1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
|
/* Copyright (c) 1997-2024
Ewgenij Gawrilow, Michael Joswig, and the polymake team
Technische Universität Berlin, Germany
https://polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#pragma once
#include "polymake/internal/comparators_basic_defs.h"
#include "polymake/ContainerUnion.h"
#include "polymake/internal/operations.h"
namespace pm {
enum {
zipper_lt = 1, zipper_eq = 2, zipper_gt = 4, // correspond to 1<<cmp_XX+1
zipper_cmp = zipper_lt + zipper_eq + zipper_gt, // mask for all of them
zipper_first = (zipper_lt << 6), // first iterator is in a dereferenceable position
zipper_second = (zipper_gt << 3), // second iterator is ...
zipper_both = zipper_first + zipper_second // both are ...
};
struct forward_zipper {
static constexpr int state(int cmp) { return 1 << 1+cmp; }
};
struct set_union_zipper : forward_zipper {
static constexpr int stable(int) { return 1; }
static constexpr bool end1 = false, end2 = false;
static constexpr bool contains(bool c1, bool c2) { return c1 || c2; }
};
struct set_difference_zipper : forward_zipper {
static constexpr int stable(int state) { return state & zipper_lt; }
static constexpr bool end1 = true, end2 = false;
static constexpr bool contains(bool c1, bool c2) { return c1 && !c2; }
};
struct set_intersection_zipper : forward_zipper {
static constexpr int stable(int state) { return state & zipper_eq; }
static constexpr bool end1 = true, end2 = true;
static constexpr bool contains(bool c1, bool c2) { return c1 && c2; }
};
struct set_symdifference_zipper : forward_zipper {
static constexpr int stable(int state) { return state & zipper_lt+zipper_gt; }
static constexpr bool end1 = false, end2 = false;
static constexpr bool contains(bool c1, bool c2) { return c1 ^ c2; }
};
template <typename Zipper>
struct reverse_zipper : public Zipper {
static constexpr int state(int cmp) { return 1 << 1-cmp; }
};
template <typename Iterator1, typename Iterator2, typename Comparator, typename Controller,
bool use_index1 = false, bool use_index2 = false>
class iterator_zipper : public Iterator1 {
public:
using first_type = Iterator1;
using second_type = Iterator2;
using iterator_category = typename least_derived_class<bidirectional_iterator_tag,
typename iterator_traits<Iterator1>::iterator_category,
typename iterator_traits<Iterator2>::iterator_category>::type;
using iterator = iterator_zipper<typename iterator_traits<Iterator1>::iterator, typename iterator_traits<Iterator2>::iterator,
Comparator, Controller, use_index1, use_index2>;
using const_iterator = iterator_zipper<typename iterator_traits<Iterator1>::const_iterator, typename iterator_traits<Iterator2>::const_iterator,
Comparator, Controller, use_index1, use_index2>;
Iterator2 second;
protected:
int state;
Comparator cmp;
Controller ctl;
cmp_value compare(std::false_type, std::false_type) const { return cmp(**this, *second); }
cmp_value compare(std::false_type, std::true_type) const { return cmp(**this, second.index()); }
cmp_value compare(std::true_type, std::false_type) const { return cmp(first_type::index(), *second); }
cmp_value compare(std::true_type, std::true_type) const { return cmp(first_type::index(), second.index()); }
void compare()
{
state &= ~zipper_cmp;
state += ctl.state(compare(bool_constant<use_index1>(), bool_constant<use_index2>()));
}
void incr()
{
const int cur_state = state;
if (cur_state & int(zipper_lt) + int(zipper_eq)) {
first_type::operator++();
if (first_type::at_end()) {
if (ctl.end1) {
state = 0; return;
} else {
state >>= 3;
}
}
}
if (cur_state & int(zipper_gt) + int(zipper_eq)) {
++second;
if (second.at_end()) {
if (ctl.end2) {
state = 0;
} else {
state >>= 6;
}
}
}
}
void decr()
{
const int cur_state = state;
state = zipper_both;
if ((cur_state & int(zipper_lt)) == 0)
first_type::operator--();
if ((cur_state & int(zipper_gt)) == 0)
--second;
}
void init()
{
state = zipper_both;
if (first_type::at_end()) {
if (ctl.end1) {
state = 0; return;
} else {
state >>= 3;
}
}
if (second.at_end()) {
if (ctl.end2) {
state = 0;
} else {
state >>= 6;
}
return;
}
while (state >= zipper_both) {
compare();
if (ctl.stable(state)) break;
incr();
}
}
template <typename, typename, typename, typename, bool, bool> friend class iterator_zipper;
template <typename, typename, bool, bool> friend class iterator_product;
public:
iterator_zipper() : state(0) {}
iterator_zipper(const iterator& it)
: first_type(static_cast<const typename iterator::first_type&>(it))
, second(it.second)
, state(it.state)
, ctl(it.ctl) {}
template <typename SourceIterator1, typename SourceIterator2,
typename enable=typename std::enable_if<is_const_compatible_with<SourceIterator1, Iterator1>::value &&
is_const_compatible_with<SourceIterator2, Iterator2>::value>::type>
iterator_zipper(const SourceIterator1& first_arg, const SourceIterator2& second_arg)
: first_type(first_arg)
, second(second_arg)
{
init();
}
iterator_zipper& operator++ ()
{
do {
incr();
if (state<zipper_both) break;
compare();
} while (!ctl.stable(state));
return *this;
}
const iterator_zipper operator++ (int) { iterator_zipper copy=*this; operator++(); return copy; }
iterator_zipper& operator-- ()
{
static_assert(iterator_pair_traits<Iterator1, Iterator2>::is_bidirectional, "iterator is not bidirectional");
do {
decr(); compare();
} while (!ctl.stable(state));
return *this;
}
const iterator_zipper operator-- (int) { iterator_zipper copy=*this; operator--(); return copy; }
bool at_end() const { return state==0; }
template <typename Other>
std::enable_if_t<is_derived_from_any<Other, iterator, const_iterator>::value, bool>
operator== (const Other& it) const
{
using other_iterator = typename is_derived_from_any<Other, iterator, const_iterator>::match;
return at_end() ? it.at_end() :
static_cast<const first_type&>(*this) == static_cast<const typename other_iterator::first_type&>(it)
&& second == static_cast<const other_iterator&>(it).second;
}
template <typename Other>
std::enable_if_t<is_derived_from_any<Other, iterator, const_iterator>::value, bool>
operator!= (const Other& it) const
{
return !operator==(it);
}
void rewind()
{
static_assert(check_iterator_feature<first_type, rewindable>::value && check_iterator_feature<second_type, rewindable>::value,
"iterator is not rewindable");
first_type::rewind(); second.rewind();
init();
}
};
template <typename Iterator1, typename Iterator2, typename Comparator, typename Controller,
bool use_index1, bool use_index2, typename Feature>
struct check_iterator_feature<iterator_zipper<Iterator1, Iterator2, Comparator, Controller, use_index1, use_index2>, Feature>
: mlist_and< check_iterator_feature<Iterator1, Feature>,
check_iterator_feature<Iterator2, Feature> > {};
template <typename Iterator1, typename Iterator2, typename Comparator, typename Controller,
bool use_index1, bool use_index2>
struct has_partial_state< iterator_zipper<Iterator1, Iterator2, Comparator, Controller, use_index1, use_index2> > : std::true_type {};
template <typename Comparator, typename Controller, bool use_index1 = false, bool use_index2 = false>
struct zipping_coupler {
template <typename Iterator1, typename Iterator2, typename... ExpectedFeatures>
struct defs {
using expected_features = typename mlist_wrap<ExpectedFeatures...>::type;
using iterator = iterator_zipper<Iterator1, Iterator2, Comparator, Controller, use_index1, use_index2>;
using needed_features1 = typename mix_features<expected_features,
typename mlist_prepend_if<use_index1, indexed, end_sensitive>::type >::type;
using needed_features2 = typename mix_features<expected_features,
typename mlist_prepend_if<use_index2, indexed, end_sensitive>::type >::type;
};
};
template <typename Comparator, typename Controller, bool use_index1, bool use_index2>
struct reverse_coupler< zipping_coupler<Comparator, Controller, use_index1, use_index2> > {
using type = zipping_coupler< Comparator, reverse_zipper<Controller>, use_index1, use_index2>;
};
namespace operations {
template <typename OpRef1, typename OpRef2,
bool are_equal=same_pure_type<OpRef1,OpRef2>::value,
bool are_numeric=(std::numeric_limits<typename deref<OpRef1>::type>::is_specialized &&
std::numeric_limits<typename deref<OpRef2>::type>::is_specialized)>
struct zipper_helper
: union_reference<OpRef1, OpRef2> {};
template <typename OpRef1, typename OpRef2>
struct zipper_helper<OpRef1, OpRef2, false, true>
: add_result<typename deref<OpRef1>::type, typename deref<OpRef2>::type> {};
template <typename Iterator1Ref, typename Iterator2Ref>
struct zipper {
typedef Iterator1Ref first_argument_type;
typedef Iterator2Ref second_argument_type;
typedef typename zipper_helper<typename iterator_traits<typename deref<Iterator1Ref>::type>::reference,
typename iterator_traits<typename deref<Iterator2Ref>::type>::reference>::type
result_type;
result_type operator() (first_argument_type l, second_argument_type) const { return *l; }
result_type operator() (partial_left, first_argument_type l, second_argument_type) const { return *l; }
result_type operator() (partial_right, first_argument_type, second_argument_type r) const { return *r; }
};
template <typename Iterator1Ref, typename Iterator2Ref>
struct zipper_index {
typedef Iterator1Ref first_argument_type;
typedef Iterator2Ref second_argument_type;
typedef Int result_type;
result_type operator() (first_argument_type l, second_argument_type) const { return l.index(); }
result_type operator() (partial_left, first_argument_type l, second_argument_type) const { return l.index(); }
result_type operator() (partial_right, first_argument_type, second_argument_type r) const { return r.index(); }
};
} // end namespace operations
template <typename IteratorPair, typename Operation>
class binary_transform_eval<IteratorPair, Operation, true>
: public transform_iterator_base<IteratorPair, Operation>::type {
using base_t = typename transform_iterator_base<IteratorPair, Operation>::type;
public:
typedef binary_helper<IteratorPair, Operation> helper;
typedef typename helper::operation operation;
protected:
operation op;
typedef Operation op_arg_type;
binary_transform_eval() {}
template <typename Operation2>
binary_transform_eval(const binary_transform_eval<typename iterator_traits<IteratorPair>::iterator, Operation2, true>& it)
: base_t(static_cast<const typename std::remove_reference_t<decltype(it)>::base_t&>(it))
, op(helper::create(it.op)) {}
template <typename SourceIteratorPair>
binary_transform_eval(const SourceIteratorPair& cur_arg, const op_arg_type& op_arg)
: base_t(cur_arg)
, op(helper::create(op_arg)) {}
template <typename SourceIterator1, typename SourceIterator2>
binary_transform_eval(const SourceIterator1& first_arg, const SourceIterator2& second_arg, const op_arg_type& op_arg)
: base_t(first_arg, second_arg)
, op(helper::create(op_arg)) {}
template <typename, typename, bool> friend class binary_transform_eval;
public:
typedef typename operation::result_type reference;
reference operator* () const
{
if (this->state & zipper_lt)
return op(operations::partial_left(), *helper::get1(*this), this->second);
if (this->state & zipper_gt)
return op(operations::partial_right(),
static_cast<const typename IteratorPair::first_type&>(*this), *helper::get2(this->second));
// (this->state & zipper_eq)
return op(*helper::get1(*this), *helper::get2(this->second));
}
};
template <typename IteratorPair, typename Operation, typename IndexOperation>
class binary_transform_eval<IteratorPair, pair<Operation, IndexOperation>, true>
: public binary_transform_eval<IteratorPair, Operation, true> {
using base_t = binary_transform_eval<IteratorPair, Operation, true>;
protected:
typedef binary_helper<IteratorPair,IndexOperation> ihelper;
typename ihelper::operation iop;
typedef pair<Operation, IndexOperation> op_arg_type;
binary_transform_eval() {}
template <typename Operation2, typename IndexOperation2>
binary_transform_eval(const binary_transform_eval<typename iterator_traits<IteratorPair>::iterator, pair<Operation2, IndexOperation2>, true>& it)
: base_t(it)
, iop(ihelper::create(it.iop)) {}
template <typename SourceIteratorPair>
binary_transform_eval(const SourceIteratorPair& cur_arg, const op_arg_type& op_arg)
: base_t(cur_arg, op_arg.first)
, iop(ihelper::create(op_arg.second)) {}
template <typename SourceIterator1, typename SourceIterator2>
binary_transform_eval(const SourceIterator1& first_arg, const SourceIterator2& second_arg, const op_arg_type& op_arg)
: base_t(first_arg, second_arg, op_arg.first)
, iop(ihelper::create(op_arg.second)) {}
template <typename, typename, bool> friend class binary_transform_eval;
protected:
Int index_impl(std::false_type) const
{
return iop(*ihelper::get1(*this), *ihelper::get2(this->second));
}
Int index_impl(std::true_type) const
{
if (this->state & zipper_lt)
return iop(operations::partial_left(), *ihelper::get1(*this), this->second);
if (this->state & zipper_gt)
return iop(operations::partial_right(),
static_cast<const typename IteratorPair::first_type&>(*this), *ihelper::get2(this->second));
// (this->state & zipper_eq)
return index_impl(std::false_type());
}
public:
Int index() const
{
return index_impl(bool_constant<operations::is_partially_defined<typename ihelper::operation>::value>());
}
};
} // end namespace pm
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|