1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
|
/* Copyright (c) 1997-2024
Ewgenij Gawrilow, Michael Joswig, and the polymake team
Technische Universität Berlin, Germany
https://polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#pragma once
#include <cmath>
#include <cstdlib>
#include "polymake/internal/comparators_basic_defs.h"
#include "polymake/internal/converters_basic_defs.h"
#include "polymake/internal/operations.h"
namespace pm {
template <>
struct spec_object_traits<double>
: spec_object_traits< cons<double, int_constant<object_classifier::is_scalar> > > {
public:
static double global_epsilon;
static bool is_zero(double x) { return abs(x) <= global_epsilon; }
};
template <>
struct spec_object_traits<float>
: spec_object_traits< cons<float, int_constant<object_classifier::is_scalar> > > {
public:
static bool is_zero(float x) { return abs(x) <= spec_object_traits<double>::global_epsilon; }
};
class local_epsilon_keeper {
mutable double saved;
public:
local_epsilon_keeper(double new_val)
: saved(spec_object_traits<double>::global_epsilon)
{
spec_object_traits<double>::global_epsilon=new_val;
}
local_epsilon_keeper(const local_epsilon_keeper& le)
: saved(le.saved)
{
le.saved=spec_object_traits<double>::global_epsilon;
}
~local_epsilon_keeper()
{
spec_object_traits<double>::global_epsilon=saved;
}
};
inline
local_epsilon_keeper local_epsilon(double new_val)
{
return local_epsilon_keeper(new_val);
}
namespace operations {
template <typename OpRef>
struct positive {
typedef OpRef argument_type;
typedef bool result_type;
result_type operator() (typename function_argument<OpRef>::const_type x) const
{
return sign(x) > 0;
}
};
template <typename OpRef>
struct negative {
typedef OpRef argument_type;
typedef bool result_type;
result_type operator() (typename function_argument<OpRef>::const_type x) const
{
return sign(x) < 0;
}
};
template <typename OpRef>
struct non_zero {
typedef OpRef argument_type;
typedef bool result_type;
result_type operator() (typename function_argument<OpRef>::const_type x) const
{
return !is_zero(x);
}
};
template <typename OpRef>
struct equals_to_zero {
typedef OpRef argument_type;
typedef bool result_type;
result_type operator() (typename function_argument<OpRef>::const_type x) const
{
return is_zero(x);
}
};
template <typename T1, typename T2, typename ComparatorFamily,
typename Model1=typename object_traits<T1>::model,
typename Model2=typename object_traits<T2>::model,
typename TDiscr=typename isomorphic_types<T1, T2>::discriminant,
typename Result=cmp_value>
struct define_comparator {};
struct cmp;
struct cmp_with_leeway;
struct cmp_unordered;
template <typename T1, typename T2>
struct define_comparator<T1, T2, cmp, is_scalar, is_scalar, cons<is_scalar, is_scalar>,
typename cmp_scalar<T1, T2>::result_type> {
typedef cmp_scalar<T1, T2> type;
static const bool partially_defined=true;
};
template <typename T1, typename T2>
struct define_comparator<T1, T2, cmp_with_leeway, is_scalar, is_scalar, cons<is_scalar, is_scalar>,
typename cmp_scalar<T1, T2>::result_type> {
typedef cmp_scalar_with_leeway<T1, T2> type;
static const bool partially_defined=true;
};
template <typename T1, typename T2>
struct define_comparator<T1, T2, cmp_unordered, is_scalar, is_scalar, cons<is_scalar, is_scalar>,
typename cmp_unordered_impl<T1, T2>::result_type> {
typedef cmp_unordered_impl<T1, T2> type;
static const bool partially_defined=type::partially_defined;
};
template <typename T, typename Tag>
struct define_comparator<T, T, cmp, is_opaque, is_opaque, cons<Tag, Tag>,
typename cmp_opaque<T>::result_type> {
typedef cmp_opaque<T> type;
static const bool partially_defined=is_partially_defined<type>::value;
};
template <typename T, typename Tag>
struct define_comparator<T, T, cmp_unordered, is_opaque, is_opaque, cons<Tag, Tag>,
typename cmp_unordered_impl<T, T>::result_type> {
typedef cmp_unordered_impl<T, T> type;
static const bool partially_defined=type::partially_defined;
};
template <typename T>
struct define_comparator<T*, T*, cmp, is_not_object, is_not_object, pm::cons<pm::is_not_object, pm::is_not_object>, cmp_value> {
typedef cmp_pointer<T> type;
static const bool partially_defined=false;
};
template <typename ComparatorFamily>
struct generic_comparator : incomplete {
template <typename Left, typename Right>
cmp_value operator()(const Left& l, const Right& r) const
{
return typename define_comparator<Left, Right, ComparatorFamily>::type()(l, r);
}
template <typename Left, typename Iterator2>
cmp_value operator() (typename std::enable_if<define_comparator<Left, Left, ComparatorFamily>::partially_defined, partial_left>::type,
const Left& l, const Iterator2& r) const
{
return typename define_comparator<Left, Left, ComparatorFamily>::type()(partial_left(), l, r);
}
template <typename Right, typename Iterator1>
cmp_value operator() (typename std::enable_if<define_comparator<Right, Right, ComparatorFamily>::partially_defined, partial_right>::type,
const Iterator1& l, const Right& r) const
{
return typename define_comparator<Right, Right, ComparatorFamily>::type()(partial_right(), l, r);
}
};
/// default comparator, falls back to operator< for scalars and opaque classes
/// and lexicographic ordering for containers and composites
struct cmp : generic_comparator<cmp> {};
/// comparator only checking for equality, should not be used for sets and other structures requiring total ordering
struct cmp_unordered : generic_comparator<cmp_unordered> {};
struct cmp_with_leeway : generic_comparator<cmp_with_leeway> {};
template <typename Comparator, typename LeftRef, typename RightRef, cmp_value good>
struct cmp_adapter {
typedef LeftRef first_argument_type;
typedef RightRef second_argument_type;
typedef bool result_type;
result_type operator() (typename function_argument<LeftRef>::const_type a,
typename function_argument<RightRef>::const_type b) const
{
Comparator cmp_op;
return cmp_op(a,b) == good;
}
};
template <typename Comparator, typename T, typename T2=T>
struct cmp2eq : cmp_adapter<Comparator, T, T2, cmp_eq> {};
template <typename LeftRef, typename RightRef>
struct eq : cmp2eq<cmp, LeftRef, RightRef> {};
template <typename LeftRef, typename RightRef>
struct lt : cmp_adapter<cmp, LeftRef, RightRef, cmp_lt> {};
template <typename LeftRef, typename RightRef>
struct gt : cmp_adapter<cmp, LeftRef, RightRef, cmp_gt> {};
template <typename LeftRef, typename RightRef>
struct ne : composed21<eq<LeftRef, RightRef>, std::logical_not<bool> > {};
template <typename LeftRef, typename RightRef>
struct le : composed21<gt<LeftRef, RightRef>, std::logical_not<bool> > {};
template <typename LeftRef, typename RightRef>
struct ge : composed21<lt<LeftRef, RightRef>, std::logical_not<bool> > {};
template <typename Left, typename Right,
typename TagL=typename object_traits<Left>::generic_tag,
typename TagR=typename object_traits<Right>::generic_tag,
bool _is_numeric=std::numeric_limits<Left>::is_specialized && std::numeric_limits<Right>::is_specialized>
struct minmax : add_result<Left, Right> {};
template <typename Left, typename Right, typename Tag1, typename Tag2>
struct minmax<Left,Right,Tag1,Tag2,false> : std::common_type<Left, Right> {};
template <typename Left, typename Right, typename Tag>
struct minmax<Left,Right,Tag,Tag,false> : std::common_type<typename object_traits<Left>::persistent_type, typename object_traits<Right>::persistent_type> {};
template <typename T, typename Tag>
struct minmax<T,T,Tag,Tag,false> {
typedef T type;
};
template <typename LeftRef, typename RightRef>
struct max {
typedef typename deref<LeftRef>::type first_argument_type;
typedef typename deref<RightRef>::type second_argument_type;
typedef typename minmax<first_argument_type, second_argument_type>::type
result_type;
result_type operator() (typename function_argument<LeftRef>::const_type a,
typename function_argument<RightRef>::const_type b) const
{
if (a>=b) return a;
return b;
}
void assign(typename lvalue_arg<LeftRef>::type a, typename function_argument<RightRef>::const_type b) const
{
if (a<b) a=b;
}
};
template <typename LeftRef, typename RightRef>
struct min {
typedef typename deref<LeftRef>::type first_argument_type;
typedef typename deref<RightRef>::type second_argument_type;
typedef typename minmax<first_argument_type, second_argument_type>::type
result_type;
result_type operator() (typename function_argument<LeftRef>::const_type a,
typename function_argument<RightRef>::const_type b) const
{
if (a<=b) return a;
return b;
}
void assign(typename lvalue_arg<LeftRef>::type a, typename function_argument<RightRef>::const_type b) const
{
if (a>b) a=b;
}
};
template <typename OpRef>
struct abs_value {
typedef OpRef argument_type;
typedef typename deref<OpRef>::type result_type;
result_type operator() (typename function_argument<OpRef>::const_type a) const
{
return abs(a);
}
void assign(typename lvalue_arg<OpRef>::type a) const
{
if (negative<OpRef>()(a)) negate(a);
}
};
} // end namespace operations
template <typename T, typename result=cmp_value>
struct is_ordered_impl : std::false_type { };
template <typename T>
struct is_ordered_impl<T, typename operations::define_comparator<T, T, operations::cmp>::type::result_type> : std::true_type { };
/// check whether the default comparator operations::cmp can be used with the given type
template <typename T>
struct is_ordered : is_ordered_impl<typename Concrete<T>::type> { };
template <typename T, typename result=cmp_value>
struct is_unordered_comparable_impl : std::false_type { };
template <typename T>
struct is_unordered_comparable_impl<T, typename operations::define_comparator<T, T, operations::cmp_unordered>::type::result_type> : std::true_type { };
/// check whether the comparator operations::cmp_unordered can be used with the given type
template <typename T>
struct is_unordered_comparable : is_unordered_comparable_impl<typename Concrete<T>::type> { };
// Tag for various parameter lists
template <typename> class ComparatorTag;
// Tag for multimaps
template <typename> class MultiTag;
template <typename Iterator1, typename Iterator2, typename Reference1, typename Reference2>
struct binary_op_builder<operations::cmp, Iterator1, Iterator2, Reference1, Reference2>
: empty_op_builder<typename operations::define_comparator<typename deref<Reference1>::type, typename deref<Reference2>::type, operations::cmp>::type> {};
template <typename Iterator1, typename Iterator2, typename Reference1, typename Reference2>
struct binary_op_builder<operations::cmp_with_leeway, Iterator1, Iterator2, Reference1, Reference2>
: empty_op_builder<typename operations::define_comparator<typename deref<Reference1>::type, typename deref<Reference2>::type, operations::cmp_with_leeway>::type> {};
template <typename Iterator1, typename Iterator2, typename Reference1, typename Reference2>
struct binary_op_builder<operations::cmp_unordered, Iterator1, Iterator2, Reference1, Reference2>
: empty_op_builder<typename operations::define_comparator<typename deref<Reference1>::type, typename deref<Reference2>::type, operations::cmp_unordered>::type> {};
} // end namespace pm
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|