1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
|
/* Copyright (c) 1997-2024
Ewgenij Gawrilow, Michael Joswig, and the polymake team
Technische Universität Berlin, Germany
https://polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#pragma once
#include "polymake/internal/type_manip.h"
#include "polymake/internal/converters_basic_defs.h"
#include "polymake/pair.h"
#include "polymake/meta_list.h"
#include <functional>
#include <iterator>
#include <stdexcept>
#include <initializer_list>
namespace std {
/** Specialization for inserters.
Although an XXX_insert_iterator can't be dereferenced,
it's useful to know in some algorithms what for data it accepts.
The standard iterator_traits would not provide this information.
*/
template <typename Container>
struct iterator_traits< back_insert_iterator<Container> > {
typedef output_iterator_tag iterator_category;
typedef typename Container::value_type value_type;
typedef void difference_type;
typedef void pointer;
typedef void reference;
};
template <typename Container>
struct iterator_traits< front_insert_iterator<Container> > {
typedef output_iterator_tag iterator_category;
typedef typename Container::value_type value_type;
typedef void difference_type;
typedef void pointer;
typedef void reference;
};
template <typename Container>
struct iterator_traits< insert_iterator<Container> > {
typedef output_iterator_tag iterator_category;
typedef typename Container::value_type value_type;
typedef void difference_type;
typedef void pointer;
typedef void reference;
};
} // end namespace std
namespace pm {
using std::input_iterator_tag;
using std::output_iterator_tag;
using std::forward_iterator_tag;
using std::bidirectional_iterator_tag;
using std::random_access_iterator_tag;
template <typename Iterator,
bool _seems_persistent=
is_derived_from<typename std::iterator_traits<Iterator>::iterator_category, forward_iterator_tag>::value>
struct iterator_cross_const_helper {
typedef typename Iterator::iterator iterator;
typedef typename Iterator::const_iterator const_iterator;
};
template <typename Iterator>
struct iterator_cross_const_helper<Iterator, false> {
typedef Iterator iterator;
typedef Iterator const_iterator;
};
template <typename T>
struct iterator_cross_const_helper<T*, true> {
typedef typename attrib<T>::minus_const* iterator;
typedef typename attrib<T>::plus_const* const_iterator;
};
template <typename Iterator>
struct iterator_category_booleans {
static const bool
is_forward=
is_derived_from<typename std::iterator_traits<Iterator>::iterator_category, forward_iterator_tag>::value,
is_bidirectional=
is_derived_from<typename std::iterator_traits<Iterator>::iterator_category, bidirectional_iterator_tag>::value,
is_random=
is_derived_from<typename std::iterator_traits<Iterator>::iterator_category, random_access_iterator_tag>::value;
};
template <typename Iterator>
struct iterator_traits
: public std::iterator_traits<pure_type_t<Iterator>>
, public iterator_cross_const_helper<pure_type_t<Iterator>>
, public iterator_category_booleans<pure_type_t<Iterator>> {};
template <typename Iterator, bool is_bidir=iterator_category_booleans<Iterator>::is_bidirectional>
struct default_iterator_reversed {
using type = void;
};
template <typename Iterator>
struct default_iterator_reversed<Iterator, true> {
using type = std::reverse_iterator<Iterator>;
static Iterator reverse(const type& it) { return it.base(); }
};
template <typename Iterator>
struct iterator_reversed : default_iterator_reversed<Iterator> {};
template <typename Iterator>
struct iterator_reversed< std::reverse_iterator<Iterator> > {
typedef Iterator type;
static std::reverse_iterator<Iterator> reverse(const type& it) { return std::reverse_iterator<Iterator>(it); }
};
template <typename Iterator1, typename Iterator2>
struct iterator_pair_traits {
static const bool
is_forward=
iterator_traits<Iterator1>::is_forward && iterator_traits<Iterator2>::is_forward,
is_bidirectional=
iterator_traits<Iterator1>::is_bidirectional && iterator_traits<Iterator2>::is_bidirectional,
is_random=
iterator_traits<Iterator1>::is_random && iterator_traits<Iterator2>::is_random;
};
template <typename Iterator>
struct iterator_cross_const_helper<std::reverse_iterator<Iterator>, true> {
typedef std::reverse_iterator<typename iterator_cross_const_helper<Iterator>::iterator> iterator;
typedef std::reverse_iterator<typename iterator_cross_const_helper<Iterator>::const_iterator> const_iterator;
};
template <typename Iterator>
using const_compatible_with = typename mlist_remove_duplicates< mlist<Iterator, typename iterator_traits<Iterator>::iterator> >::type;
template <typename Source, typename Iterator>
using is_const_compatible_with = is_among<pure_type_t<Source>, const_compatible_with<Iterator>>;
template <typename Iterator1, typename Iterator2>
using are_comparable_iterators
= is_among<Iterator2, typename iterator_traits<Iterator1>::iterator, typename iterator_traits<Iterator1>::const_iterator>;
#if defined(__GLIBCXX__)
template <typename Iterator, typename Container>
struct iterator_cross_const_helper<__gnu_cxx::__normal_iterator<Iterator, Container>, true> {
typedef __gnu_cxx::__normal_iterator<typename iterator_cross_const_helper<Iterator>::iterator, Container> iterator;
typedef __gnu_cxx::__normal_iterator<typename iterator_cross_const_helper<Iterator>::const_iterator, Container> const_iterator;
};
#elif defined(_LIBCPP_VERSION)
template <typename Iterator>
struct iterator_cross_const_helper<std::__wrap_iter<Iterator>, true> {
typedef std::__wrap_iter<typename iterator_cross_const_helper<Iterator>::iterator> iterator;
typedef std::__wrap_iter<typename iterator_cross_const_helper<Iterator>::const_iterator> const_iterator;
};
#endif
} // end namespace pm
#if defined(__GLIBCXX__)
namespace std {
struct _Bit_iterator;
struct _Bit_const_iterator;
}
namespace pm {
template <>
struct iterator_cross_const_helper<std::_Bit_iterator, true> {
typedef std::_Bit_iterator iterator;
typedef std::_Bit_const_iterator const_iterator;
};
template <>
struct iterator_cross_const_helper<std::_Bit_const_iterator, true> {
typedef std::_Bit_iterator iterator;
typedef std::_Bit_const_iterator const_iterator;
};
} // end namespace pm
#endif
namespace pm {
template <typename Operation>
struct operation_cross_const_helper {
typedef Operation operation;
typedef Operation const_operation;
};
template <typename T>
class black_hole {
public:
typedef output_iterator_tag iterator_category;
typedef T value_type;
typedef void reference;
typedef void pointer;
typedef void difference_type;
black_hole& operator++ () { return *this; }
black_hole& operator++ (int) { return *this; }
black_hole& operator* () { return *this; }
black_hole& operator= (typename function_argument<T>::type) { return *this; }
};
template <typename T, typename Counter>
class counting_black_hole : public black_hole<T> {
public:
counting_black_hole() {}
counting_black_hole(Counter *counter_arg) : counter(counter_arg) {}
black_hole<T>& operator++ () { ++(*counter); return *this; }
black_hole<T>& operator++ (int) { ++(*counter); return *this; }
protected:
Counter* counter;
};
template <typename Container>
class insert_iterator {
protected:
Container* container;
public:
typedef output_iterator_tag iterator_category;
typedef typename Container::value_type value_type;
typedef void pointer;
typedef void reference;
typedef void difference_type;
insert_iterator(Container& container_arg) : container(&container_arg) {}
insert_iterator& operator= (typename function_argument<typename Container::value_type>::type x)
{
container->insert(x);
return *this;
}
insert_iterator& operator* () { return *this; }
insert_iterator& operator++ () { return *this; }
insert_iterator& operator++ (int) { return *this; }
};
template <typename Container>
insert_iterator<Container> inserter(Container& c) { return c; }
struct end_sensitive {};
struct contractable {};
struct rewindable {};
struct indexed {};
struct dense {};
struct sparse_compatible : end_sensitive, indexed {};
struct sparse : sparse_compatible {};
struct pure_sparse : sparse {};
/** Feature of an iterator
Is true if the data sequence doesn't have any natural limit whatever kind
*/
struct unlimited {};
template <typename Iterator, typename Feature>
struct default_check_iterator_feature : std::is_same<Feature, void> {};
template <typename Iterator>
struct default_check_iterator_feature<Iterator, unlimited>
: bool_constant<!iterator_traits<Iterator>::is_forward> {};
template <typename Iterator, typename Feature>
struct check_iterator_feature
: default_check_iterator_feature<Iterator, Feature> {};
template <typename Iterator, typename Feature>
struct check_iterator_feature<Iterator&, Feature>
: check_iterator_feature<pure_type_t<Iterator>, Feature> {};
template <typename Feature_before, typename Feature_after>
struct feature_allow_order : std::true_type {};
template <typename Feature, bool on_top=true> struct provide_construction {};
template <typename Feature_before, bool on_top, typename Feature_after>
struct feature_allow_order< provide_construction<Feature_before, on_top>, Feature_after >
: bool_constant<!on_top && feature_allow_order<Feature_before, Feature_after>::value> {};
template <typename Feature_before, typename Feature_after, bool on_top>
struct feature_allow_order< Feature_before, provide_construction<Feature_after, on_top> >
: bool_constant<on_top || feature_allow_order<Feature_before, Feature_after>::value> {};
template <typename Feature_before, bool on_top_before, typename Feature_after, bool on_top_after>
struct feature_allow_order< provide_construction<Feature_before, on_top_before>, provide_construction<Feature_after, on_top_after> >
: bool_constant<(on_top_before < on_top_after || (on_top_before==on_top_after && feature_allow_order<Feature_before, Feature_after>::value))> {};
template <typename Feature1, typename Feature2>
struct absorbing_feature
: is_derived_from<Feature1, Feature2> {};
template <typename Feature1, bool on_top1, typename Feature2>
struct absorbing_feature< provide_construction<Feature1, on_top1>, Feature2>
: absorbing_feature<Feature1, Feature2> {};
template <typename Feature1, bool on_top1, typename Feature2, bool on_top2>
struct absorbing_feature< provide_construction<Feature1, on_top1>, provide_construction<Feature2, on_top2> > {
static constexpr bool value= on_top1>=on_top2 && is_derived_from<Feature1, Feature2>::value;
};
template <typename Feature1, typename Feature2>
struct equivalent_features
: std::is_same<Feature1, Feature2> {};
template <typename Feature, bool on_top>
struct equivalent_features< provide_construction<Feature, on_top>, Feature >
: std::true_type {};
template <typename Feature, bool on_top>
struct equivalent_features< Feature, provide_construction<Feature, on_top> >
: std::true_type {};
template <typename Iterator>
using can_subtract_iterators
= bool_constant<!check_iterator_feature<Iterator, unlimited>::value && iterator_traits<Iterator>::is_random>;
template <typename Iterator>
struct accompanying_iterator {
typedef Iterator type;
static void assign(type& it, const type& other) { it=other;}
static void advance(type& it, const type&, Int n) { std::advance(it, n); }
};
template <typename Iterator>
class rewindable_iterator : public Iterator {
protected:
typedef Iterator base_t;
typename accompanying_iterator<Iterator>::type begin;
template <typename> friend class rewindable_iterator;
public:
typedef rewindable_iterator<typename iterator_traits<Iterator>::iterator> iterator;
typedef rewindable_iterator<typename iterator_traits<Iterator>::const_iterator> const_iterator;
rewindable_iterator() {}
template <typename SourceIterator, typename enabled=typename std::enable_if<is_const_compatible_with<SourceIterator, Iterator>::value>::type>
rewindable_iterator(const SourceIterator& cur_arg)
: base_t(cur_arg)
, begin(cur_arg) {}
rewindable_iterator(const iterator& it)
: base_t(static_cast<const typename iterator::base_t&>(it))
, begin(it.begin) {}
rewindable_iterator& operator= (const iterator& it)
{
static_cast<base_t&>(*this)=it;
begin=it.begin;
return *this;
}
template <typename SourceIterator, typename enabled=typename std::enable_if<is_const_compatible_with<SourceIterator, Iterator>::value>::type>
rewindable_iterator& operator= (const SourceIterator& cur)
{
static_cast<base_t&>(*this)=cur;
return *this;
}
void rewind()
{
accompanying_iterator<Iterator>::assign(static_cast<base_t&>(*this), begin);
}
private:
void contract1(bool, Int distance_front, Int, std::false_type)
{
std::advance(static_cast<base_t&>(*this), distance_front);
}
void contract1(bool renumber, Int distance_front, Int distance_back, std::true_type)
{
base_t::contract(renumber, distance_front, distance_back);
}
public:
void contract(bool renumber, Int distance_front, Int distance_back=0)
{
contract1(renumber, distance_front, distance_back, bool_constant<check_iterator_feature<base_t, contractable>::value>());
begin=static_cast<const base_t&>(*this);
}
};
template <typename Iterator, typename Feature>
struct check_iterator_feature<rewindable_iterator<Iterator>, Feature>
: check_iterator_feature<Iterator,Feature> {};
template <typename Iterator>
struct check_iterator_feature<rewindable_iterator<Iterator>, rewindable> : std::true_type {};
template <typename Iterator>
struct check_iterator_feature<rewindable_iterator<Iterator>, contractable> : std::true_type {};
template <typename Iterator>
struct accompanying_iterator< rewindable_iterator<Iterator> > : accompanying_iterator<Iterator> {};
template <typename Iterator>
class iterator_range
: public Iterator {
protected:
typedef Iterator base_t;
typedef typename accompanying_iterator<Iterator>::type end_type;
end_type end;
template <typename> friend class iterator_range;
public:
typedef iterator_range<typename iterator_traits<Iterator>::iterator> iterator;
typedef iterator_range<typename iterator_traits<Iterator>::const_iterator> const_iterator;
iterator_range() {}
template <typename SourceIterator, typename enabled=typename std::enable_if<is_const_compatible_with<SourceIterator, Iterator>::value>::type>
iterator_range(const SourceIterator& cur_arg)
: base_t(cur_arg)
, end(cur_arg) {}
template <typename SourceIterator1, typename SourceIterator2,
typename=std::enable_if_t<is_const_compatible_with<SourceIterator1, Iterator>::value &&
is_derived_from_any<SourceIterator2, const_compatible_with<end_type>>::value>>
iterator_range(const SourceIterator1& cur_arg, const SourceIterator2& end_arg)
: base_t(cur_arg)
, end(end_arg) {}
iterator_range(const iterator& it)
: base_t(static_cast<const typename iterator::base_t&>(it))
, end(it.end) {}
iterator_range& operator= (const iterator& it)
{
static_cast<base_t&>(*this)=it;
end=it.end;
return *this;
}
template <typename SourceIterator, typename=std::enable_if_t<is_const_compatible_with<SourceIterator, Iterator>::value>>
iterator_range& operator= (const SourceIterator& cur_arg)
{
static_cast<base_t&>(*this) = cur_arg;
return *this;
}
bool at_end() const { return static_cast<const base_t&>(*this)==end; }
iterator_range& operator++()
{
base_t::operator++(); return *this;
}
const iterator_range operator++ (int)
{
iterator_range copy=*this; operator++(); return copy;
}
iterator_range& operator--()
{
static_assert(iterator_traits<base_t>::is_bidirectional, "iterator is not bidirectional");
base_t::operator--(); return *this;
}
const iterator_range operator-- (int)
{
iterator_range copy=*this; operator--(); return copy;
}
iterator_range& operator+= (Int i)
{
static_assert(iterator_traits<base_t>::is_random, "iterator is not random-access");
base_t::operator+=(i);
return *this;
}
iterator_range& operator-= (Int i)
{
static_assert(iterator_traits<base_t>::is_random, "iterator is not random-access");
base_t::operator-=(i);
return *this;
}
iterator_range operator+ (Int i) const
{
static_assert(iterator_traits<base_t>::is_random, "iterator is not random-access");
return iterator_range(static_cast<const base_t&>(*this)+i, end);
}
iterator_range operator- (Int i) const
{
static_assert(iterator_traits<base_t>::is_random, "iterator is not random-access");
return iterator_range(static_cast<const base_t&>(*this)-i, end);
}
friend iterator_range operator+ (Int i, const iterator_range& me)
{
static_assert(iterator_traits<base_t>::is_random, "iterator is not random-access");
return iterator_range(static_cast<const base_t&>(me)+i, me.end);
}
template <typename Other>
std::enable_if_t<is_derived_from_any<Other, typename iterator::base_t, typename const_iterator::base_t>::value, typename base_t::difference_type>
operator- (const Other& other) const
{
static_assert(iterator_traits<base_t>::is_random, "iterator is not random-access");
using other_base_t = typename is_derived_from_any<Other, typename iterator::base_t, typename const_iterator::base_t>::match;
return static_cast<const base_t&>(*this) - static_cast<const other_base_t&>(other);
}
private:
void contract1_impl(bool, Int distance_front, Int, std::false_type)
{
std::advance(static_cast<base_t&>(*this), distance_front);
}
void contract1_impl(bool renumber, Int distance_front, Int distance_back, std::true_type)
{
base_t::contract(renumber, distance_front, distance_back);
}
public:
void contract(bool renumber, Int distance_front, Int distance_back = 0)
{
contract1_impl(renumber, distance_front, distance_back, bool_constant<check_iterator_feature<base_t, contractable>::value>());
accompanying_iterator<Iterator>::advance(end, static_cast<const base_t&>(*this), -distance_back);
}
};
template <typename Iterator, typename Feature>
struct check_iterator_feature<iterator_range<Iterator>, Feature>
: check_iterator_feature<Iterator,Feature> {};
template <typename Iterator>
struct check_iterator_feature<iterator_range<Iterator>, end_sensitive> : std::true_type {};
template <typename Iterator>
struct check_iterator_feature<iterator_range<Iterator>, contractable> : std::true_type {};
template <> struct feature_allow_order<end_sensitive, rewindable> : std::false_type {};
template <typename Iterator>
struct accompanying_iterator< iterator_range<Iterator> > : accompanying_iterator<Iterator> {};
template <typename Iterator>
class mimic_iterator_range {
const Iterator& it;
struct iterator : public Iterator {
bool operator== (const iterator&) const { return this->at_end(); }
bool operator!= (const iterator&) const { return !this->at_end(); }
};
public:
mimic_iterator_range(const Iterator& it_arg) : it(it_arg) {}
template <typename Container>
operator Container () const
{
return Container(static_cast<const iterator&>(it), static_cast<const iterator&>(it));
}
};
template <typename Iterator>
mimic_iterator_range<Iterator>
as_iterator_range(const Iterator& it, typename std::enable_if<check_iterator_feature<Iterator, end_sensitive>::value, void**>::type=nullptr)
{
return it;
}
struct manip_container_base {};
namespace object_classifier {
enum { is_manip=is_scalar+1 };
namespace _impl {
size_discriminant<is_manip>::type analyzer_f(const manip_container_base*, bait*);
}
template <typename Container,
bool iterator_preserved=std::is_same<typename Container::const_iterator,
typename Container::manipulator_impl::const_iterator>::value>
struct check_begin_end {
static constexpr int value = iterator_preserved ? int(is_manip) : int(is_opaque);
};
template <typename Container>
struct what_is<Container, is_manip> : check_begin_end<Container> {};
} // end namespace object_classifier
template <typename T>
struct spec_object_traits< cons<T, int_constant<object_classifier::is_manip> > >
: spec_object_traits<is_container> {
typedef typename deref<typename T::hidden_type>::type masquerade_for;
};
template <typename Container, typename ProvidedFeatures> class manip_feature_collector;
template <typename Container, bool is_const>
struct default_container_elem_traits {
typedef typename Container::const_reference const_reference;
typedef typename std::conditional<is_const, const_reference, typename Container::reference>::type reference;
typedef typename Container::value_type value_type;
};
DeclTypedefCHECK(container_category);
DeclTypedefCHECK(iterator);
DeclTypedefCHECK(value_type);
DeclTypedefCHECK(key_type);
DeclTypedefCHECK(mapped_type);
DeclTypedefCHECK(iterator_category);
DeclTypedefCHECK(difference_type);
template <typename Iterator>
struct looks_like_iterator {
typedef pure_type_t<Iterator> candidate;
static const bool value=(has_value_type<candidate>::value &&
has_iterator_category<candidate>::value &&
has_difference_type<candidate>::value) || std::is_pointer<candidate>::value;
};
// SFINAE helpers
template <typename Iterator, bool enabled, template <typename...> class TestFunction, typename... TestParams>
struct assess_iterator_impl
: std::false_type {};
template <typename Iterator, template <typename...> class TestFunction, typename... TestParams>
struct assess_iterator_impl<Iterator, true, TestFunction, TestParams...>
: TestFunction<pure_type_t<Iterator>, TestParams...> {};
template <typename Iterator, template <typename...> class TestFunction, typename... TestParams>
struct assess_iterator
: assess_iterator_impl<Iterator, looks_like_iterator<Iterator>::value, TestFunction, TestParams...> {};
template <typename Iterator, bool enabled, template <typename...> class TestFunction, typename... TestParams>
struct assess_iterator_value_impl
: std::false_type {};
template <typename Iterator, template <typename...> class TestFunction, typename... TestParams>
struct assess_iterator_value_impl<Iterator, true, TestFunction, TestParams...>
: TestFunction<typename iterator_traits<Iterator>::value_type, TestParams...> {};
template <typename Iterator, template <typename...> class TestFunction, typename... TestParams>
struct assess_iterator_value
: assess_iterator_value_impl<Iterator, looks_like_iterator<Iterator>::value, TestFunction, TestParams...> {};
template <typename Container, bool _has_category=has_container_category<Container>::value>
struct container_category_traits {
using category = typename iterator_traits<typename Container::iterator>::iterator_category;
};
template <typename Container>
struct container_category_traits<Container, true> {
using category = typename Container::container_category;
};
template <typename Container,
typename exclude_generic_tag=void,
bool feasible= has_iterator<Container>::value && has_value_type<Container>::value>
struct is_suitable_container {
static const bool value=std::is_same<typename object_traits<Container>::model, is_container>::value &&
!std::is_same<typename object_traits<Container>::generic_tag, exclude_generic_tag>::value;
};
template <typename Container, typename exclude_generic_tag>
struct is_suitable_container<Container, exclude_generic_tag, false> : std::false_type {};
template <typename T, size_t size, typename exclude_generic_tag>
struct is_suitable_container<T[size], exclude_generic_tag, false> : std::false_type {};
// special tag for isomorphic_to_container_of
struct allow_conversion {};
// @todo recursive check of generic_tags in case of Element being in turn a container
template <typename Container, typename Element,
typename exclude_generic_tag=void,
bool enable=is_suitable_container<Container, exclude_generic_tag>::value>
struct isomorphic_to_container_of
: bool_constant< isomorphic_types<typename Container::value_type, Element>::value &&
(std::is_same<typename object_traits<Element>::generic_tag, typename object_traits<Element>::model>::value ||
std::is_same<typename object_traits<Element>::generic_tag, typename object_traits<typename Container::value_type>::generic_tag>::value ||
(std::is_same<exclude_generic_tag, allow_conversion>::value &&
(std::is_convertible<typename Container::value_type, Element>::value || is_explicitly_convertible_to<typename Container::value_type, Element>::value))) > {};
template <typename Container, typename Element, typename exclude_generic_tag>
struct isomorphic_to_container_of<Container, Element, exclude_generic_tag, false> : std::false_type {};
template <typename... Containers, typename Element, typename exclude_generic_tag>
struct isomorphic_to_container_of<mlist<Containers...>, Element, exclude_generic_tag, false>
: mlist_and_nonempty< isomorphic_to_container_of<Containers, Element, exclude_generic_tag>... > {};
template <typename Container, bool is_const,
bool _enabled=has_iterator<Container>::value,
bool _reversible=is_derived_from<typename container_category_traits<Container>::category, bidirectional_iterator_tag>::value>
struct default_container_it_traits : default_container_elem_traits<Container, is_const> {
typedef typename Container::const_iterator const_iterator;
typedef typename std::conditional<is_const, const_iterator, typename Container::iterator>::type iterator;
};
template <typename Container, bool is_const>
struct default_container_it_traits<Container, is_const, true, true>
: default_container_it_traits<Container, is_const, true, false> {
typedef typename Container::const_reverse_iterator const_reverse_iterator;
typedef typename std::conditional<is_const, const_reverse_iterator, typename Container::reverse_iterator>::type reverse_iterator;
};
template <typename Container, bool is_const, bool _reversible>
struct default_container_it_traits<Container, is_const, false, _reversible> : default_container_elem_traits<Container, is_const> {};
template <typename Container, bool is_const>
struct default_container_traits : container_category_traits<Container>, default_container_it_traits<Container, is_const> {};
template <typename ContainerRef>
struct container_traits
: default_container_traits<typename deref<ContainerRef>::type, attrib<ContainerRef>::is_const>
{
typedef default_container_traits<typename deref<ContainerRef>::type, attrib<ContainerRef>::is_const> base_t;
static const bool
is_forward = is_derived_from<typename base_t::category, forward_iterator_tag>::value,
is_bidirectional = is_derived_from<typename base_t::category, bidirectional_iterator_tag>::value,
is_random = is_derived_from<typename base_t::category, random_access_iterator_tag>::value;
};
template <typename Container>
struct is_assoc_container : bool_constant<has_key_type<Container>::value && has_mapped_type<Container>::value> {};
template <typename Iterator>
Int count_it(Iterator src)
{
Int cnt = 0;
while (!src.at_end()) {
++cnt, ++src;
}
return cnt;
}
/* Plain arrays
* Most of the stuff defined in this section becomes obsolete with the advent of proper range support in C++ 17
*/
/// Wrapper for a pointer used as an iterator.
template <typename T, bool is_reversed>
class ptr_wrapper {
public:
typedef random_access_iterator_tag iterator_category;
typedef T& reference;
typedef T* pointer;
typedef typename deref<T>::type value_type; // T may have 'const' attribute
typedef ptrdiff_t difference_type;
typedef ptr_wrapper<value_type, is_reversed> iterator;
typedef ptr_wrapper<const value_type, is_reversed> const_iterator;
template <typename, bool> friend class ptr_wrapper;
ptr_wrapper(pointer cur_arg = nullptr) : cur(cur_arg) {}
ptr_wrapper(const iterator& it) : cur(it.cur) {}
ptr_wrapper& operator= (pointer cur_arg) { cur=cur_arg; return *this; }
ptr_wrapper& operator= (const iterator& it) { cur=it.cur; return *this; }
reference operator* () const { return *cur; }
pointer operator-> () const { return cur; }
reference operator[] (Int i) const { return cur[is_reversed ? -i : i]; }
ptr_wrapper& operator++ () { is_reversed ? --cur : ++cur; return *this; }
ptr_wrapper& operator-- () { is_reversed ? ++cur : --cur; return *this; }
const ptr_wrapper operator++ (int) { ptr_wrapper copy=*this; operator++(); return copy; }
const ptr_wrapper operator-- (int) { ptr_wrapper copy=*this; operator--(); return copy; }
ptr_wrapper& operator+= (Int i) { is_reversed ? cur-=i : cur+=i; return *this; }
ptr_wrapper& operator-= (Int i) { is_reversed ? cur+=i : cur-=i; return *this; }
ptr_wrapper operator+ (Int i) const { return ptr_wrapper(is_reversed ? cur-i : cur+i); }
ptr_wrapper operator- (Int i) const { return ptr_wrapper(is_reversed ? cur+i : cur-i); }
friend ptr_wrapper operator+ (Int i, const ptr_wrapper& p) { return p+i; }
template <typename Other>
std::enable_if_t<is_derived_from_any<Other, iterator, const_iterator>::value, ptrdiff_t>
operator- (const Other& other) const
{
const typename is_derived_from_any<Other, iterator, const_iterator>::match& other_it = other;
return is_reversed ? other_it.cur - cur : cur - other_it.cur;
}
template <typename Other>
std::enable_if_t<is_derived_from_any<Other, iterator, const_iterator>::value, bool>
operator== (const Other& other) const
{
const typename is_derived_from_any<Other, iterator, const_iterator>::match& other_it = other;
return cur == other_it.cur;
}
template <typename Other>
std::enable_if_t<is_derived_from_any<Other, iterator, const_iterator>::value, bool>
operator!= (const Other& other) const
{
return !(*this==other);
}
template <typename Other>
typename std::enable_if<is_among<Other, iterator, const_iterator>::value, bool>::type
operator< (const Other& other) const
{
return is_reversed ? cur > other.cur : cur < other.cur;
}
template <typename Other>
typename std::enable_if<is_among<Other, iterator, const_iterator>::value, bool>::type
operator> (const Other& other) const
{
return other < *this;
}
template <typename Other>
typename std::enable_if<is_among<Other, iterator, const_iterator>::value, bool>::type
operator<= (const Other& other) const
{
return !(other < *this);
}
template <typename Other>
typename std::enable_if<is_among<Other, iterator, const_iterator>::value, bool>::type
operator>= (const Other& other) const
{
return !(*this < other);
}
bool operator== (const T* other) const { return cur == other; }
bool operator!= (const T* other) const { return cur != other; }
bool operator< (const T* other) const { return cur < other; }
bool operator> (const T* other) const { return cur > other; }
bool operator<= (const T* other) const { return cur <= other; }
bool operator>= (const T* other) const { return cur >= other; }
friend bool operator== (const T* other, const ptr_wrapper& me) { return me == other; }
friend bool operator!= (const T* other, const ptr_wrapper& me) { return me != other; }
friend bool operator< (const T* other, const ptr_wrapper& me) { return me > other; }
friend bool operator> (const T* other, const ptr_wrapper& me) { return me < other; }
friend bool operator<= (const T* other, const ptr_wrapper& me) { return me >= other; }
friend bool operator>= (const T* other, const ptr_wrapper& me) { return me <= other; }
ptrdiff_t operator- (const T* other) const { return cur - other; }
friend ptrdiff_t operator- (const T* other, const ptr_wrapper& me) { return other - me.cur; }
protected:
pointer cur;
};
template <typename Iterator>
struct pointer_as_iterator {
using type = Iterator;
};
template <typename T>
struct pointer_as_iterator<T*> {
using type = ptr_wrapper<T, false>;
};
template <typename Iterator>
using pointer2iterator_t = typename pointer_as_iterator<pure_type_t<Iterator>>::type;
template <typename Iterator>
Iterator&& pointer2iterator(Iterator&& it) { return std::forward<Iterator>(it); }
template <typename T>
ptr_wrapper<T, false> pointer2iterator(T* ptr) { return ptr; }
template <typename Iterator>
auto make_iterator_range(Iterator&& first, Iterator&& last)
{
return iterator_range<pointer2iterator_t<Iterator>>(pointer2iterator(std::forward<Iterator>(first)), pointer2iterator(std::forward<Iterator>(last)));
}
// TODO: places where this class is used separately from plain_array are highly questionnable
template <typename E>
struct array_traits {
typedef E& reference;
typedef const E& const_reference;
typedef E value_type;
typedef ptr_wrapper<E, false> iterator;
typedef ptr_wrapper<const E, false> const_iterator;
typedef ptr_wrapper<E, true> reverse_iterator;
typedef ptr_wrapper<const E, true> const_reverse_iterator;
typedef random_access_iterator_tag container_category;
};
template <typename Top, typename E=typename container_traits<Top>::value_type>
class plain_array : public array_traits<E> {
typedef array_traits<E> base_t;
public:
typename base_t::iterator begin()
{
return static_cast<Top*>(this)->get_data();
}
typename base_t::iterator end()
{
return static_cast<Top*>(this)->get_data()+static_cast<const Top*>(this)->size();
}
typename base_t::const_iterator begin() const
{
return static_cast<const Top*>(this)->get_data();
}
typename base_t::const_iterator end() const
{
return static_cast<const Top*>(this)->get_data()+static_cast<const Top*>(this)->size();
}
typename base_t::reverse_iterator rbegin()
{
return static_cast<Top*>(this)->get_data()+static_cast<const Top*>(this)->size()-1;
}
typename base_t::reverse_iterator rend()
{
return static_cast<Top*>(this)->get_data()-1;
}
typename base_t::const_reverse_iterator rbegin() const
{
return static_cast<const Top*>(this)->get_data()+static_cast<const Top*>(this)->size()-1;
}
typename base_t::const_reverse_iterator rend() const
{
return static_cast<const Top*>(this)->get_data()-1;
}
typename base_t::reference front()
{
if (POLYMAKE_DEBUG) {
if (empty())
throw std::runtime_error("front() on an empty array");
}
return *static_cast<Top*>(this)->get_data();
}
typename base_t::reference back()
{
if (POLYMAKE_DEBUG) {
if (empty())
throw std::runtime_error("back() on an empty array");
}
return *rbegin();
}
typename base_t::reference operator[] (Int i)
{
if (POLYMAKE_DEBUG) {
if (i < 0 || i >= static_cast<const Top*>(this)->size())
throw std::runtime_error("array::operator[] - index out of range");
}
return static_cast<Top*>(this)->get_data()[i];
}
typename base_t::const_reference front() const
{
if (POLYMAKE_DEBUG) {
if (empty())
throw std::runtime_error("front() on an empty array");
}
return *static_cast<const Top*>(this)->get_data();
}
typename base_t::const_reference back() const
{
if (POLYMAKE_DEBUG) {
if (empty())
throw std::runtime_error("back() on an empty array");
}
return *rbegin();
}
typename base_t::const_reference operator[] (Int i) const
{
if (POLYMAKE_DEBUG) {
if (i < 0 || i >= static_cast<const Top*>(this)->size())
throw std::runtime_error("array::operator[] - index out of range");
}
return static_cast<const Top*>(this)->get_data()[i];
}
bool empty() const
{
return static_cast<const Top*>(this)->size()==0;
}
};
template <typename E>
class initializer_list_adapter
: public plain_array<initializer_list_adapter<E>, const E> {
public:
explicit initializer_list_adapter(const std::initializer_list<E>& arg)
: data(arg) {}
const E* get_data() const { return data.begin(); }
Int size() const { return data.size(); }
protected:
const std::initializer_list<E> data;
};
template <typename E>
struct container_traits<std::initializer_list<E>>
: container_traits<initializer_list_adapter<E>> {};
template <typename E>
struct container_traits<const std::initializer_list<E>>
: container_traits<initializer_list_adapter<E>> {};
template <typename E>
struct spec_object_traits<initializer_list_adapter<E>>
: spec_object_traits<is_container> {
static const bool is_always_const=true, is_persistent=false;
};
template <typename E>
struct spec_object_traits<std::initializer_list<E>>
: spec_object_traits<initializer_list_adapter<E>> {};
template <typename E>
struct spec_object_traits< array_traits<E> >
: spec_object_traits<is_container> {};
template <typename E, size_t Tsize>
struct spec_object_traits< E[Tsize] >
: spec_object_traits<is_opaque> {};
template <typename FeatureList1, typename FeatureList2>
using mix_features
= mlist_concat<typename mlist_match_all<FeatureList1, FeatureList2, absorbing_feature>::complement2,
typename mlist_match_all<FeatureList2, FeatureList1, absorbing_feature>::complement2,
typename mlist_intersection<FeatureList1, FeatureList2>::type>;
template <typename FeatureList1, typename FeatureList2>
using toggle_features
= mlist_concat<typename mlist_match_all<FeatureList1, FeatureList2, equivalent_features>::complement,
typename mlist_match_all<FeatureList1, FeatureList2, equivalent_features>::complement2>;
template <typename Container, int kind=object_classifier::what_is<Container>::value>
struct enforce_feature_helper {
using must_enforce_features = mlist<>;
using can_enforce_features = mlist<>;
using cannot_enforce_features = mlist<>;
};
template <typename Container>
struct enforce_feature_helper<Container, object_classifier::is_manip> {
using must_enforce_features
= typename mlist_match_all<typename Container::expected_features,
typename Container::must_enforce_features, absorbing_feature>::complement2;
using can_enforce_features = typename Container::can_enforce_features;
using cannot_enforce_features = typename Container::cannot_enforce_features;
};
struct checked_via_iterator {};
// to be specialized on the second parameter only
template <typename Container, typename Feature>
struct default_check_container_feature
: bool_constant<(check_iterator_feature<typename container_traits<Container>::iterator, Feature>::value &&
mlist_is_empty<typename mlist_match_all<Feature, typename enforce_feature_helper<Container>::must_enforce_features, absorbing_feature>::type>::value)>
, checked_via_iterator {};
// can be specialized either on the first parameter or on both
template <typename Container, typename Feature>
struct check_container_feature
: default_check_container_feature<Container, Feature> {};
template <typename ContainerRef, typename Feature>
using check_container_ref_feature
= check_container_feature<typename deref<ContainerRef>::type, Feature>;
template <typename Feature, typename Container>
struct is_iterator_feature
: is_derived_from<default_check_container_feature<Container, Feature>, checked_via_iterator> {};
template <typename Feature, typename Container>
struct is_iterator_feature<provide_construction<Feature, false>, Container>
: is_iterator_feature<Feature, Container> {};
template <typename Features>
using filter_iterator_features
= mlist_match_all<Features, array_traits<char>, is_iterator_feature>;
template <typename Features>
struct reorder_features {
// 'int' here serves just as some inexisting feature
using normal_features = typename mlist_match_all<Features, int, feature_allow_order>::type;
using always_last_features = typename mlist_match_all<Features, int, feature_allow_order>::complement;
using non_iterator_features_first = typename mlist_concat< typename filter_iterator_features<normal_features>::complement,
typename filter_iterator_features<normal_features>::type >::type;
using type = typename mlist_concat< typename mlist_sort<non_iterator_features_first, feature_allow_order>::type,
always_last_features >::type;
};
// Provides a construction (masquerading Container) that will have a desired feature.
// Must be specialized for each enforcible feature.
template <typename Container, typename Feature>
struct default_enforce_feature;
// Can be specialized for some container classes. Handles exactly one missing feature.
template <typename Container, typename Feature>
struct enforce_feature {
using container = typename default_enforce_feature<Container, Feature>::container;
};
// Can be specialized for various container families (according to object_classifier::what_is).
template <typename Container, typename Features, int kind>
struct default_enforce_features
: enforce_feature<Container, Features> {};
// Can be specialized for some container classes. Handles a list of missing features
template <typename Container, typename Features>
struct enforce_features
: default_enforce_features<Container, Features, object_classifier::what_is<Container>::value> {};
template <typename Container>
struct default_enforce_feature<Container, mlist<>> {
using container = Container;
};
template <typename Container, typename Feature, bool on_top>
struct default_check_container_feature<Container, provide_construction<Feature, on_top> >
: std::false_type {};
template <typename Container, typename Feature, bool on_top>
struct default_enforce_feature<Container, provide_construction<Feature, on_top>>
: enforce_feature<Container, Feature> {};
template <typename Container, typename Lacking>
struct enforce_lacking_features_helper
: enforce_features<Container, Lacking> {};
template <typename Container>
struct enforce_lacking_features_helper<Container, mlist<>> {
using container = Container;
};
template <typename Container, typename Features>
struct enforce_lacking_features {
using lacking = typename mlist_match_all<Container, Features, check_container_feature>::complement2;
using container = typename enforce_lacking_features_helper<Container, lacking>::container;
};
template <typename Container, typename Feature, typename... MoreFeatures>
struct default_enforce_features<Container, mlist<Feature, MoreFeatures...>, object_classifier::is_opaque> {
using needed_features = typename reorder_features<mlist<Feature, MoreFeatures...>>::type;
using container = typename enforce_lacking_features<typename enforce_feature<Container, typename mlist_head<needed_features>::type>::container,
typename mlist_tail<needed_features>::type>::container;
};
template <typename Container, typename Features>
class feature_collector
: public enforce_lacking_features<Container, Features>::container {
protected:
feature_collector();
~feature_collector();
};
template <typename Container, typename Features>
struct redirect_object_traits< feature_collector<Container, Features> >
: object_traits<Container> {
using masquerade_for = Container;
static constexpr bool is_temporary = false;
};
template <typename Container, typename ProvidedFeatures, typename Feature>
struct check_container_feature<feature_collector<Container, ProvidedFeatures>, Feature>
: mlist_or< check_container_feature<Container, Feature>,
mlist_contains<ProvidedFeatures, Feature, absorbing_feature> > {};
template <typename Container, typename Features>
struct ensure_features_helper {
using container = typename inherit_const<feature_collector<typename deref<Container>::type, Features>, Container>::type;
};
template <typename Container, typename ProvidedFeatures, typename Features>
struct ensure_features_helper<feature_collector<Container, ProvidedFeatures>, Features>
: ensure_features_helper<Container, typename mix_features<ProvidedFeatures, Features>::type> {};
template <typename Container, typename ProvidedFeatures, typename Features>
struct ensure_features_helper<const feature_collector<Container, ProvidedFeatures>, Features>
: ensure_features_helper<const Container, typename mix_features<ProvidedFeatures, Features>::type> {};
template <typename Container, typename Features>
struct ensure_features
: ensure_features_helper<Container, Features>
, container_traits<typename ensure_features_helper<Container, Features>::container> {};
template <typename Container, typename... Features>
decltype(auto) ensure(Container&& c, Features...)
{
using result = typename ensure_features<std::remove_reference_t<Container>, typename mlist_wrap<Features...>::type>::container;
return reinterpret_cast<inherit_reference_t<result, Container&&>>(c);
}
template <typename Container>
Container&& ensure(Container&& c)
{
return std::forward<Container>(c);
}
// not to be used in for-loops and other contexts prolonging the life of the iterator beyond the next sequence point
template <typename... MoreFeatures, typename Container>
auto entire_range(Container& c)
{
return ensure(c, typename mix_features<end_sensitive, typename mlist_wrap<MoreFeatures...>::type>::type()).begin();
}
template <typename... MoreFeatures, typename Container>
auto entire_range(const Container& c)
{
return ensure(c, typename mix_features<end_sensitive, typename mlist_wrap<MoreFeatures...>::type>::type()).begin();
}
template <typename E, typename Features>
struct ensure_features<std::initializer_list<E>, Features>
: ensure_features<const initializer_list_adapter<E>, Features> {};
template <typename E, typename Features>
struct ensure_features<const std::initializer_list<E>, Features>
: ensure_features<const initializer_list_adapter<E>, Features> {};
template <typename E, typename... Features>
typename ensure_features<std::initializer_list<E>, typename mlist_wrap<Features...>::type>::type
ensure(std::initializer_list<E>& l, Features...)
{
return typename ensure_features<std::initializer_list<E>, typename mlist_wrap<Features...>::type>::type(l);
}
template <typename E, typename... Features>
typename ensure_features<std::initializer_list<E>, typename mlist_wrap<Features...>::type>::type
ensure(const std::initializer_list<E>& l, Features...)
{
return typename ensure_features<std::initializer_list<E>, typename mlist_wrap<Features...>::type>::type(l);
}
template <typename ContainerRef, typename Features>
struct masquerade_add_features
: inherit_ref<typename ensure_features<typename deref<ContainerRef>::minus_ref, Features>::container, ContainerRef> {};
template <typename ContainerRef, typename Features>
struct deref< masquerade_add_features<ContainerRef,Features> >
: deref< typename masquerade_add_features<ContainerRef,Features>::type > {
using plus_const = masquerade_add_features<typename attrib<ContainerRef>::plus_const, Features>;
};
namespace operations {
struct incomplete {
typedef void argument_type;
typedef void first_argument_type;
typedef void second_argument_type;
typedef void result_type;
void operator() () const;
};
}
template <template <typename> class Operation>
struct BuildUnary : operations::incomplete {};
template <template <typename> class Operation>
struct BuildUnaryIt : operations::incomplete {};
template <template <typename,typename> class Operation>
struct BuildBinary : operations::incomplete {};
template <template <typename,typename> class Operation>
struct BuildBinaryIt : operations::incomplete {};
template <typename Operation, typename Iterator, typename Reference=typename iterator_traits<Iterator>::reference, typename enabled=void>
struct unary_op_builder {
typedef Operation operation;
static const operation& create(const Operation& op) { return op; }
template <typename IndexOperation>
static const operation& create(const pair<Operation, IndexOperation>& p) { return p.first; }
};
template <typename Operation>
struct empty_op_builder {
typedef Operation operation;
template <typename X>
static operation create(const X&) { return operation(); }
};
template <template <typename> class Operation, typename Iterator, typename Reference>
struct unary_op_builder<BuildUnary<Operation>, Iterator, Reference>
: empty_op_builder< Operation<Reference> > {};
template <template <typename> class Operation, typename Iterator, typename Reference>
struct unary_op_builder<BuildUnaryIt<Operation>, Iterator, Reference>
: empty_op_builder< Operation<const Iterator&> > {};
template <typename Operation, typename Iterator1, typename Iterator2,
typename LeftRef=typename iterator_traits<Iterator1>::reference,
typename RightRef=typename iterator_traits<Iterator2>::reference>
struct binary_op_builder {
typedef Operation operation;
static const operation& create(const Operation& op) { return op; }
template <typename IndexOperation>
static const operation& create(const pair<Operation, IndexOperation>& p) { return p.first; }
};
template <template <typename,typename> class Operation, typename Iterator1, typename Iterator2, typename LeftRef, typename RightRef>
struct binary_op_builder<BuildBinary<Operation>, Iterator1, Iterator2, LeftRef, RightRef>
: empty_op_builder< Operation<LeftRef, RightRef> > {};
template <template <typename,typename> class Operation, typename Iterator1, typename Iterator2, typename LeftRef, typename RightRef>
struct binary_op_builder<BuildBinaryIt<Operation>, Iterator1, Iterator2, LeftRef, RightRef >
: empty_op_builder< Operation<const Iterator1&, const Iterator2&> > {};
template <typename T, typename Iterator>
struct value_type_match {
static const bool value=compatible<typename iterator_traits<Iterator>::reference, T>::value ||
std::is_same<typename object_traits<typename iterator_traits<Iterator>::value_type>::persistent_type,
typename object_traits<typename deref<T>::type>::persistent_type>::value;
};
template <typename Iterator, typename arg_type,
bool _not_deref=std::is_same<arg_type,void>::value || is_derived_from<Iterator, typename deref<arg_type>::type>::value>
struct star_helper {
typedef const Iterator& const_result_type;
typedef Iterator& mutable_result_type;
static const bool data_arg=true;
static const_result_type get(const Iterator& it) { return it; }
static mutable_result_type get(Iterator& it) { return it; }
};
template <typename Iterator, typename arg_type>
struct star_helper<Iterator, arg_type, true> {
typedef const Iterator* const_result_type;
typedef Iterator* mutable_result_type;
static const bool data_arg=false;
static const_result_type get(const Iterator& it) { return ⁢ }
static mutable_result_type get(Iterator& it) { return ⁢ }
};
template <typename Iterator, typename Operation>
struct unary_helper
: unary_op_builder<Operation, Iterator> {
typedef star_helper<Iterator, typename unary_helper::operation::argument_type> star;
static const bool data_arg=star::data_arg;
static typename star::const_result_type get(const Iterator& it) { return star::get(it); }
static typename star::mutable_result_type get(Iterator& it) { return star::get(it); }
};
template <typename IteratorPair, typename Operation>
struct binary_helper
: binary_op_builder<Operation, typename IteratorPair::first_type, typename IteratorPair::second_type> {
typedef typename IteratorPair::first_type it_first;
typedef typename IteratorPair::second_type it_second;
typedef binary_op_builder<Operation, it_first, it_second> base_t;
typedef star_helper<it_first, typename base_t::operation::first_argument_type> star1;
typedef star_helper<it_second, typename base_t::operation::second_argument_type> star2;
static const bool first_data_arg=star1::data_arg, second_data_arg=star2::data_arg;
static typename star1::const_result_type get1(const it_first& it) { return star1::get(it); }
static typename star2::const_result_type get2(const it_second& it) { return star2::get(it); }
static typename star1::mutable_result_type get1(it_first& it) { return star1::get(it); }
static typename star2::mutable_result_type get2(it_second& it) { return star2::get(it); }
};
template <typename Operation, typename IndexOperation, typename Iterator, typename Reference>
struct unary_op_builder<pair<Operation, IndexOperation>, Iterator, Reference>
: unary_op_builder<Operation, Iterator, Reference> {};
template <typename Iterator, typename Operation, typename IndexOperation>
struct unary_helper<Iterator, pair<Operation, IndexOperation> >
: unary_helper<Iterator, Operation> {};
template <typename Operation, typename IndexOperation, typename Iterator1, typename Iterator2,
typename Reference1, typename Reference2>
struct binary_op_builder<pair<Operation, IndexOperation>, Iterator1, Iterator2, Reference1, Reference2>
: binary_op_builder<Operation, Iterator1, Iterator2, Reference1, Reference2> {};
template <typename IteratorPair, typename Operation, typename IndexOperation>
struct binary_helper<IteratorPair, pair<Operation, IndexOperation> >
: binary_helper<IteratorPair, Operation> {};
template <typename> class ContainerTag;
template <typename> class Container1Tag;
template <typename> class Container2Tag;
template <typename> class ContainerRefTag;
template <typename> class Container1RefTag;
template <typename> class Container2RefTag;
template <typename> class OperationTag;
template <typename> class IteratorConstructorTag;
template <typename> class IteratorCouplerTag;
template <typename> class HiddenTag;
template <typename> class ReverseTag;
typedef HiddenTag<std::true_type> MasqueradedTop;
template <typename> class ExpectedFeaturesTag;
template <typename> class FeaturesViaSecondTag;
template <typename> class BijectiveTag;
template <typename> class PartiallyDefinedTag;
template <typename ContainerRef, typename Features>
struct extract_iterator_with_features {
using type = typename ensure_features<std::remove_reference_t<ContainerRef>, muntag_t<Features>>::iterator;
};
template <typename ContainerRef, typename Features>
struct extract_const_iterator_with_features {
using type = typename ensure_features<std::remove_reference_t<ContainerRef>, muntag_t<Features>>::const_iterator;
};
template <typename ContainerRef, typename Features>
struct extract_reverse_iterator_with_features {
using type = typename ensure_features<std::remove_reference_t<ContainerRef>, muntag_t<Features>>::reverse_iterator;
};
template <typename ContainerRef, typename Features>
struct extract_const_reverse_iterator_with_features {
using type = typename ensure_features<std::remove_reference_t<ContainerRef>, muntag_t<Features>>::const_reverse_iterator;
};
template <typename ContainerRef>
using extract_iterator = extract_iterator_with_features<ContainerRef, mlist<>>;
template <typename ContainerRef>
using extract_const_iterator = extract_const_iterator_with_features<ContainerRef, mlist<>>;
template <typename ContainerRef>
using extract_reverse_iterator = extract_reverse_iterator_with_features<ContainerRef, mlist<>>;
template <typename ContainerRef>
using extract_const_reverse_iterator = extract_const_reverse_iterator_with_features<ContainerRef, mlist<>>;
template <typename ContainerRef>
struct extract_category {
using type = typename container_traits<ContainerRef>::category;
};
template <typename Params, template <typename> class RefTag, template <typename> class NoRefTag, typename Default=void>
using extract_container_ref
= mtagged_list_extract<Params, RefTag,
std::add_lvalue_reference_t<typename mtagged_list_extract<Params, NoRefTag, Default>::type>>;
template <typename Top, typename Params, bool has_hidden=mtagged_list_extract<Params, HiddenTag>::is_specified>
class manip_container_top
: public manip_container_base {
public:
using hidden_type = void;
using expected_features = typename mtagged_list_extract<Params, ExpectedFeaturesTag, mlist<>>::type;
using manip_top_type = Top;
using must_enforce_features = mlist<>;
using can_enforce_features = mlist<>;
using cannot_enforce_features = mlist<>;
Top& manip_top() { return *static_cast<Top*>(this); }
const Top& manip_top() const { return *static_cast<const Top*>(this); }
};
template <typename Container, typename ProvidedFeatures, typename Params>
class manip_container_top<manip_feature_collector<Container, ProvidedFeatures>, Params, false>
: public manip_container_base {
public:
using hidden_type = void;
using expected_features = typename mix_features<typename mtagged_list_extract<Params, ExpectedFeaturesTag, mlist<>>::type, ProvidedFeatures>::type;
using manip_top_type = typename Container::manip_top_type;
using must_enforce_features = mlist<>;
using can_enforce_features = typename Container::can_enforce_features;
using cannot_enforce_features = typename Container::cannot_enforce_features;
manip_top_type& manip_top()
{
return *static_cast<manip_top_type*>(reinterpret_cast<Container*>(this));
}
const manip_top_type& manip_top() const
{
return *static_cast<const manip_top_type*>(reinterpret_cast<const Container*>(this));
}
};
template <typename Top, typename Hidden>
struct manip_container_hidden_helper {
using type = Hidden;
};
template <typename Top>
struct manip_container_hidden_helper<Top, std::true_type>
: mget_template_parameter<Top, 0> {};
template <typename Top, typename Params,
bool is_binary=(mtagged_list_extract<Params, Container1Tag>::is_specified ||
mtagged_list_extract<Params, Container2Tag>::is_specified ||
mtagged_list_extract<Params, Container1RefTag>::is_specified ||
mtagged_list_extract<Params, Container2RefTag>::is_specified)>
class manip_container_hidden_defaults {
public:
using hidden_type = typename manip_container_hidden_helper<Top, typename mtagged_list_extract<Params, HiddenTag>::type>::type;
using container_ref_raw = typename extract_container_ref<Params, ContainerRefTag, ContainerTag, hidden_type>::type;
using container = typename deref<container_ref_raw>::minus_ref;
container& get_container()
{
return reinterpret_cast<container&>(static_cast<manip_container_top<Top, Params, true>*>(this)->manip_top());
}
const container& get_container() const
{
return reinterpret_cast<const container&>(static_cast<const manip_container_top<Top, Params, true>*>(this)->manip_top());
}
};
template <typename Top, typename Params>
class manip_container_hidden_defaults<Top, Params, true> {
public:
using hidden_type = typename manip_container_hidden_helper<Top, typename mtagged_list_extract<Params, HiddenTag>::type>::type;
using container1_ref_raw = typename extract_container_ref<Params, Container1RefTag, Container1Tag, hidden_type>::type;
using container2_ref_raw = typename extract_container_ref<Params, Container2RefTag, Container2Tag, hidden_type>::type;
using container1 = typename deref<container1_ref_raw>::minus_ref;
using container2 = typename deref<container2_ref_raw>::minus_ref;
container1& get_container1()
{
return reinterpret_cast<container1&>(static_cast<manip_container_top<Top, Params, true>*>(this)->manip_top());
};
const container1& get_container1() const
{
return reinterpret_cast<const container1&>(static_cast<const manip_container_top<Top, Params, true>*>(this)->manip_top());
}
container2& get_container2()
{
return reinterpret_cast<container2&>(static_cast<manip_container_top<Top, Params, true>*>(this)->manip_top());
}
const container2& get_container2() const
{
return reinterpret_cast<const container2&>(static_cast<const manip_container_top<Top, Params, true>*>(this)->manip_top());
}
};
template <typename Top, typename Params>
class manip_container_top<Top, Params, true>
: public manip_container_top<Top, Params, false>
, public manip_container_hidden_defaults<Top, Params> {
protected:
manip_container_top() = delete;
~manip_container_top() = delete;
public:
using typename manip_container_hidden_defaults<Top, Params>::hidden_type;
hidden_type& hidden()
{
return reinterpret_cast<hidden_type&>(this->manip_top());
}
const hidden_type& hidden() const
{
return reinterpret_cast<const hidden_type&>(this->manip_top());
}
};
template <typename Container, typename ProvidedFeatures>
class manip_feature_collector
: public Container::template rebind_feature_collector< manip_feature_collector<Container, ProvidedFeatures> >::type {
protected:
manip_feature_collector() = delete;
~manip_feature_collector() = delete;
};
template <typename Container, typename Features>
struct manip_feature_collector_helper {
using container = manip_feature_collector<Container, Features>;
};
template <typename Container, typename PrevFeatures, typename Features>
struct manip_feature_collector_helper<manip_feature_collector<Container, PrevFeatures>, Features> {
using container = manip_feature_collector<Container, typename mlist_concat<PrevFeatures, Features>::type>;
};
template <typename Container>
struct manip_feature_collector_helper<Container, mlist<>> {
using container = Container;
};
template <typename Container, typename PrevFeatures> // resolving ambiguity
struct manip_feature_collector_helper<manip_feature_collector<Container, PrevFeatures>, mlist<>> {
using container = manip_feature_collector<Container, PrevFeatures>;
};
template <typename Container, typename Features>
struct default_enforce_features<Container, Features, object_classifier::is_manip> {
using after1 = typename mlist_match_all<Features, int, feature_allow_order>::complement;
using not_last = typename mlist_match_all<Features, int, feature_allow_order>::type;
using after2 = typename mlist_match_all<not_last, typename Container::cannot_enforce_features, absorbing_feature>::type;
using not_after = typename mlist_match_all<not_last, typename Container::cannot_enforce_features, absorbing_feature>::complement;
using via_manip1 = typename mlist_match_all<not_after, typename Container::can_enforce_features, equivalent_features>::type;
using via_manip2 = typename filter_iterator_features<typename mlist_match_all<not_after, typename Container::can_enforce_features, equivalent_features>::complement>::type;
using via_manip = typename mlist_concat<via_manip1, via_manip2>::type;
using before = typename mlist_match_all<not_after, via_manip, equivalent_features>::complement;
using after = typename mlist_concat<after2, after1>::type;
using enforced_before = typename default_enforce_features<Container, before, object_classifier::is_opaque>::container;
using enforced_via_manip = typename manip_feature_collector_helper<enforced_before, via_manip>::container;
using container = typename default_enforce_features<enforced_via_manip, after, object_classifier::is_opaque>::container;
};
template <typename Container,
bool is_bidir=container_traits<Container>::is_bidirectional>
class construct_rewindable
: public std::enable_if<container_traits<Container>::is_forward, Container>::type {
protected:
construct_rewindable() = delete;
~construct_rewindable() = delete;
public:
using iterator = rewindable_iterator<typename Container::iterator>;
using const_iterator = rewindable_iterator<typename Container::const_iterator>;
iterator begin() { return Container::begin(); }
iterator end() { return Container::end(); }
const_iterator begin() const { return Container::begin(); }
const_iterator end() const { return Container::end(); }
};
template <typename Container>
class construct_rewindable<Container, true>
: public construct_rewindable<Container, false> {
public:
using reverse_iterator = rewindable_iterator<typename Container::reverse_iterator>;
using const_reverse_iterator = rewindable_iterator<typename Container::const_reverse_iterator>;
reverse_iterator rbegin() { return Container::rbegin(); }
reverse_iterator rend() { return Container::rend(); }
const_reverse_iterator rbegin() const { return Container::rbegin(); }
const_reverse_iterator rend() const { return Container::rend(); }
};
template <typename Container, bool is_bidir>
struct redirect_object_traits< construct_rewindable<Container, is_bidir> >
: object_traits<Container> {
using masquerade_for = Container;
static constexpr bool is_temporary=false;
};
template <typename Container>
struct end_sensitive_helper {
using end_source = Container;
};
template <typename Container, bool is_bidir>
struct end_sensitive_helper< construct_rewindable<Container, is_bidir> > {
using end_source = Container;
};
template <typename Container, bool is_bidir=container_traits<Container>::is_bidirectional>
class construct_end_sensitive : public Container {
protected:
construct_end_sensitive() = delete;
~construct_end_sensitive() = delete;
using end_source = typename end_sensitive_helper<Container>::end_source;
public:
using iterator = iterator_range<typename Container::iterator>;
using const_iterator = iterator_range<typename Container::const_iterator>;
iterator begin() { return iterator(Container::begin(), end_source::end()); }
iterator end() { return iterator(Container::end()); }
const_iterator begin() const { return const_iterator(Container::begin(), end_source::end()); }
const_iterator end() const { return const_iterator(Container::end()); }
};
template <typename Container>
class construct_end_sensitive<Container, true>
: public construct_end_sensitive<Container, false> {
using base_t = construct_end_sensitive<Container, false>;
public:
using reverse_iterator = iterator_range<typename Container::reverse_iterator>;
using const_reverse_iterator = iterator_range<typename Container::const_reverse_iterator>;
reverse_iterator rbegin()
{
return reverse_iterator(Container::rbegin(), base_t::end_source::rend());
}
reverse_iterator rend()
{
return reverse_iterator(Container::rend());
}
const_reverse_iterator rbegin() const
{
return const_reverse_iterator(Container::rbegin(), base_t::end_source::rend());
}
const_reverse_iterator rend() const
{
return const_reverse_iterator(Container::rend());
}
};
template <typename Container, bool is_bidir>
struct redirect_object_traits< construct_end_sensitive<Container, is_bidir> >
: object_traits<Container> {
using masquerade_for = Container;
static constexpr bool is_temporary=false;
};
template <typename Container>
struct default_enforce_feature<Container, rewindable> {
using container = construct_rewindable<Container>;
};
template <typename Container>
struct default_enforce_feature<Container, end_sensitive> {
using container = construct_end_sensitive<Container>;
};
template <bool on_top>
struct absorbing_feature<provide_construction<end_sensitive, on_top>, contractable> : std::true_type {};
struct reversed {};
template <typename Container,
bool is_random=container_traits<Container>::is_random>
class construct_reversed {
protected:
Container& hidden() { return reinterpret_cast<Container&>(*this); }
const Container& hidden() const { return reinterpret_cast<const Container&>(*this); }
public:
using value_type = typename container_traits<Container>::value_type;
using reference = typename container_traits<Container>::reference;
using const_reference = typename container_traits<Container>::const_reference;
using container_category = typename container_traits<Container>::category;
using iterator = typename container_traits<Container>::reverse_iterator;
using const_iterator = typename container_traits<Container>::const_reverse_iterator;
using reverse_iterator = typename container_traits<Container>::iterator;
using const_reverse_iterator = typename container_traits<Container>::const_iterator;
iterator begin() { return hidden().rbegin(); }
iterator end() { return hidden().rend(); }
const_iterator begin() const { return hidden().rbegin(); }
const_iterator end() const { return hidden().rend(); }
reverse_iterator rbegin() { return hidden().begin(); }
reverse_iterator rend() { return hidden().end(); }
const_reverse_iterator rbegin() const { return hidden().begin(); }
const_reverse_iterator rend() const { return hidden().end(); }
reference front() { return hidden().back(); }
reference back() { return hidden().front(); }
const_reference front() const { return hidden().back(); }
const_reference back() const { return hidden().front(); }
Int size() const { return hidden().size(); }
Int dim() const { return get_dim(hidden()); }
bool empty() const { return hidden().empty(); }
};
template <typename Container>
class construct_reversed<Container, true>
: public construct_reversed<Container,false> {
using base_t = construct_reversed<Container,false>;
public:
typename base_t::reference operator[] (Int i)
{
return (base_t::hidden())[this->size()-1-i];
}
typename base_t::const_reference operator[] (Int i) const
{
return (base_t::hidden())[this->size()-1-i];
}
};
template <typename Container>
struct default_check_container_feature<Container, reversed>
: std::false_type {};
template <typename Container>
struct default_enforce_feature<Container, reversed> {
using container = construct_reversed<Container>;
};
template <typename Feature>
struct feature_allow_order<reversed, Feature>
: std::false_type {};
template <typename Container, bool is_random>
struct redirect_object_traits< construct_reversed<Container, is_random> >
: spec_object_traits<Container> {
using masquerade_for = Container;
static constexpr bool is_temporary=false;
};
template <typename Container, bool is_random, typename Feature>
struct check_container_feature<construct_reversed<Container, is_random>, Feature>
: check_container_feature<Container, Feature> {};
template <typename Container, bool is_random>
struct check_container_feature<construct_reversed<Container, is_random>, reversed>
: std::true_type {};
template <typename Container, bool is_random, typename Features>
struct enforce_features<construct_reversed<Container, is_random>, Features> {
using container = construct_reversed<typename enforce_features<Container, Features>::container>;
};
template <typename Container>
typename ensure_features<Container, reversed>::container&
reversed_view(Container& c)
{
return reinterpret_cast<typename ensure_features<Container, reversed>::container&>(c);
}
template <typename Container>
const typename ensure_features<Container, reversed>::container&
reversed_view(const Container& c)
{
return reinterpret_cast<const typename ensure_features<Container, reversed>::container&>(c);
}
template <typename Value, bool is_simple=(std::is_standard_layout<Value>::value && std::is_trivial<Value>::value)>
class op_value_cache {
Value* value;
allocator val_alloc;
void operator= (const op_value_cache&) = delete;
public:
op_value_cache() : value(nullptr) {}
op_value_cache(const op_value_cache& op) : value(nullptr) {}
template <typename... Args>
op_value_cache(Args&&... args)
{
value = val_alloc.construct<Value>(std::forward<Args>(args)...);
}
~op_value_cache()
{
if (value) val_alloc.destroy(value);
}
Value& operator= (Value&& arg)
{
if (value)
destroy_at(value);
else
value = val_alloc.construct<Value>(std::move(value));
return *value;
}
Value& get() { return *value; }
const Value& get() const { return *value; }
};
template <typename Value>
class op_value_cache<Value, true> {
Value value;
void operator= (const op_value_cache&) = delete;
public:
op_value_cache() {}
op_value_cache(const op_value_cache&) {}
template <typename... Args>
op_value_cache(Args&&... args)
: value(std::forward<Args>(args)...) {}
Value& operator= (Value&& arg)
{
value = std::move(arg);
return value;
}
Value& get() { return value; }
const Value& get() const { return value; }
};
template <typename ResultRef, bool need_proxy=!std::is_reference<ResultRef>::value>
struct arrow_helper {
typedef std::remove_reference_t<ResultRef>* pointer;
template <typename Iterator>
static pointer get(const Iterator& it) { return &(*it); }
};
template <typename Result>
struct arrow_helper<Result, true> {
class pointer {
template <typename, bool> friend struct arrow_helper;
typedef typename deref<Result>::type value_type;
value_type value;
template <typename Iterator>
pointer(const Iterator& it) : value(*it) {}
public:
value_type* operator->() { return &value; }
};
template <typename Iterator>
static pointer get(const Iterator& it) { return it; }
};
DeclNestedTemplateCHECK(mix_in);
template <typename Iterator, typename Operation, bool has_mixin=has_nested_mix_in<Operation>::value>
struct transform_iterator_base {
typedef Iterator type;
};
template <typename Iterator, typename Operation>
struct transform_iterator_base<Iterator, Operation, true> {
typedef typename Operation::template mix_in<Iterator> type;
};
template <typename Iterator, typename Operation>
class unary_transform_eval
: public transform_iterator_base<Iterator, Operation>::type {
typedef typename transform_iterator_base<Iterator, Operation>::type base_t;
public:
typedef unary_helper<Iterator,Operation> helper;
typedef typename helper::operation operation;
protected:
operation op;
typedef Operation op_arg_type;
unary_transform_eval() = default;
template <typename Operation2>
unary_transform_eval(const unary_transform_eval<typename iterator_traits<Iterator>::iterator, Operation2>& it)
: base_t(static_cast<const typename std::remove_reference_t<decltype(it)>::base_t&>(it))
, op(helper::create(it.op)) {}
template <typename Operation2>
unary_transform_eval(const unary_transform_eval<typename iterator_reversed<Iterator>::type, Operation2>& it)
: base_t(iterator_reversed<Iterator>::reverse(it))
, op(helper::create(it.op)) {}
template <typename SourceIterator>
unary_transform_eval(const SourceIterator& cur_arg, const op_arg_type& op_arg)
: base_t(cur_arg)
, op(helper::create(op_arg)) {}
template <typename, typename> friend class unary_transform_eval;
public:
typedef typename operation::result_type reference;
reference operator* () const
{
return op(*helper::get(*this));
}
typedef typename arrow_helper<reference>::pointer pointer;
pointer operator-> () const
{
return arrow_helper<reference>::get(*this);
}
};
template <typename Iterator, typename Operation, typename IndexOperation>
class unary_transform_eval<Iterator, pair<Operation, IndexOperation> >
: public unary_transform_eval<Iterator, Operation> {
typedef unary_transform_eval<Iterator, Operation> base_t;
protected:
typedef unary_helper<Iterator,IndexOperation> ihelper;
typename ihelper::operation iop;
typedef pair<Operation, IndexOperation> op_arg_type;
unary_transform_eval() = default;
template <typename Operation2, typename IndexOperation2>
unary_transform_eval(const unary_transform_eval<typename iterator_traits<Iterator>::iterator, pair<Operation2, IndexOperation2> >& it)
: base_t(it)
, iop(ihelper::create(it.iop)) {}
template <typename Operation2, typename IndexOperation2>
unary_transform_eval(const unary_transform_eval<typename iterator_reversed<Iterator>::type, pair<Operation2, IndexOperation2> >& it)
: base_t(it)
, iop(ihelper::create(it.op)) {}
template <typename SourceIterator>
unary_transform_eval(const SourceIterator& cur_arg, const op_arg_type& op_arg)
: base_t(cur_arg, op_arg.first)
, iop(ihelper::create(op_arg.second)) {}
template <typename, typename> friend class unary_transform_eval;
public:
Int index() const
{
return iop(*ihelper::get(*this));
}
};
template <typename Iterator, typename IndexOperation>
class unary_transform_eval<Iterator, pair<nothing, IndexOperation> >
: public transform_iterator_base<Iterator,IndexOperation>::type {
typedef typename transform_iterator_base<Iterator,IndexOperation>::type base_t;
protected:
typedef unary_helper<Iterator,IndexOperation> ihelper;
typename ihelper::operation iop;
typedef IndexOperation op_arg_type;
unary_transform_eval() = default;
template <typename IndexOperation2>
unary_transform_eval(const unary_transform_eval<typename iterator_traits<Iterator>::iterator, pair<nothing, IndexOperation2> >& it)
: base_t(static_cast<const typename std::remove_reference_t<decltype(it)>::base_t&>(it))
, iop(ihelper::create(it.iop)) {}
template <typename IndexOperation2>
unary_transform_eval(const unary_transform_eval<typename iterator_reversed<Iterator>::type, pair<nothing, IndexOperation2> >& it)
: base_t(iterator_reversed<Iterator>::reverse(it))
, iop(ihelper::create(it.op)) {}
template <typename SourceIterator>
unary_transform_eval(const SourceIterator& cur_arg, const op_arg_type& op_arg)
: base_t(cur_arg)
, iop(ihelper::create(op_arg)) {}
template <typename, typename> friend class unary_transform_eval;
public:
Int index() const
{
return iop(*ihelper::get(*this));
}
};
template <typename Target, typename SourceIterator>
decltype(auto)
prepare_iterator_arg(const SourceIterator& it,
std::enable_if_t<is_derived_from_any<SourceIterator, const_compatible_with<Target>>::value, void**> =nullptr)
{
return static_cast<const typename is_derived_from_any<SourceIterator, const_compatible_with<Target>>::match&>(it);
}
template <typename Target, typename SourceIterator>
typename mproject1st<const SourceIterator&, typename iterator_traits<SourceIterator>::iterator_category>::type
prepare_iterator_arg(const SourceIterator& it,
std::enable_if_t<(!is_derived_from_any<SourceIterator, const_compatible_with<Target>>::value &&
can_construct_any<SourceIterator, const_compatible_with<Target>>::value),
void**> =nullptr)
{
return it;
}
// TODO: revise its use, derived classes might not be accepted everywhere
template <typename SourceIterator, typename Target>
struct suitable_arg_for_iterator
: std::enable_if<is_derived_from_any<SourceIterator, const_compatible_with<Target>>::value ||
can_construct_any<SourceIterator, const_compatible_with<Target>>::value> {};
template <typename Iterator, typename Operation>
class unary_transform_iterator
: public unary_transform_eval<Iterator, Operation> {
typedef unary_transform_eval<Iterator, Operation> base_t;
typedef Iterator raw_it;
template <typename, typename> friend class unary_transform_iterator;
protected:
using typename base_t::op_arg_type;
public:
// deref must stay here until all masquerading classes are exterminated
typedef typename deref<std::remove_reference_t<typename base_t::reference>>::type value_type;
typedef unary_transform_iterator<typename iterator_traits<Iterator>::iterator,
typename operation_cross_const_helper<Operation>::operation>
iterator;
typedef unary_transform_iterator<typename iterator_traits<Iterator>::const_iterator,
typename operation_cross_const_helper<Operation>::const_operation>
const_iterator;
unary_transform_iterator() = default;
template <typename Operation2>
unary_transform_iterator(const unary_transform_iterator<typename iterator_traits<Iterator>::iterator, Operation2>& it)
: base_t(it) {}
template <typename Operation2>
explicit unary_transform_iterator(const unary_transform_iterator<typename iterator_reversed<Iterator>::type, Operation2>& it)
: base_t(it) {}
template <typename SourceIterator,
typename=std::enable_if_t<std::is_default_constructible<op_arg_type>::value,
typename suitable_arg_for_iterator<SourceIterator, Iterator>::type>>
unary_transform_iterator(const SourceIterator& cur_arg)
: base_t(prepare_iterator_arg<Iterator>(cur_arg), op_arg_type()) {}
template <typename SourceIterator,
typename=typename suitable_arg_for_iterator<SourceIterator, Iterator>::type>
unary_transform_iterator(const SourceIterator& cur_arg, const op_arg_type& op_arg)
: base_t(prepare_iterator_arg<Iterator>(cur_arg), op_arg) {}
unary_transform_iterator& operator++ ()
{
raw_it::operator++(); return *this;
}
const unary_transform_iterator operator++ (int)
{
unary_transform_iterator copy=*this; operator++(); return copy;
}
unary_transform_iterator& operator-- ()
{
static_assert(iterator_traits<raw_it>::is_bidirectional, "iterator is not bidirectional");
raw_it::operator--(); return *this;
}
const unary_transform_iterator operator-- (int)
{
unary_transform_iterator copy=*this; operator--(); return copy;
}
unary_transform_iterator& operator+= (ptrdiff_t i)
{
static_assert(iterator_traits<raw_it>::is_random, "iterator is not random-access");
raw_it::operator+=(i);
return *this;
}
unary_transform_iterator& operator-= (ptrdiff_t i)
{
static_assert(iterator_traits<raw_it>::is_random, "iterator is not random-access");
raw_it::operator-=(i);
return *this;
}
unary_transform_iterator operator+ (ptrdiff_t i) const
{
unary_transform_iterator copy=*this; return copy+=i;
}
unary_transform_iterator operator- (ptrdiff_t i) const
{
unary_transform_iterator copy=*this; return copy-=i;
}
friend unary_transform_iterator operator+ (ptrdiff_t i, const unary_transform_iterator& me)
{
return me+i;
}
template <typename Other>
std::enable_if_t<is_derived_from_any<Other, typename iterator::raw_it, typename const_iterator::raw_it>::value,
typename raw_it::difference_type>
operator- (const Other& it) const
{
static_assert(iterator_traits<raw_it>::is_random, "iterator is not random-access");
using other_raw_it = typename is_derived_from_any<Other, typename iterator::raw_it, typename const_iterator::raw_it>::match;
return static_cast<const raw_it&>(*this) - static_cast<const other_raw_it&>(it);
}
protected:
typename base_t::reference random_impl(Int i, std::true_type) const
{
return this->op(raw_it::operator[](i));
}
typename base_t::reference random_impl(Int i, std::false_type) const
{
return this->op(static_cast<const raw_it&>(*this) + i);
}
public:
typename base_t::reference operator[] (Int i) const
{
static_assert(iterator_traits<raw_it>::is_random, "iterator is not random-access");
return random_impl(i, bool_constant<base_t::helper::data_arg>());
}
};
template <typename Iterator, typename Operation, typename Feature>
struct check_iterator_feature<unary_transform_iterator<Iterator, Operation>, Feature>
: check_iterator_feature<Iterator, Feature> {};
template <typename Iterator, typename Operation>
struct check_iterator_feature<unary_transform_iterator<Iterator, Operation>, indexed>
: mlist_or< is_instance_of<Operation, pair>,
check_iterator_feature<Iterator,indexed> > {};
template <typename Iterator, typename Operation>
auto make_unary_transform_iterator(Iterator&& it, const Operation& op)
{
return unary_transform_iterator<pointer2iterator_t<Iterator>, Operation>(pointer2iterator(std::forward<Iterator>(it)), op);
}
template <typename... Params>
struct unary_transform_constructor {
using params = typename mlist_wrap<Params...>::type;
template <typename Iterator, typename Operation, typename... ExpectedFeatures>
struct defs {
using expected_features = typename mlist_wrap<ExpectedFeatures...>::type;
using needed_features = std::conditional_t<is_instance_of<Operation, pair>::value,
typename mlist_match_all<expected_features, indexed, equivalent_features>::complement,
expected_features>;
using iterator = unary_transform_iterator<Iterator, Operation>;
};
};
template <typename Container>
struct default_check_container_feature<Container, sparse>
: check_container_feature<Container, pure_sparse> {};
template <typename Container>
struct default_check_container_feature<Container, sparse_compatible>
: check_container_feature<Container, sparse> {};
template <typename Container>
struct default_check_container_feature<Container, pure_sparse> : std::false_type {};
template <typename Container>
struct default_check_container_feature<Container, dense>
: bool_not<check_container_feature<Container, sparse>> {};
template <typename Container>
std::enable_if_t<check_container_feature<Container, sparse_compatible>::value, Int>
get_dim(const Container& c)
{
return c.dim();
}
template <typename Container>
std::enable_if_t<!check_container_feature<Container, sparse_compatible>::value, Int>
get_dim(const Container& c)
{
return c.size();
}
template <typename Container>
Int total_size(const Container& c)
{
return c.size();
}
template <typename First, typename Second, typename... Other>
Int total_size(const First& c1, const Second& c2, const Other&... other)
{
return c1.size() + total_size(c2, other...);
}
template <typename Container>
Int index_within_range(const Container& c, Int i)
{
const Int d = get_dim(c);
if (i < 0) i += d;
if (i < 0 || i >= d) throw std::runtime_error("index out of range");
return i;
}
template <typename Iterator, typename Operation>
class output_transform_iterator : public Iterator {
protected:
Operation op;
typedef Iterator base_t;
public:
typedef output_iterator_tag iterator_category;
typedef typename deref<std::remove_reference_t<typename Operation::argument_type>>::type value_type;
output_transform_iterator() = default;
output_transform_iterator(const Iterator& cur_arg, const Operation& op_arg=Operation())
: base_t(cur_arg)
, op(op_arg) {}
output_transform_iterator& operator= (typename Operation::argument_type arg)
{
static_cast<base_t&>(*this)=op(arg);
return *this;
}
template <typename Arg>
output_transform_iterator& operator= (const Arg& arg)
{
static_cast<base_t&>(*this)=op(arg);
return *this;
}
output_transform_iterator& operator* () { return *this; }
output_transform_iterator& operator++ () { return *this; }
output_transform_iterator& operator++ (int) { return *this; }
};
template <typename Iterator, typename Operation>
output_transform_iterator<Iterator,Operation>
make_output_transform_iterator(Iterator it, const Operation& op)
{
return output_transform_iterator<Iterator,Operation>(it,op);
}
struct output_transform_constructor {
template <typename Iterator, typename Operation, typename... ExpectedFeatures>
struct defs {
using expected_features = typename mlist_wrap<ExpectedFeatures...>::type;
using needed_features = expected_features;
using iterator = output_transform_iterator<Iterator, Operation>;
};
};
template <typename Iterator1, typename Iterator2, typename Params=mlist<>>
class iterator_pair
: public Iterator1 {
public:
using first_type = Iterator1;
using second_type = Iterator2;
Iterator2 second;
using features_via_second = typename mtagged_list_extract<Params, FeaturesViaSecondTag, mlist<>>::type;
using iterator_category = typename least_derived_class<typename iterator_traits<Iterator1>::iterator_category,
typename iterator_traits<Iterator2>::iterator_category>::type;
using difference_type = typename iterator_traits<std::conditional_t<check_iterator_feature<Iterator1, unlimited>::value,
Iterator2, Iterator1>>::difference_type;
using iterator = iterator_pair<typename iterator_traits<Iterator1>::iterator,
typename iterator_traits<Iterator2>::iterator, Params>;
using const_iterator = iterator_pair<typename iterator_traits<Iterator1>::const_iterator,
typename iterator_traits<Iterator2>::const_iterator, Params>;
iterator_pair() = default;
template <typename SourceIterator1, typename SourceIterator2,
typename=typename suitable_arg_for_iterator<SourceIterator1, Iterator1>::type,
typename=typename suitable_arg_for_iterator<SourceIterator2, Iterator2>::type>
iterator_pair(const SourceIterator1& first_arg, const SourceIterator2& second_arg)
: first_type(prepare_iterator_arg<Iterator1>(first_arg))
, second(prepare_iterator_arg<Iterator2>(second_arg)) {}
iterator_pair(const iterator& it)
: first_type(static_cast<const typename iterator::first_type&>(it))
, second(it.second) {}
iterator_pair& operator= (const iterator& it)
{
first_type::operator=(static_cast<const typename iterator::first_type&>(it));
second=it.second;
return *this;
}
iterator_pair& operator++ ()
{
first_type::operator++(); ++second;
return *this;
}
const iterator_pair operator++ (int)
{
iterator_pair copy=*this; operator++(); return copy;
}
iterator_pair& operator-- ()
{
static_assert(iterator_pair_traits<Iterator1, Iterator2>::is_bidirectional, "iterator is not bidirectional");
first_type::operator--(); --this->second;
return *this;
}
const iterator_pair operator-- (int)
{
iterator_pair copy=*this; operator--(); return copy;
}
iterator_pair& operator+= (Int i)
{
static_assert(iterator_pair_traits<Iterator1, Iterator2>::is_random, "iterator is not random-access");
first_type::operator+=(i); this->second+=i;
return *this;
}
iterator_pair& operator-= (Int i)
{
static_assert(iterator_pair_traits<Iterator1, Iterator2>::is_random, "iterator is not random-access");
first_type::operator-=(i); this->second-=i;
return *this;
}
iterator_pair operator+ (Int i) const
{
iterator_pair copy=*this; return copy+=i;
}
iterator_pair operator- (Int i) const
{
iterator_pair copy=*this; return copy-=i;
}
friend iterator_pair operator+ (Int i, const iterator_pair& it)
{
return it+i;
}
private:
template <typename IteratorPair>
difference_type diff_impl(const IteratorPair& it, std::false_type) const
{
return static_cast<const first_type&>(*this)-static_cast<const typename IteratorPair::first_type&>(it);
}
template <typename IteratorPair>
difference_type diff_impl(const IteratorPair& it, std::true_type) const
{
return second-it.second;
}
template <typename IteratorPair>
bool eq_impl(const IteratorPair& it, std::false_type) const
{
return static_cast<const first_type&>(*this) == static_cast<const typename IteratorPair::first_type&>(it);
}
template <typename IteratorPair>
bool eq_impl(const IteratorPair& it, std::true_type) const
{
return second==it.second;
}
using diff_via_second = bool_constant<(mlist_contains<features_via_second, end_sensitive, absorbing_feature>::value ||
check_iterator_feature<Iterator1, unlimited>::value)>;
public:
template <typename Other>
std::enable_if_t<is_derived_from_any<Other, iterator, const_iterator>::value, difference_type>
operator- (const Other& it) const
{
static_assert(iterator_pair_traits<Iterator1, Iterator2>::is_random, "iterator is not random-access");
return diff_impl(static_cast<const typename is_derived_from_any<Other, iterator, const_iterator>::match&>(it), diff_via_second());
}
template <typename Other>
std::enable_if_t<is_derived_from_any<Other, iterator, const_iterator>::value, bool>
operator== (const Other& it) const
{
return eq_impl(static_cast<const typename is_derived_from_any<Other, iterator, const_iterator>::match&>(it), diff_via_second());
}
template <typename Other>
std::enable_if_t<is_derived_from_any<Other, iterator, const_iterator>::value, bool>
operator!= (const Other& it) const
{
return !operator==(it);
}
private:
bool at_end_impl(std::false_type) const
{
return first_type::at_end();
}
bool at_end_impl(std::true_type) const
{
return second.at_end();
}
using at_end_via_second = bool_constant<(mlist_contains<features_via_second, end_sensitive, absorbing_feature>::value ||
!check_iterator_feature<Iterator1, end_sensitive>::value)>;
static constexpr bool at_end_defined=
check_iterator_feature<std::conditional_t<at_end_via_second::value, Iterator2, Iterator1>, end_sensitive>::value;
public:
bool at_end() const
{
static_assert(at_end_defined, "iterator not end-sensitive");
return at_end_impl(at_end_via_second());
}
private:
Int index_impl(std::false_type) const
{
return first_type::index();
}
Int index_impl(std::true_type) const
{
return second.index();
}
using index_via_second = bool_constant<(mlist_contains<features_via_second, indexed, absorbing_feature>::value ||
!check_iterator_feature<Iterator1, indexed>::value)>;
static constexpr bool index_defined=
check_iterator_feature<std::conditional_t<index_via_second::value, Iterator2, Iterator1>, indexed>::value;
public:
Int index() const
{
static_assert(index_defined, "iterator not indexed");
return index_impl(index_via_second());
}
protected:
using rewind_first = typename bool_not<mlist_contains<features_via_second, rewindable, absorbing_feature>>::type;
static const bool rewind_defined= (check_iterator_feature<Iterator1, rewindable>::value || !rewind_first::value) &&
check_iterator_feature<Iterator2, rewindable>::value;
void rewind1(std::true_type) { first_type::rewind(); }
void rewind1(std::false_type) {}
public:
void rewind()
{
static_assert(rewind_defined, "iterator not rewindable");
rewind1(rewind_first());
second.rewind();
}
protected:
void contract1(bool, Int distance_front, Int, std::false_type)
{
std::advance(static_cast<first_type&>(*this), distance_front);
}
void contract1(bool renumber, Int distance_front, Int distance_back, std::true_type)
{
first_type::contract(renumber, distance_front, distance_back);
}
void contract2(bool, Int distance_front, Int, std::false_type)
{
std::advance(second, distance_front);
}
void contract2(bool renumber, Int distance_front, Int distance_back, std::true_type)
{
second.contract(renumber, distance_front, distance_back);
}
public:
void contract(bool renumber, Int distance_front, Int distance_back = 0)
{
if (!mlist_contains<features_via_second, contractable, equivalent_features>::value)
contract1(renumber, distance_front, distance_back, bool_constant<check_iterator_feature<Iterator1, contractable>::value>());
contract2(renumber, distance_front, distance_back, bool_constant<check_iterator_feature<Iterator2, contractable>::value>());
}
};
template <typename Iterator1, typename Iterator2, typename Params, typename Feature>
struct check_iterator_feature< iterator_pair<Iterator1, Iterator2, Params>, Feature> {
using usual_or_features = mlist<end_sensitive, indexed>;
static constexpr bool
check1 = check_iterator_feature<Iterator1, Feature>::value,
check2 = check_iterator_feature<Iterator2, Feature>::value,
value = mlist_contains<typename mtagged_list_extract<Params, FeaturesViaSecondTag, mlist<>>::type, Feature, absorbing_feature>::value
? check2 :
mlist_contains<usual_or_features, Feature>::value
? check1 || check2
: check1 && check2;
using type = bool_constant<value>;
using value_type = bool;
};
template <typename Params=mlist<>>
struct pair_coupler {
using usual_or_features = mlist<end_sensitive, indexed>;
template <typename Iterator1, typename Iterator2, typename... ExpectedFeatures>
struct defs {
using expected_features = typename mlist_wrap<ExpectedFeatures...>::type;
using or_features = typename mlist_match_all<expected_features, usual_or_features, equivalent_features>::type;
using and_features = typename mlist_match_all<expected_features, usual_or_features, equivalent_features>::complement;
using first_can = typename mlist_match_all<Iterator1, or_features, check_iterator_feature>::type2;
using first_can_not = typename mlist_match_all<Iterator1, or_features, check_iterator_feature>::complement2;
using explicitly_via_second = std::conditional_t<check_iterator_feature<Iterator2,unlimited>::value, mlist<>, first_can_not>;
using it_params = typename mlist_prepend_if<!mlist_is_empty<explicitly_via_second>::value,
FeaturesViaSecondTag<explicitly_via_second>, Params>::type;
using iterator = iterator_pair<Iterator1, Iterator2, it_params>;
using needed_features1 = std::conditional_t<check_iterator_feature<Iterator2, unlimited>::value,
expected_features, and_features>;
using needed_features2 = std::conditional_t<check_iterator_feature<Iterator2, unlimited>::value,
and_features,
typename mlist_match_all<expected_features, first_can, equivalent_features>::complement>;
};
};
template <typename IteratorPair, typename Operation, bool is_partial>
class binary_transform_eval
: public transform_iterator_base<IteratorPair, Operation>::type {
typedef typename transform_iterator_base<IteratorPair, Operation>::type base_t;
public:
typedef binary_helper<IteratorPair, Operation> helper;
typedef typename helper::operation operation;
protected:
operation op;
typedef Operation op_arg_type;
binary_transform_eval() = default;
template <typename Operation2>
binary_transform_eval(const binary_transform_eval<typename iterator_traits<IteratorPair>::iterator, Operation2, is_partial>& it)
: base_t(static_cast<const typename std::remove_reference_t<decltype(it)>::base_t&>(it))
, op(helper::create(it.op)) {}
template <typename SourceIteratorPair>
binary_transform_eval(const SourceIteratorPair& cur_arg, const op_arg_type& op_arg)
: base_t(cur_arg)
, op(helper::create(op_arg)) {}
template <typename SourceIterator1, typename SourceIterator2>
binary_transform_eval(const SourceIterator1& first_arg, const SourceIterator2& second_arg, const op_arg_type& op_arg)
: base_t(first_arg, second_arg)
, op(helper::create(op_arg)) {}
template <typename, typename, bool> friend class binary_transform_eval;
public:
typedef typename operation::result_type reference;
reference operator* () const
{
return op(*helper::get1(*this), *helper::get2(this->second));
}
typedef typename arrow_helper<reference>::pointer pointer;
pointer operator-> () const { return arrow_helper<reference>::get(*this); }
};
template <typename IteratorPair, typename Operation, typename IndexOperation, bool is_partial>
class binary_transform_eval<IteratorPair, pair<Operation, IndexOperation>, is_partial>
: public binary_transform_eval<IteratorPair, Operation, is_partial> {
typedef binary_transform_eval<IteratorPair, Operation, is_partial> base_t;
protected:
typedef binary_helper<IteratorPair,IndexOperation> ihelper;
typename ihelper::operation iop;
typedef pair<Operation, IndexOperation> op_arg_type;
binary_transform_eval() = default;
template <typename Operation2, typename IndexOperation2>
binary_transform_eval(const binary_transform_eval<typename iterator_traits<IteratorPair>::iterator, pair<Operation2, IndexOperation2>, is_partial>& it)
: base_t(it)
, iop(ihelper::create(it.iop)) {}
template <typename SourceIteratorPair>
binary_transform_eval(const SourceIteratorPair& cur_arg, const op_arg_type& op_arg)
: base_t(cur_arg, op_arg.first)
, iop(ihelper::create(op_arg.second)) {}
template <typename SourceIterator1, typename SourceIterator2>
binary_transform_eval(const SourceIterator1& first_arg, const SourceIterator2& second_arg, const op_arg_type& op_arg)
: base_t(first_arg, second_arg, op_arg.first)
, iop(ihelper::create(op_arg.second)) {}
template <typename, typename, bool> friend class binary_transform_eval;
public:
Int index() const
{
return iop(*ihelper::get1(*this), *ihelper::get2(this->second));
}
};
template <typename IteratorPair, typename IndexOperation, bool is_partial>
class binary_transform_eval<IteratorPair, pair<nothing, IndexOperation>, is_partial>
: public transform_iterator_base<IteratorPair,IndexOperation>::type {
typedef typename transform_iterator_base<IteratorPair, IndexOperation>::type base_t;
protected:
typedef binary_helper<IteratorPair,IndexOperation> ihelper;
typename ihelper::operation iop;
typedef IndexOperation op_arg_type;
binary_transform_eval() = default;
template <typename IndexOperation2>
binary_transform_eval(const binary_transform_eval<typename iterator_traits<IteratorPair>::iterator, pair<nothing, IndexOperation2>, is_partial>& it)
: base_t(static_cast<const typename std::remove_reference_t<decltype(it)>::base_t&>(it))
, iop(ihelper::create(it.iop)) {}
template <typename SourceIteratorPair>
binary_transform_eval(const SourceIteratorPair& cur_arg, const op_arg_type& op_arg)
: base_t(cur_arg)
, iop(ihelper::create(op_arg)) {}
template <typename SourceIterator1, typename SourceIterator2>
binary_transform_eval(const SourceIterator1& first_arg, const SourceIterator2& second_arg, const op_arg_type& op_arg)
: base_t(first_arg, second_arg)
, iop(ihelper::create(op_arg)) {}
template <typename, typename, bool> friend class binary_transform_eval;
public:
Int index() const
{
return iop(*ihelper::get1(*this), *ihelper::get2(this->second));
}
};
template <typename IteratorPair, typename Operation, bool is_partial=false>
class binary_transform_iterator
: public binary_transform_eval<IteratorPair, Operation, is_partial> {
typedef binary_transform_eval<IteratorPair, Operation, is_partial> base_t;
typedef IteratorPair raw_it;
template <typename, typename, bool> friend class binary_transform_iterator;
protected:
using typename base_t::op_arg_type;
public:
typedef typename deref<std::remove_reference_t<typename base_t::reference>>::type value_type;
typedef binary_transform_iterator<typename iterator_traits<IteratorPair>::iterator,
typename operation_cross_const_helper<Operation>::operation, is_partial>
iterator;
typedef binary_transform_iterator<typename iterator_traits<IteratorPair>::const_iterator,
typename operation_cross_const_helper<Operation>::const_operation, is_partial>
const_iterator;
binary_transform_iterator() = default;
template <typename Operation2>
binary_transform_iterator(const binary_transform_iterator<typename iterator_traits<IteratorPair>::iterator, Operation2, is_partial>& it)
: base_t(it) {}
template <typename SourceIteratorPair,
typename=std::enable_if_t<std::is_default_constructible<op_arg_type>::value,
typename suitable_arg_for_iterator<SourceIteratorPair, IteratorPair>::type>>
binary_transform_iterator(const SourceIteratorPair& cur_arg)
: base_t(prepare_iterator_arg<IteratorPair>(cur_arg), op_arg_type()) {}
template <typename SourceIteratorPair,
typename=typename suitable_arg_for_iterator<SourceIteratorPair, IteratorPair>::type>
binary_transform_iterator(const SourceIteratorPair& cur_arg, const op_arg_type& op_arg)
: base_t(prepare_iterator_arg<IteratorPair>(cur_arg), op_arg) {}
template <typename SourceIterator1, typename SourceIterator2,
typename=std::enable_if_t<std::is_default_constructible<op_arg_type>::value,
typename suitable_arg_for_iterator<SourceIterator1, typename IteratorPair::first_type>::type>,
typename=typename suitable_arg_for_iterator<SourceIterator2, typename IteratorPair::second_type>::type>
binary_transform_iterator(const SourceIterator1& first_arg, const SourceIterator2& second_arg)
: base_t(prepare_iterator_arg<typename IteratorPair::first_type>(first_arg),
prepare_iterator_arg<typename IteratorPair::second_type>(second_arg),
op_arg_type()) {}
template <typename SourceIterator1, typename SourceIterator2,
typename=typename suitable_arg_for_iterator<SourceIterator1, typename IteratorPair::first_type>::type,
typename=typename suitable_arg_for_iterator<SourceIterator2, typename IteratorPair::second_type>::type>
binary_transform_iterator(const SourceIterator1& first_arg, const SourceIterator2& second_arg, const op_arg_type& op_arg)
: base_t(prepare_iterator_arg<typename IteratorPair::first_type>(first_arg),
prepare_iterator_arg<typename IteratorPair::second_type>(second_arg),
op_arg) {}
binary_transform_iterator& operator++ ()
{
raw_it::operator++(); return *this;
}
const binary_transform_iterator operator++ (int)
{
binary_transform_iterator copy=*this; operator++(); return copy;
}
binary_transform_iterator& operator-- ()
{
static_assert(iterator_traits<raw_it>::is_bidirectional, "iterator is not bidirectional");
raw_it::operator--();
return *this;
}
const binary_transform_iterator operator-- (int)
{
binary_transform_iterator copy=*this; operator--(); return copy;
}
binary_transform_iterator& operator+= (Int i)
{
static_assert(iterator_traits<raw_it>::is_random, "iterator is not random-access");
raw_it::operator+=(i);
return *this;
}
binary_transform_iterator& operator-= (Int i)
{
static_assert(iterator_traits<raw_it>::is_random, "iterator is not random-access");
raw_it::operator-=(i);
return *this;
}
binary_transform_iterator operator+ (Int i) const
{
binary_transform_iterator copy=*this; return copy+=i;
}
binary_transform_iterator operator- (Int i) const
{
binary_transform_iterator copy=*this; return copy-=i;
}
friend binary_transform_iterator operator+ (Int i, const binary_transform_iterator& it)
{
return it+i;
}
template <typename Other>
std::enable_if_t<is_derived_from_any<Other, typename iterator::raw_it, typename const_iterator::raw_it>::value,
typename raw_it::difference_type>
operator- (const Other& it) const
{
static_assert(iterator_traits<raw_it>::is_random, "iterator is not random-access");
using other_raw_it = typename is_derived_from_any<Other, typename iterator::raw_it, typename const_iterator::raw_it>::match;
return static_cast<const raw_it&>(*this) - static_cast<const other_raw_it&>(it);
}
protected:
typename base_t::reference random_impl(Int i, std::true_type, std::true_type) const
{
return this->op(raw_it::operator[](i), this->second[i]);
}
typename base_t::reference random_impl(Int i, std::true_type, std::false_type) const
{
return this->op(raw_it::operator[](i), this->second+i);
}
typename base_t::reference random_impl(Int i, std::false_type, std::true_type) const
{
return this->op(static_cast<const typename raw_it::first_type&>(*this)+i, this->second[i]);
}
typename base_t::reference random_impl(Int i, std::false_type, std::false_type) const
{
return this->op(static_cast<const typename raw_it::first_type&>(*this)+i, this->second+i);
}
public:
typename raw_it::reference operator[] (Int i) const
{
static_assert(iterator_traits<raw_it>::is_random, "iterator is not random-access");
return random_impl(i, bool_constant<base_t::helper::first_data_arg>(), bool_constant<base_t::helper::second_data_arg>());
}
};
template <typename IteratorPair, typename Operation, bool is_partial, typename Feature>
struct check_iterator_feature<binary_transform_iterator<IteratorPair, Operation, is_partial>, Feature>
: check_iterator_feature<IteratorPair,Feature> {};
template <typename IteratorPair, typename Operation, bool is_partial>
struct check_iterator_feature<binary_transform_iterator<IteratorPair, Operation, is_partial>, indexed>
: mlist_or< is_instance_of<Operation, pair>,
check_iterator_feature<IteratorPair, indexed> > {};
template <typename Iterator>
struct has_partial_state : std::false_type {};
template <typename... Params>
struct binary_transform_constructor {
using params = typename mlist_wrap<Params...>::type;
template <typename IteratorPair, typename Operation, typename... ExpectedFeatures>
struct defs {
using expected_features = typename mlist_wrap<ExpectedFeatures...>::type;
static const bool is_partially_defined = tagged_list_extract_integral<params, PartiallyDefinedTag>(has_partial_state<IteratorPair>::value);
using needed_pair_features = std::conditional_t<is_instance_of<Operation, pair>::value,
typename mlist_match_all<expected_features, indexed, equivalent_features>::complement,
expected_features>;
using needed_features1 = mlist<>;
using needed_features2 = mlist<>;
using iterator = binary_transform_iterator<IteratorPair, Operation, is_partially_defined>;
};
};
template <typename Iterator1, typename Iterator2, typename Operation>
auto make_binary_transform_iterator(Iterator1&& first, Iterator2&& second, const Operation& op)
{
return binary_transform_iterator<iterator_pair<pointer2iterator_t<Iterator1>, pointer2iterator_t<Iterator2>>, Operation>
(pointer2iterator(std::forward<Iterator1>(first)), pointer2iterator(std::forward<Iterator2>(second)), op);
}
} // end namespace pm
namespace polymake {
using pm::BuildUnary;
using pm::BuildBinary;
using pm::BuildUnaryIt;
using pm::BuildBinaryIt;
using pm::make_unary_transform_iterator;
using pm::make_binary_transform_iterator;
using pm::make_output_transform_iterator;
using pm::as_iterator_range;
using pm::indexed;
using pm::rewindable;
using pm::reversed;
using pm::reversed_view;
using pm::black_hole;
using pm::inserter;
using pm::allow_conversion;
} // end namespace polymake
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|