1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
/* Copyright (c) 1997-2024
Ewgenij Gawrilow, Michael Joswig, and the polymake team
Technische Universität Berlin, Germany
https://polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#pragma once
#include "polymake/client.h"
#include "polymake/SparseMatrix.h"
#include "polymake/linalg.h"
#include "polymake/numerical_functions.h"
#include "polymake/GenericStruct.h"
namespace pm {
template<typename E>
class HermiteNormalForm
: public GenericStruct<HermiteNormalForm<E> > {
public:
DeclSTRUCT( DeclTemplFIELD(hnf, Matrix<E>)
DeclTemplFIELD(companion, SparseMatrix<E>)
DeclTemplFIELD(rank, Int) );
};
template <typename TMatrix, typename E>
Int ranked_hermite_normal_form(const GenericMatrix<TMatrix, E>& M, Matrix<E>& hnf, SparseMatrix<E>& companion, bool reduced = true)
{
SparseMatrix2x2<E> U;
SparseMatrix<E> R, S;
Matrix<E> N(M);
const Int rows = M.rows();
const Int cols = M.cols();
R = unit_matrix<E>(cols);
Int current_col = 0;
Int rank = -1;
for (Int i = 0; i < rows; ++i) {
bool nonzero = true;
// Find a non-zero entry and move it to here.
if (N(i,current_col) == 0) {
nonzero = false;
for (Int j = current_col; j < cols; ++j) {
if (!is_zero(N(i,j))) {
nonzero = true;
U.i = current_col;
U.j = j;
U.a_ii = zero_value<E>();
U.a_ij = one_value<E>();
U.a_ji = one_value<E>();
U.a_jj = zero_value<E>();
R.multiply_from_right(U);
N.multiply_from_right(U);
}
}
}
if (!nonzero) {
continue;
} else {
rank = current_col;
}
// GCD part of algorithm.
for (Int j = current_col+1; j < cols; ++j) {
if (!is_zero(N(i,j))) {
U.i = current_col;
U.j = j;
ExtGCD<E> egcd = ext_gcd(N(i,current_col), N(i,j));
U.a_ii = egcd.p;
U.a_ji = egcd.q;
U.a_ij = egcd.k2;
U.a_jj = -egcd.k1;
R.multiply_from_right(U);
N.multiply_from_right(U);
}
}
if (N(i,current_col)<0) {
S = unit_matrix<E>(cols);
S(current_col,current_col) = -1;
R = R*S;
N = N*S;
}
if (reduced) {
for (Int j = 0; j < current_col; ++j) {
U.i = j;
U.j = current_col;
E factor = N(i,j) % N(i,current_col);
if (factor < 0) factor += N(i,current_col);
factor = (N(i,j) - factor)/N(i,current_col);
U.a_ii = 1;
U.a_ji = -factor;
U.a_ij = 0;
U.a_jj = 1;
R.multiply_from_right(U);
N.multiply_from_right(U);
}
}
++current_col;
if (current_col == cols) {
break;
}
}
++rank;
hnf = N;
companion = R;
return rank;
}
template <typename TMatrix, typename E>
HermiteNormalForm<E> hermite_normal_form(const GenericMatrix<TMatrix, E>& M, bool reduced = true)
{
HermiteNormalForm<E> res;
res.rank = ranked_hermite_normal_form(M, res.hnf, res.companion, reduced);
return res;
}
//returns as rows a basis of the null space in an euclidean ring
template <typename TMatrix, typename E>
SparseMatrix<E> null_space_integer(const GenericMatrix<TMatrix, E>& M)
{
Matrix<E> H;
SparseMatrix<E> R;
Int r = ranked_hermite_normal_form(M, H, R);
return T(R.minor(All, range(r, R.cols()-1)));
}
} // namespace pm
namespace polymake {
using pm::HermiteNormalForm;
using pm::null_space_integer;
}
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|