect the edges of the reverse search tree, or
even the full graph structure, by means of the two last template parameters.
See
- apps/polytope/src/reverse_search_graph.cc for an example collecting the
full graph
- apps/fan/src/reverse_search_hyperplaneArr.cc for an example not collecting
anything.
*/
#pragma once
#include <vector>
namespace polymake {
template<typename Node, typename Logger, bool _make_tree, bool all_edges=false>
class ReverseSearchTemplate {
private:
Logger& logger;
public:
ReverseSearchTemplate(Logger& l) : logger(l) {}
long generic_reverse_search(const Node& initial,
long max_nodes, long max_depth){
bool overbudget;
long count = 0;
Node v(initial);
logger.log_node(v);
if(_make_tree || all_edges){
logger.tree_add_node(v);
}
Int Delta = v.get_Delta();
//log_node(initial);
Int j=-1, depth=0;
while((depth != 0) or (j < Delta)){
overbudget = false;
while(j < Delta && !overbudget){
j++;
if(v.has_jth_child(j)){
Node Avj(v.get_jth_child(j));
if(all_edges){
logger.tree_add_node(Avj);
logger.tree_add_edge(v, Avj);
}
if(Avj.has_predecessor(v)){
if(!all_edges && _make_tree){
logger.tree_add_node(Avj);
logger.tree_add_edge(v, Avj);
}
Delta = Avj.get_Delta();
v = Avj;
j = -1;
depth++;
if ((max_nodes>0 && count >= max_nodes) ||
(max_depth>0 && depth==max_depth))
{
overbudget = true;
logger.exit_node(v);
} else {
logger.log_node(v);
count++;
}
}
}
}
if(depth > 0){
v = v.get_predecessor(j);
Delta = v.get_Delta();
depth--;
}
}
return count;
}
void auto_reverse_search(const Node& start){
generic_reverse_search(start, -1, -1);
if(_make_tree){
logger.print_tree();
}
}
/* Hall-Knuth estimate for number of nodes in subtree rooted at
* initial using one random probe.
*/
unsigned long long estimate(const Node& initial){
Node v(initial);
Int j=-1;
Int num=0;
unsigned long long ret = 1;
unsigned long long d = 1;
while (1)
{
Int Delta = v.get_Delta();
std::vector<Int> children(Delta);
num = 0;
j=-1;
while (j<Delta){
j++;
if(v.has_jth_child(j) && v.get_jth_child(j).has_predecessor(v))
children[num++] = j;
}
if (num == 0) /* leaf */
return ret;
j = rand()%num;
v = v.get_jth_child(children[j]);
d *= num;
ret += d;
}
/* unreachable */
return ret;
}
};
} // namespace polymake
|