1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
|
/* Copyright (c) 1997-2024
Ewgenij Gawrilow, Michael Joswig, and the polymake team
Technische Universität Berlin, Germany
https://polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#pragma once
#include "polymake/internal/operations_basic_defs.h"
#include <limits>
#include <cstdlib>
#include <cmath>
#include <string>
#include <functional>
namespace pm {
enum cmp_value { cmp_lt=-1, cmp_eq=0, cmp_gt=1, cmp_ne=cmp_gt };
template <typename T>
constexpr Int sign_impl(T x, std::true_type)
{
return x < 0 ? -1 : x > 0;
}
template <typename T>
constexpr Int sign_impl(T x, std::false_type)
{
return x != 0;
}
template <typename T>
constexpr
std::enable_if_t<std::is_arithmetic<T>::value, Int>
sign(T x)
{
return sign_impl(x, bool_constant<std::numeric_limits<T>::is_signed>());
}
template <typename TPrimitive, typename T>
constexpr
std::enable_if_t<std::is_arithmetic<T>::value, TPrimitive>
max_value_as(mlist<T>)
{
return static_cast<TPrimitive>(std::numeric_limits<T>::max());
}
template <typename TPrimitive, typename T>
constexpr
std::enable_if_t<std::is_arithmetic<T>::value, TPrimitive>
min_value_as(mlist<T>)
{
return static_cast<TPrimitive>(std::numeric_limits<T>::min());
}
template <typename T, bool is_max> struct extremal {};
template <typename T> struct maximal : extremal<T, true> {};
template <typename T> struct minimal : extremal<T, false> {};
namespace operations {
template <typename T1, typename T2>
struct cmp_basic {
typedef T1 first_argument_type;
typedef T2 second_argument_type;
typedef cmp_value result_type;
template <typename Left, typename Right>
cmp_value operator() (const Left& a, const Right& b) const
{
return a<b ? cmp_lt : cmp_value(a>b);
}
};
struct cmp_extremal {
template <typename T, bool _is_max_l, bool _is_max_r>
cmp_value operator() (const extremal<T,_is_max_l>&, const extremal<T,_is_max_r>&) const
{
return _is_max_l == _is_max_r ? cmp_eq : _is_max_l ? cmp_gt : cmp_lt;
}
template <typename T, bool _is_max_l>
cmp_value operator() (const extremal<T,_is_max_l>&, const T&) const
{
return _is_max_l ? cmp_gt : cmp_lt;
}
template <typename T, bool _is_max_r>
cmp_value operator() (const T&, const extremal<T,_is_max_r>&) const
{
return _is_max_r ? cmp_lt : cmp_gt;
}
};
template <typename T, bool use_zero_test = has_zero_value<T>::value>
struct cmp_partial_opaque {
template <typename Left, typename Iterator2>
cmp_value operator() (partial_left, const Left&, const Iterator2&) const
{
return cmp_gt;
}
template <typename Iterator1, typename Right>
cmp_value operator() (partial_right, const Iterator1&, const Right&) const
{
return cmp_lt;
}
};
template <typename T>
struct cmp_partial_opaque<T, true> {
template <typename Left, typename Iterator>
cmp_value operator() (partial_left, const Left& x, const Iterator&) const
{
return is_zero(x) ? cmp_eq : cmp_gt;
}
template <typename Iterator, typename Right>
cmp_value operator() (partial_right, const Iterator&, const Right& x) const
{
return is_zero(x) ? cmp_eq : cmp_lt;
}
};
struct cmp_partial_scalar {
template <typename Left, typename Iterator>
cmp_value operator() (partial_left, const Left& a, const Iterator&) const
{
return cmp_value(sign(a));
}
template <typename Iterator, typename Right>
cmp_value operator() (partial_right, const Iterator&, const Right& b) const
{
return cmp_value(-sign(b));
}
};
template <typename T1, typename T2=T1, typename enabled=void>
struct cmp_scalar { };
template <typename T1, typename T2>
struct cmp_scalar<T1, T2, typename std::enable_if<std::numeric_limits<T1>::is_signed && std::numeric_limits<T2>::is_signed &&
are_less_greater_comparable<T1, T2>::value>::type>
: cmp_extremal
, cmp_partial_scalar {
typedef T1 first_argument_type;
typedef T2 second_argument_type;
typedef cmp_value result_type;
using cmp_extremal::operator();
using cmp_partial_scalar::operator();
template <typename Left, typename Right>
typename std::enable_if<(std::numeric_limits<Left>::is_integer && std::numeric_limits<Left>::is_signed &&
std::numeric_limits<Right>::is_integer && std::numeric_limits<Right>::is_signed), cmp_value>::type
operator() (const Left& a, const Right& b) const
{
return cmp_value(sign(a-b));
}
template <typename Left, typename Right>
typename std::enable_if<!(std::numeric_limits<Left>::is_integer && std::numeric_limits<Left>::is_signed &&
std::numeric_limits<Right>::is_integer && std::numeric_limits<Right>::is_signed), cmp_value>::type
operator() (const Left& a, const Right& b) const
{
return cmp_basic<Left, Right>()(a, b);
}
};
template <typename T1, typename T2>
struct cmp_scalar<T1, T2, typename std::enable_if<!(std::numeric_limits<T1>::is_signed && std::numeric_limits<T2>::is_signed) &&
are_less_greater_comparable<T1, T2>::value>::type>
: cmp_extremal
, cmp_basic<T1, T2> {
using cmp_extremal::operator();
using cmp_basic<T1, T2>::operator();
template <typename Left, typename Iterator>
cmp_value operator() (partial_left, const Left& a, const Iterator&) const
{
return is_zero(a) ? cmp_eq : cmp_gt;
}
template <typename Iterator, typename Right>
cmp_value operator() (partial_right, const Iterator&, const Right& b) const
{
return is_zero(b) ? cmp_eq : cmp_lt;
}
};
template <typename T1, typename T2=T1, typename enabled=void>
struct cmp_unordered_impl { };
template <typename T1, typename T2>
struct cmp_unordered_impl<T1, T2, typename std::enable_if<are_comparable<T1, T2>::value>::type> {
typedef T1 first_argument_type;
typedef T2 second_argument_type;
typedef cmp_value result_type;
static const bool partially_defined = has_zero_value<T1>::value && has_zero_value<T2>::value;
template <typename Left, typename Right>
cmp_value operator()(const Left& l, const Right& r) const
{
return l==r ? cmp_eq : cmp_ne;
}
template <typename Left, typename Iterator>
std::enable_if_t<has_zero_value<Left>::value, cmp_value>
operator() (partial_left, const Left& a, const Iterator&) const
{
return is_zero(a) ? cmp_eq : cmp_ne;
}
template <typename Iterator, typename Right>
std::enable_if_t<has_zero_value<Right>::value, cmp_value>
operator() (partial_right, const Iterator&, const Right& b) const
{
return is_zero(b) ? cmp_eq : cmp_ne;
}
};
template <typename T, typename enabled=void>
struct cmp_opaque { };
template <typename T>
struct cmp_opaque<T, typename std::enable_if<is_less_greater_comparable<T>::value>::type>
: cmp_extremal
, cmp_basic<T, T>
, cmp_partial_opaque<T> {
using cmp_extremal::operator();
using cmp_basic<T, T>::operator();
using cmp_partial_opaque<T>::operator();
};
template <typename Char, typename Traits, typename Alloc>
struct cmp_partial_opaque<std::basic_string<Char, Traits, Alloc>, false> {
template <typename Left, typename Iterator>
cmp_value operator() (partial_left, const Left& a, const Iterator&) const
{
return a.empty() ? cmp_eq : cmp_gt;
}
template <typename Iterator, typename Right>
cmp_value operator() (partial_right, const Iterator&, const Right& b) const
{
return b.empty() ? cmp_eq : cmp_lt;
}
};
template <typename T1, typename T2=T1>
struct cmp_scalar_with_leeway : cmp_extremal {
typedef T1 first_argument_type;
typedef T2 second_argument_type;
typedef cmp_value result_type;
using cmp_extremal::operator();
template <typename Left, typename Right>
cmp_value operator()(const Left& a, const Right& b) const
{
return !is_zero(a-b) ? cmp_scalar<Left,Right>()(a, b) : cmp_eq;
}
template <typename Left, typename Iterator2>
cmp_value operator()(partial_left, const Left& a, const Iterator2& b) const
{
return !is_zero(a) ? cmp_partial_scalar()(partial_left(), a, b) : cmp_eq;
}
template <typename Right, typename Iterator1>
cmp_value operator()(partial_right, const Iterator1& a, const Right& b) const
{
return !is_zero(b) ? cmp_partial_scalar()(partial_right(), a, b) : cmp_eq;
}
};
template <typename T>
struct cmp_pointer {
typedef T* first_argument_type;
typedef T* second_argument_type;
typedef cmp_value result_type;
cmp_value operator()(T* a, T* b) const
{
return cmp_scalar<long, long>()(long(a), long(b));
}
};
} // end namespace operations
template <typename T1, typename T2>
T1& assign_max(T1& max, const T2& x) { if (max<x) max=x; return max; }
template <typename T1, typename T2>
T1& assign_min(T1& min, const T2& x) { if (min>x) min=x; return min; }
template <typename T1, typename T2, typename T3>
void assign_min_max(T1& min, T2& max, const T3& x)
{
if (min>x) min=x; else if (max<x) max=x;
}
template <typename T, typename Tag=typename object_traits<T>::generic_tag>
struct hash_func;
template <typename T>
struct hash_func<T, is_scalar> : public std::hash<T> {};
template <typename Char, typename Traits, typename Alloc>
struct hash_func<std::basic_string<Char, Traits, Alloc>, is_opaque> : public std::hash< std::basic_string<Char, Traits, Alloc> > {};
template <typename T>
struct hash_func<T*, is_not_object> {
size_t operator() (T* ptr) const { return size_t(ptr); }
};
using std::abs;
using std::isfinite;
/// return the sign of the inifinite value, or 0 if the value is finite
/// std::isinf returns bool nowadays which is insufficient for efficient operations
inline
Int isinf(double x) noexcept
{
return std::isinf(x) ? (x>0)*2-1 : 0;
}
constexpr Int isinf(long) { return 0; }
template <typename T, bool is_max>
struct spec_object_traits< extremal<T, is_max> > : spec_object_traits<T> {};
template <typename T>
struct spec_object_traits< maximal<T> > : spec_object_traits<T> {};
template <typename T>
struct spec_object_traits< minimal<T> > : spec_object_traits<T> {};
template <typename T1, typename T2, typename Comparator, typename=cmp_value>
struct are_comparable_via : std::false_type {};
template <typename T1, typename T2, typename Comparator>
struct are_comparable_via<T1, T2, Comparator, decltype(std::declval<Comparator>()(std::declval<const T1&>(), std::declval<const T2&>()))> : std::true_type {};
} // end namespace pm
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|