File: modified_containers.h

package info (click to toggle)
polymake 4.14-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 35,888 kB
  • sloc: cpp: 168,933; perl: 43,407; javascript: 31,575; ansic: 3,007; java: 2,654; python: 632; sh: 268; xml: 117; makefile: 61
file content (1519 lines) | stat: -rw-r--r-- 68,727 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
/* Copyright (c) 1997-2024
   Ewgenij Gawrilow, Michael Joswig, and the polymake team
   Technische Universität Berlin, Germany
   https://polymake.org

   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 2, or (at your option) any
   later version: http://www.gnu.org/licenses/gpl.txt.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
--------------------------------------------------------------------------------
*/

#pragma once

#include "polymake/internal/singular_containers.h"
#include "polymake/internal/SeriesRaw.h"

namespace pm {

template <typename T>
class prvalue_holder {
public:
   using value_t = pure_type_t<T>;
   using effective_const_value_t = std::conditional_t<object_traits<value_t>::is_always_const, std::add_const_t<T>, T>;
   using ref_t = effective_const_value_t&;

   prvalue_holder() : init(false) {}

   prvalue_holder(const value_t&) = delete;

   prvalue_holder(value_t&& val) : init(true)
   {
      // if the constructor throws an exception, alias' destructor won't be called, hence it's safe to set init=true up front
      new(allocate()) value_t(std::move(val));
   }

   prvalue_holder(const prvalue_holder& other) = delete;

   prvalue_holder(prvalue_holder&& other) : init(other.init)
   {
      if (init) new(allocate()) value_t(std::move(*other.ptr()));
   }

   void reset(value_t&& val)
   {
      if (init) {
         destroy_at(ptr());
         init=false;
      }
      new(allocate()) value_t(std::move(val));
      init=true;
   }

   prvalue_holder& operator= (const prvalue_holder& other) = delete;
   prvalue_holder& operator= (prvalue_holder&& other) = delete;

   ~prvalue_holder()
   {
      if (init) destroy_at(ptr());
   }

   bool is_valid() const { return init; }

   ref_t get_val() { return *ptr(); }
   const value_t& get_val() const { return *ptr(); }

protected:
   alignas(value_t) char area[sizeof(value_t)];
   bool init;

   void* allocate() { return area; }
   value_t*       ptr()       { return reinterpret_cast<value_t*>(area); }
   const value_t* ptr() const { return reinterpret_cast<const value_t*>(area); }
};

template <typename Container, typename FeatureList>
class iterator_over_prvalue
   : private prvalue_holder<Container>
   , public ensure_features<typename prvalue_holder<Container>::effective_const_value_t, FeatureList>::iterator {
   using base_t = prvalue_holder<Container>;
public:
   using iterator_t = typename ensure_features<typename base_t::effective_const_value_t, FeatureList>::iterator;

   iterator_over_prvalue() = default;

   iterator_over_prvalue(Container&& c)
      : base_t(std::move(c))
      , iterator_t(ensure(base_t::get_val(), FeatureList()).begin()) {}

   iterator_over_prvalue(const iterator_over_prvalue&) = delete;

private:
   iterator_over_prvalue(base_t&& other, std::true_type)
      : base_t(std::move(other))
      , iterator_t(base_t::is_valid() ? ensure(base_t::get_val(), FeatureList()).begin() : iterator_t()) {}

   iterator_over_prvalue(base_t&& other, std::false_type)
      : base_t(std::move(other))
      , iterator_t(ensure(base_t::get_val(), FeatureList()).begin()) {}

public:
   iterator_over_prvalue(iterator_over_prvalue&& other)
      : iterator_over_prvalue(std::move(other),
                              std::is_default_constructible<iterator_t>()) {}

   void reset(Container&& c)
   {
      base_t::reset(std::move(c));
      iterator_t::operator=(ensure(base_t::get_val(), FeatureList()).begin());
   }

   iterator_over_prvalue& operator= (const iterator_over_prvalue&) = delete;
   iterator_over_prvalue& operator= (iterator_over_prvalue&&) = delete;

   using base_t::is_valid;
};

// TODO: remove these specializations when entire() is no longer used to produce a temporary iterator passed to copy, fill, constructors, etc.
template <typename ContainerRef, typename FeatureList, typename Feature>
struct check_iterator_feature<iterator_over_prvalue<ContainerRef, FeatureList>, Feature>
   : check_iterator_feature<typename iterator_over_prvalue<ContainerRef, FeatureList>::iterator_t, Feature> {};

template <typename ContainerRef, typename FeatureList>
struct iterator_traits<iterator_over_prvalue<ContainerRef, FeatureList>>
   : iterator_traits<typename iterator_over_prvalue<ContainerRef, FeatureList>::iterator_t> {};


template <typename... MoreFeatures, typename Container>
iterator_over_prvalue<Container, typename mix_features<end_sensitive, typename mlist_wrap<MoreFeatures...>::type>::type>
entire(Container&& c, std::enable_if_t<std::is_rvalue_reference<Container&&>::value, void**> =nullptr)
{
   return std::forward<Container>(c);
}

template <typename... MoreFeatures, typename Container>
iterator_over_prvalue<std::add_const_t<Container>, typename mix_features<end_sensitive, typename mlist_wrap<MoreFeatures...>::type>::type>
entire_const(Container&& c, std::enable_if_t<std::is_rvalue_reference<Container&&>::value, void**> =nullptr)
{
   return std::forward<Container>(c);
}

template <typename... MoreFeatures, typename Container>
auto
entire(Container&& c, std::enable_if_t<std::is_lvalue_reference<Container&&>::value, void**> =nullptr)
{
   return ensure(c, typename mix_features<end_sensitive, typename mlist_wrap<MoreFeatures...>::type>::type()).begin();
}

template <typename... MoreFeatures, typename Container>
auto
entire_const(Container&& c, std::enable_if_t<std::is_lvalue_reference<Container&&>::value, void**> =nullptr)
{
   return ensure(static_cast<std::add_const_t<std::remove_reference_t<Container>>&>(c),
                 typename mix_features<end_sensitive, typename mlist_wrap<MoreFeatures...>::type>::type()).begin();
}

template <typename IteratorConstructor,
          bool maybe=(is_derived_from_instance_of<IteratorConstructor, unary_transform_constructor>::value ||
                      is_derived_from_instance_of<IteratorConstructor, binary_transform_constructor>::value)>
struct is_bijective : std::false_type {};

template <typename Operation>
struct is_identity_transform : std::false_type {
   typedef Operation type;
};

template <typename IteratorConstructor>
struct is_bijective<IteratorConstructor, true>
   : mtagged_list_extract<typename IteratorConstructor::params, BijectiveTag, std::true_type>::type {};

template <typename Operation>
struct is_identity_transform< pair<nothing, Operation> > : std::true_type {
   typedef Operation type;
};

template <typename Top, typename Params>
class redirected_container_typebase : public manip_container_top<Top, Params> {
   typedef manip_container_top<Top, Params> base_t;
public:
   using container_ref_raw = typename extract_container_ref<Params, ContainerRefTag, ContainerTag, typename base_t::hidden_type>::type;
   typedef effectively_const_t<container_ref_raw> container_ref;
   typedef typename deref<container_ref>::minus_ref container;
   typedef typename base_t::expected_features needed_features;
   typedef typename ensure_features<container, needed_features>::iterator iterator;
   typedef typename ensure_features<container, needed_features>::const_iterator const_iterator;
   typedef typename enforce_feature_helper<container>::must_enforce_features must_enforce_features;
   typedef typename enforce_feature_helper<container>::can_enforce_features can_enforce_features;
   typedef typename enforce_feature_helper<container>::cannot_enforce_features cannot_enforce_features;
   typedef typename container_traits<container>::category container_category;
   typedef typename container_traits<container>::value_type value_type;
   typedef typename container_traits<container>::reference reference;
   typedef typename container_traits<container>::const_reference const_reference;
   static constexpr int is_resizeable = object_traits<typename deref<container>::type>::is_resizeable;
};

template <typename Top, typename Params,
          bool _enable=redirected_container_typebase<Top,Params>::is_resizeable==1>
class redirected_container_resize {};

template <typename Top, typename Params=typename Top::manipulator_params,
          typename Category=typename redirected_container_typebase<Top,Params>::container_category>
class redirected_container 
   : public redirected_container_typebase<Top, Params>
   , public redirected_container_resize<Top, Params> {
   using base_t = redirected_container_typebase<Top, Params>;
public:
   using manipulator_impl = redirected_container<Top,Params>;
   using manipulator_params = Params;

   template <typename FeatureCollector>
   struct rebind_feature_collector {
      using type = redirected_container<FeatureCollector,Params>;
   };

   typename base_t::iterator begin()
   {
      return ensure(this->manip_top().get_container(), typename base_t::needed_features()).begin();
   }
   typename base_t::iterator end()
   {
      return ensure(this->manip_top().get_container(), typename base_t::needed_features()).end();
   }
   typename base_t::const_iterator begin() const
   {
      return ensure(this->manip_top().get_container(), typename base_t::needed_features()).begin();
   }
   typename base_t::const_iterator end() const
   {
      return ensure(this->manip_top().get_container(), typename base_t::needed_features()).end();
   }

   Int size() const { return this->manip_top().get_container().size(); }
   bool empty() const { return this->manip_top().get_container().empty(); }
};

template <typename Top, typename Params>
class redirected_container<Top, Params, forward_iterator_tag>
   : public redirected_container<Top, Params, input_iterator_tag> {
public:
   decltype(auto) front()
   {
      return this->manip_top().get_container().front();
   }
   decltype(auto) front() const
   {
      return this->manip_top().get_container().front();
   }
};

template <typename Top, typename Params>
class redirected_container<Top, Params, bidirectional_iterator_tag>
   : public redirected_container<Top, Params, forward_iterator_tag> {
   using base_t = redirected_container<Top, Params, forward_iterator_tag>;
public:
   using reverse_iterator = typename ensure_features<typename base_t::container, typename base_t::needed_features>::reverse_iterator;
   using const_reverse_iterator = typename ensure_features<typename base_t::container, typename base_t::needed_features>::const_reverse_iterator;

   reverse_iterator rbegin()
   {
      return ensure(this->manip_top().get_container(), typename base_t::needed_features()).rbegin();
   }
   reverse_iterator rend()
   {
      return ensure(this->manip_top().get_container(), typename base_t::needed_features()).rend();
   }
   const_reverse_iterator rbegin() const
   {
      return ensure(this->manip_top().get_container(), typename base_t::needed_features()).rbegin();
   }
   const_reverse_iterator rend() const
   {
      return ensure(this->manip_top().get_container(), typename base_t::needed_features()).rend();
   }

   decltype(auto) back()
   {
      return this->manip_top().get_container().back();
   }
   decltype(auto) back() const
   {
      return this->manip_top().get_container().back();
   }
};

template <typename Top, typename Params>
class redirected_container<Top, Params, random_access_iterator_tag>
   : public redirected_container<Top, Params, bidirectional_iterator_tag> {
public:
   decltype(auto) operator[] (Int i)
   {
      return this->manip_top().get_container()[i];
   }
   decltype(auto) operator[] (Int i) const
   {
      return this->manip_top().get_container()[i];
   }
};

template <typename Top, typename Params>
class redirected_container_resize<Top, Params, true> {
   using master_t = redirected_container<Top, Params>;
public:
   void resize(Int n)
   {
      static_cast<master_t*>(this)->manip_top().get_container().resize(n);
   }
};

template <typename Top, bool is_bidir>
class modified_container_non_bijective_elem_access {
public:
   decltype(auto) front()
   {
      return *static_cast<Top&>(*this).begin();
   }
   decltype(auto) front() const
   {
      return *static_cast<const Top&>(*this).begin();
   }

   Int size() const
   {
      return count_it(static_cast<const Top&>(*this).begin());
   }
   bool empty() const
   {
      return static_cast<const Top&>(*this).begin().at_end();
   }
};

template <typename Top>
class modified_container_non_bijective_elem_access<Top, true>
   : public modified_container_non_bijective_elem_access<Top, false> {
public:
   decltype(auto) back()
   {
      return *static_cast<Top&>(*this).rbegin();
   }
   decltype(auto) back() const
   {
      return *static_cast<const Top&>(*this).rbegin();
   }
};

template <typename Top, typename Params>
class modified_container_typebase
   : public manip_container_top<Top, Params> {
   using base_t = manip_container_top<Top, Params>;
public:
   using container_ref_raw = typename extract_container_ref<Params, ContainerRefTag, ContainerTag, typename base_t::hidden_type>::type;
   typedef effectively_const_t<container_ref_raw> container_ref;
   typedef typename deref<container_ref>::minus_ref container;
   typedef typename mtagged_list_extract<Params, OperationTag>::type operation;
   typedef typename operation_cross_const_helper<operation>::const_operation const_operation;
   typedef typename mtagged_list_extract<Params, IteratorConstructorTag, unary_transform_constructor<> >::type it_constructor;

   typedef typename it_constructor::template defs<typename container_traits<container>::iterator,
                                                  operation, typename base_t::expected_features>::needed_features
      needed_features;
   typedef typename it_constructor::template defs<typename ensure_features<container, needed_features>::iterator,
                                                  operation, typename base_t::expected_features>::iterator
      iterator;
   typedef typename it_constructor::template defs<typename ensure_features<container, needed_features>::const_iterator,
                                                  const_operation, typename base_t::expected_features>::iterator
      const_iterator;

   typedef typename least_derived_class<typename std::conditional<is_bijective<it_constructor>::value,
                                                                  random_access_iterator_tag,
                                                                  bidirectional_iterator_tag>::type,
                                        typename container_traits<container>::category>::type
      container_category;

   typedef typename enforce_feature_helper<container>::must_enforce_features must_enforce_features;

   typedef typename iterator_traits<iterator>::value_type value_type;
   typedef typename iterator_traits<iterator>::reference reference;
   typedef typename iterator_traits<const_iterator>::reference const_reference;
};

template <typename Top, typename Params>
class reverse_modified_container_typebase {
   typedef modified_container_typebase<Top, Params> base_t;
public:
   typedef typename base_t::it_constructor::template defs<
      typename ensure_features<typename base_t::container, typename base_t::needed_features>::reverse_iterator,
      typename base_t::operation, typename base_t::expected_features
   >::iterator reverse_iterator;
   typedef typename base_t::it_constructor::template defs<
      typename ensure_features<typename base_t::container, typename base_t::needed_features>::const_reverse_iterator,
      typename base_t::const_operation, typename base_t::expected_features
   >::iterator const_reverse_iterator;
};

template <typename Top, typename Params,
          typename Category=typename modified_container_typebase<Top, Params>::container_category,
          bool TBijective=is_bijective<typename modified_container_typebase<Top, Params>::it_constructor>::value,
          bool TIdentity=is_identity_transform<typename modified_container_typebase<Top, Params>::operation>::value>
class modified_container_elem_access;

template <typename Top, typename Params=typename Top::manipulator_params,
          bool TReversible=is_derived_from<typename modified_container_typebase<Top, Params>::container_category,
                                           bidirectional_iterator_tag>::value>
class modified_container_impl
   : public modified_container_typebase<Top, Params>
   , public modified_container_elem_access<Top, Params> {
   typedef modified_container_typebase<Top, Params> base_t;
public:
   typedef modified_container_impl<Top, Params> manipulator_impl;
   typedef Params manipulator_params;
   typedef typename base_t::iterator iterator;
   typedef typename base_t::const_iterator const_iterator;

   template <typename FeatureCollector>
   struct rebind_feature_collector {
      typedef modified_container_impl<FeatureCollector, Params> type;
   };

   typename is_identity_transform<typename base_t::operation>::type get_operation() const
   {
      return typename is_identity_transform<typename base_t::operation>::type();
   }

   iterator begin()
   {
      return iterator(ensure(this->manip_top().get_container(), typename base_t::needed_features()).begin(),
                      this->manip_top().get_operation());
   }
   iterator end()
   {
      return iterator(ensure(this->manip_top().get_container(), typename base_t::needed_features()).end(),
                      this->manip_top().get_operation());
   }
   const_iterator begin() const
   {
      return const_iterator(ensure(this->manip_top().get_container(), typename base_t::needed_features()).begin(),
                            this->manip_top().get_operation());
   }
   const_iterator end() const
   {
      return const_iterator(ensure(this->manip_top().get_container(), typename base_t::needed_features()).end(),
                            this->manip_top().get_operation());
   }
};

template <typename Top, typename Params>
class modified_container_impl<Top, Params, true>
   : public modified_container_impl<Top, Params, false>,
     public reverse_modified_container_typebase<Top, Params> {
   typedef modified_container_impl<Top, Params, false> base_t;
   typedef reverse_modified_container_typebase<Top, Params> rbase_t;
public:
   typename rbase_t::reverse_iterator rbegin()
   {
      return typename rbase_t::reverse_iterator(ensure(this->manip_top().get_container(), typename base_t::needed_features()).rbegin(),
                                                this->manip_top().get_operation());
   }
   typename rbase_t::reverse_iterator rend()
   {
      return typename rbase_t::reverse_iterator(ensure(this->manip_top().get_container(), typename base_t::needed_features()).rend(),
                                                this->manip_top().get_operation());
   }
   typename rbase_t::const_reverse_iterator rbegin() const
   {
      return typename rbase_t::const_reverse_iterator(ensure(this->manip_top().get_container(), typename base_t::needed_features()).rbegin(),
                                                      this->manip_top().get_operation());
   }
   typename rbase_t::const_reverse_iterator rend() const
   {
      return typename rbase_t::const_reverse_iterator(ensure(this->manip_top().get_container(), typename base_t::needed_features()).rend(),
                                                      this->manip_top().get_operation());
   }
};

template <typename Top, typename Params, typename Category, bool is_bijective, bool is_identity>
class modified_container_elem_access {
   typedef modified_container_typebase<Top, Params> base_t;
protected:
   typename base_t::manip_top_type& _top()
   {
      return static_cast<modified_container_impl<Top, Params>*>(this)->manip_top();
   }
   const typename base_t::manip_top_type& _top() const
   {
      return static_cast<const modified_container_impl<Top, Params>*>(this)->manip_top();
   }
public:
   Int size() const
   {
      return _top().get_container().size();
   }
   Int dim() const
   {
      return get_dim(_top().get_container());
   }
   bool empty() const
   {
      return _top().get_container().empty();
   }
};

template <typename Top, typename Params>
class modified_container_elem_access<Top, Params, forward_iterator_tag, true, false>
   : public modified_container_elem_access<Top, Params, input_iterator_tag, true, false> {
   typedef modified_container_typebase<Top, Params> base_t;

   decltype(auto) front_impl(const typename base_t::iterator::operation& op, std::true_type)
   {
      return op(this->_top().get_container().front());
   }
   decltype(auto) front_impl(const typename base_t::const_iterator::operation& op, std::true_type) const
   {
      return op(this->_top().get_container().front());
   }
   decltype(auto) front_impl(const typename base_t::iterator::operation& op, std::false_type)
   {
      return op(this->_top().get_container().begin());
   }
   decltype(auto) front_impl(const typename base_t::const_iterator::operation& op, std::false_type) const
   {
      return op(this->_top().get_container().begin());
   }
public:
   decltype(auto) front()
   {
      typedef typename base_t::iterator::helper opb;
      return front_impl(opb::create(this->_top().get_operation()), bool_constant<opb::data_arg>());
   }
   decltype(auto) front() const
   {
      typedef typename base_t::const_iterator::helper opb;
      return front_impl(opb::create(this->_top().get_operation()), bool_constant<opb::data_arg>());
   }
};

template <typename Top, typename Params>
class modified_container_elem_access<Top, Params, forward_iterator_tag, true, true>
   : public modified_container_elem_access<Top, Params, input_iterator_tag, true, true> {
public:
   decltype(auto) front()
   {
      return this->_top().get_container().front();
   }
   decltype(auto) front() const
   {
      return this->_top().get_container().front();
   }
};

template <typename Top, typename Params>
class modified_container_elem_access<Top, Params, bidirectional_iterator_tag, true, false>
   : public modified_container_elem_access<Top, Params, forward_iterator_tag, true, false> {
   typedef modified_container_typebase<Top, Params> base_t;
   typedef reverse_modified_container_typebase<Top, Params> rbase_t;

   decltype(auto) back_impl(const typename rbase_t::reverse_iterator::operation& op, std::true_type)
   {
      return op(this->_top().get_container().back());
   }
   decltype(auto) back_impl(const typename rbase_t::const_reverse_iterator::operation& op, std::true_type) const
   {
      return op(this->_top().get_container().back());
   }
   decltype(auto) back_impl(const typename rbase_t::reverse_iterator::operation& op, std::false_type)
   {
      return op(this->_top().get_container().rbegin());
   }
   decltype(auto) back_impl(const typename rbase_t::const_reverse_iterator::operation& op, std::false_type) const
   {
      return op(this->_top().get_container().rbegin());
   }
public:
   decltype(auto) back()
   {
      typedef typename rbase_t::reverse_iterator::helper opb;
      return back_impl(opb::create(this->_top().get_operation()), bool_constant<opb::data_arg>());
   }
   decltype(auto) back() const
   {
      typedef typename rbase_t::const_reverse_iterator::helper opb;
      return back_impl(opb::create(this->_top().get_operation()), bool_constant<opb::data_arg>());
   }
};

template <typename Top, typename Params>
class modified_container_elem_access<Top, Params, bidirectional_iterator_tag, true, true>
   : public modified_container_elem_access<Top, Params, forward_iterator_tag, true, true> {
public:
   decltype(auto) back()
   {
      return this->_top().get_container().back();
   }
   decltype(auto) back() const
   {
      return this->_top().get_container().back();
   }
};

template <typename Top, typename Params>
class modified_container_elem_access<Top, Params, random_access_iterator_tag, true, false>
   : public modified_container_elem_access<Top, Params, bidirectional_iterator_tag, true, false> {
   using base_t = modified_container_typebase<Top, Params>;

   decltype(auto) elem_by_index(Int i, const typename base_t::iterator::operation& op, std::true_type)
   {
      return op(this->_top().get_container()[i]);
   }
   decltype(auto) elem_by_index(Int i, const typename base_t::const_iterator::operation& op, std::true_type) const
   {
      return op(this->_top().get_container()[i]);
   }
   decltype(auto) elem_by_index(Int i, const typename base_t::iterator::operation& op, std::false_type)
   {
      return op(this->_top().get_container().begin() + i);
   }
   decltype(auto) elem_by_index(Int i, const typename base_t::const_iterator::operation& op, std::false_type) const
   {
      return op(this->_top().get_container().begin() + i);
   }
public:
   decltype(auto) operator[] (Int i)
   {
      typedef typename base_t::iterator::helper opb;
      const bool via_container=opb::data_arg || !iterator_traits<typename base_t::container::iterator>::is_random;
      return elem_by_index(i, opb::create(this->_top().get_operation()), bool_constant<via_container>());
   }
   decltype(auto) operator[] (Int i) const
   {
      typedef typename base_t::const_iterator::helper opb;
      const bool via_container=opb::data_arg || !iterator_traits<typename base_t::container::const_iterator>::is_random;
      return elem_by_index(i, opb::create(this->_top().get_operation()), bool_constant<via_container>());
   }
};

template <typename Top, typename Params>
class modified_container_elem_access<Top, Params, random_access_iterator_tag, true, true>
   : public modified_container_elem_access<Top, Params, bidirectional_iterator_tag, true, true> {
public:
   decltype(auto) operator[] (Int i)
   {
      return this->_top().get_container()[i];
   }
   decltype(auto) operator[] (Int i) const
   {
      return this->_top().get_container()[i];
   }
};

template <typename Top, typename Params, typename Category>
class modified_container_elem_access<Top, Params, Category, false, false>
   : public modified_container_non_bijective_elem_access<Top, is_derived_from<Category, bidirectional_iterator_tag>::value> {};

template <typename Top, typename Params>
class container_pair_typebase : public manip_container_top<Top, Params> {
   typedef manip_container_top<Top, Params> base_t;
public:
   using container1_ref_raw = typename extract_container_ref<Params, Container1RefTag, Container1Tag>::type;
   using container2_ref_raw = typename extract_container_ref<Params, Container2RefTag, Container2Tag>::type;
   typedef effectively_const_t<container1_ref_raw> container1_ref;
   typedef effectively_const_t<container2_ref_raw> container2_ref;
   typedef typename deref<container1_ref>::minus_ref container1;
   typedef typename deref<container2_ref>::minus_ref container2;

   typedef typename mtagged_list_extract<Params, IteratorCouplerTag, pair_coupler<> >::type it_coupler;
   typedef typename it_coupler::template defs<typename container_traits<container1>::iterator,
                                              typename container_traits<container2>::iterator,
                                              typename base_t::expected_features>::needed_features1
      needed_features1;
   typedef typename it_coupler::template defs<typename container_traits<container1>::iterator,
                                              typename container_traits<container2>::iterator,
                                              typename base_t::expected_features>::needed_features2
      needed_features2;
   typedef typename it_coupler::template defs<typename ensure_features<container1, needed_features1>::iterator,
                                              typename ensure_features<container2, needed_features2>::iterator,
                                              typename base_t::expected_features>::iterator
      iterator;
   typedef typename it_coupler:: template defs<typename ensure_features<container1, needed_features1>::const_iterator,
                                               typename ensure_features<container2, needed_features2>::const_iterator,
                                               typename base_t::expected_features>::iterator
      const_iterator;

   typedef typename least_derived_class<typename container_traits<container1>::category,
                                        typename container_traits<container2>::category>::type
      container_category;
   typedef typename mix_features<typename enforce_feature_helper<container1>::must_enforce_features,
                                 typename enforce_feature_helper<container2>::must_enforce_features>::type
      must_enforce_features;

   typedef typename iterator_traits<iterator>::value_type value_type;
   typedef typename iterator_traits<iterator>::reference reference;
   typedef typename iterator_traits<const_iterator>::reference const_reference;
};

template <typename IteratorCoupler>
struct reverse_coupler {
   using type = IteratorCoupler;
};

template <typename IteratorCoupler, typename Params, bool is_reversed=mlist_contains<Params, reversed>::value>
struct reverse_coupler_helper {
   using type = IteratorCoupler;
};

template <typename IteratorCoupler, typename Params>
struct reverse_coupler_helper<IteratorCoupler, Params, true> : reverse_coupler<IteratorCoupler> {};

template <typename Top, typename Params>
class reverse_container_pair_typebase {
   typedef container_pair_typebase<Top, Params> base_t;
   typedef typename reverse_coupler<typename base_t::it_coupler>::type rev_it_coupler;
public:
   typedef typename rev_it_coupler::template defs<typename ensure_features<typename base_t::container1,
                                                                           typename base_t::needed_features1>::reverse_iterator,
                                                  typename ensure_features<typename base_t::container2,
                                                                           typename base_t::needed_features2>::reverse_iterator,
                                                  typename base_t::expected_features>::iterator
      reverse_iterator;
   typedef typename rev_it_coupler::template defs<typename ensure_features<typename base_t::container1,
                                                                           typename base_t::needed_features1>::const_reverse_iterator,
                                                  typename ensure_features<typename base_t::container2,
                                                                           typename base_t::needed_features2>::const_reverse_iterator,
                                                  typename base_t::expected_features>::iterator
      const_reverse_iterator;
};

template <typename Top, typename Params=typename Top::manipulator_params,
          typename Category=typename container_pair_typebase<Top, Params>::container_category>
class container_pair_impl
   : public container_pair_typebase<Top, Params> {
   typedef container_pair_typebase<Top, Params> base_t;
   Int size_impl(std::false_type) const { return this->manip_top().get_container1().size(); }
   Int size_impl(std::true_type) const { return this->manip_top().get_container2().size(); }
   Int dim_impl(std::false_type) const { return get_dim(this->manip_top().get_container1()); }
   Int dim_impl(std::true_type) const { return get_dim(this->manip_top().get_container2()); }
   bool empty_impl(std::false_type) const { return this->manip_top().get_container1().empty(); }
   bool empty_impl(std::true_type) const { return this->manip_top().get_container2().empty(); }

   typedef bool_constant<object_classifier::what_is<typename deref<typename base_t::container1>::type>::value
                         == object_classifier::is_constant> unlimited1;
public:
   typedef container_pair_impl<Top, Params> manipulator_impl;
   typedef Params manipulator_params;
   using typename base_t::iterator;
   using typename base_t::const_iterator;

   template <typename FeatureCollector>
   struct rebind_feature_collector {
      typedef container_pair_impl<FeatureCollector, Params> type;
   };

   iterator begin()
   {
      return iterator(ensure(this->manip_top().get_container1(), typename base_t::needed_features1()).begin(),
                      ensure(this->manip_top().get_container2(), typename base_t::needed_features2()).begin());
   }
   iterator end()
   {
      return iterator(ensure(this->manip_top().get_container1(), typename base_t::needed_features1()).end(),
                      ensure(this->manip_top().get_container2(), typename base_t::needed_features2()).end());
   }
   const_iterator begin() const
   {
      return const_iterator(ensure(this->manip_top().get_container1(), typename base_t::needed_features1()).begin(),
                            ensure(this->manip_top().get_container2(), typename base_t::needed_features2()).begin());
   }
   const_iterator end() const
   {
      return const_iterator(ensure(this->manip_top().get_container1(), typename base_t::needed_features1()).end(),
                            ensure(this->manip_top().get_container2(), typename base_t::needed_features2()).end());
   }

   Int size() const { return size_impl(unlimited1()); }
   Int dim() const { return dim_impl(unlimited1()); }
   bool empty() const { return empty_impl(unlimited1()); }
};

template <typename Top, typename Params>
class container_pair_impl<Top, Params, forward_iterator_tag>
   : public container_pair_impl<Top, Params, input_iterator_tag> {
public:
   decltype(auto) front()
   {
      return this->manip_top().get_container1().front();
   }
   decltype(auto) front() const
   {
      return this->manip_top().get_container1().front();
   }
};

template <typename Top, typename Params>
class container_pair_impl<Top, Params, bidirectional_iterator_tag>
   : public container_pair_impl<Top, Params, forward_iterator_tag>,
     public reverse_container_pair_typebase<Top, Params> {
   typedef container_pair_impl<Top, Params, forward_iterator_tag> base_t;
   typedef reverse_container_pair_typebase<Top, Params> rbase_t;
public:
   typename rbase_t::reverse_iterator rbegin()
   {
      return typename rbase_t::reverse_iterator(ensure(this->manip_top().get_container1(), typename base_t::needed_features1()).rbegin(),
                                                ensure(this->manip_top().get_container2(), typename base_t::needed_features2()).rbegin());
   }
   typename rbase_t::reverse_iterator rend()
   {
      return typename rbase_t::reverse_iterator(ensure(this->manip_top().get_container1(), typename base_t::needed_features1()).rend(),
                                                ensure(this->manip_top().get_container2(), typename base_t::needed_features2()).rend());
   }
   typename rbase_t::const_reverse_iterator rbegin() const
   {
      return typename rbase_t::const_reverse_iterator(ensure(this->manip_top().get_container1(),
                                                             typename base_t::needed_features1()).rbegin(),
                                                      ensure(this->manip_top().get_container2(),
                                                             typename base_t::needed_features2()).rbegin());
   }
   typename rbase_t::const_reverse_iterator rend() const
   {
      return typename rbase_t::const_reverse_iterator(ensure(this->manip_top().get_container1(),
                                                             typename base_t::needed_features1()).rend(),
                                                      ensure(this->manip_top().get_container2(),
                                                             typename base_t::needed_features2()).rend());
   }

   decltype(auto) back()
   {
      return this->manip_top().get_container1().back();
   }
   decltype(auto) back() const
   {
      return this->manip_top().get_container1().back();
   }
};

template <typename Top, typename Params>
class container_pair_impl<Top, Params, random_access_iterator_tag>
   : public container_pair_impl<Top, Params, bidirectional_iterator_tag> {
public:
   decltype(auto) operator[] (Int i)
   {
      return this->manip_top().get_container1()[i];
   }
   decltype(auto) operator[] (Int i) const
   {
      return this->manip_top().get_container1()[i];
   }
};

template <typename Top, typename Params>
class modified_container_pair_typebase
   : public manip_container_top<Top, Params> {
   typedef manip_container_top<Top, Params> base_t;
public:
   using container1_ref_raw = typename extract_container_ref<Params, Container1RefTag, Container1Tag>::type;
   using container2_ref_raw = typename extract_container_ref<Params, Container2RefTag, Container2Tag>::type;
   typedef effectively_const_t<container1_ref_raw> container1_ref;
   typedef effectively_const_t<container2_ref_raw> container2_ref;
   typedef typename deref<container1_ref>::minus_ref container1;
   typedef typename deref<container2_ref>::minus_ref container2;

   typedef typename mtagged_list_extract<Params, OperationTag>::type operation;
   typedef typename operation_cross_const_helper<operation>::const_operation const_operation;
   typedef typename mtagged_list_extract<Params, IteratorCouplerTag, pair_coupler<> >::type it_coupler;
   typedef typename it_coupler::template defs<typename container_traits<container1>::iterator,
                                              typename container_traits<container2>::iterator>
      coupler_defs;
   typedef typename mtagged_list_extract<Params, IteratorConstructorTag, binary_transform_constructor<> >::type it_constructor;

   typedef typename it_constructor::template defs<typename coupler_defs::iterator, operation, typename base_t::expected_features> first_try_defs;
   typedef typename first_try_defs::needed_pair_features needed_pair_features;

   typedef typename mix_features<typename it_coupler::template defs<typename container_traits<container1>::iterator,
                                                                    typename container_traits<container2>::iterator,
                                                                    needed_pair_features>::needed_features1,
                                 typename first_try_defs::needed_features1>::type
      needed_features1;
   typedef typename mix_features<typename it_coupler::template defs<typename container_traits<container1>::iterator,
                                                                    typename container_traits<container2>::iterator,
                                                                    needed_pair_features>::needed_features2,
                                 typename first_try_defs::needed_features2>::type
      needed_features2;
   typedef typename it_coupler::template defs<typename ensure_features<container1, needed_features1>::iterator,
                                              typename ensure_features<container2, needed_features2>::iterator,
                                              needed_pair_features>::iterator
      it_pair;
   typedef typename it_coupler::template defs<typename ensure_features<container1, needed_features1>::const_iterator,
                                              typename ensure_features<container2, needed_features2>::const_iterator,
                                              needed_pair_features>::iterator
      const_it_pair;
   typedef typename it_constructor::template defs<it_pair, operation, typename base_t::expected_features>::iterator
      iterator;
   typedef typename it_constructor::template defs<const_it_pair, const_operation, typename base_t::expected_features>::iterator
      const_iterator;

   typedef typename least_derived_class< typename std::conditional<is_bijective<it_constructor>::value,
                                                                   random_access_iterator_tag,
                                                                   bidirectional_iterator_tag>::type,
                                         typename container_traits<container1>::category,
                                         typename container_traits<container2>::category >::type
      container_category;

   typedef typename mix_features<typename enforce_feature_helper<container1>::must_enforce_features,
                                 typename enforce_feature_helper<container2>::must_enforce_features>::type
      must_enforce_features;

   typedef typename iterator_traits<iterator>::value_type value_type;
   typedef typename iterator_traits<iterator>::reference reference;
   typedef typename iterator_traits<const_iterator>::reference const_reference;
};

template <typename Top, typename Params>
class reverse_modified_container_pair_typebase {
   typedef modified_container_pair_typebase<Top, Params> base_t;
   typedef typename reverse_coupler<typename base_t::it_coupler>::type rev_it_coupler;
public:
   typedef typename rev_it_coupler::template defs<typename ensure_features<typename base_t::container1,
                                                                           typename base_t::needed_features1>::reverse_iterator,
                                                  typename ensure_features<typename base_t::container2,
                                                                           typename base_t::needed_features2>::reverse_iterator,
                                                  typename base_t::needed_pair_features>::iterator
      reverse_it_pair;
   typedef typename rev_it_coupler::template defs<typename ensure_features<typename base_t::container1,
                                                                           typename base_t::needed_features1>::const_reverse_iterator,
                                                  typename ensure_features<typename base_t::container2,
                                                                           typename base_t::needed_features2>::const_reverse_iterator,
                                                  typename base_t::needed_pair_features>::iterator
      const_reverse_it_pair;
   typedef typename base_t::it_constructor::template defs<reverse_it_pair, typename base_t::operation,
                                                          typename base_t::expected_features>::iterator
      reverse_iterator;
   typedef typename base_t::it_constructor::template defs<const_reverse_it_pair, typename base_t::const_operation,
                                                          typename base_t::expected_features>::iterator
      const_reverse_iterator;
};

template <typename Top, typename Params,
          typename Category=typename modified_container_pair_typebase<Top, Params>::container_category,
          bool is_bijective=is_bijective<typename modified_container_pair_typebase<Top, Params>::it_constructor>::value,
          bool is_identity=is_identity_transform<typename modified_container_pair_typebase<Top, Params>::operation>::value>
class modified_container_pair_elem_access;

template <typename Top, typename Params=typename Top::manipulator_params,
          bool is_bidir=is_derived_from<typename modified_container_pair_typebase<Top, Params>::container_category,
                                        bidirectional_iterator_tag>::value>
class modified_container_pair_impl
   : public modified_container_pair_typebase<Top, Params>
   , public modified_container_pair_elem_access<Top, Params> {
   using base_t = modified_container_pair_typebase<Top, Params>;
public:
   typedef modified_container_pair_impl<Top, Params> manipulator_impl;
   typedef Params manipulator_params;
   using typename base_t::iterator;
   using typename base_t::const_iterator;

   template <typename FeatureCollector>
   struct rebind_feature_collector {
      typedef modified_container_pair_impl<FeatureCollector, Params> type;
   };

   typename is_identity_transform<typename base_t::operation>::type get_operation() const
   {
      return typename is_identity_transform<typename base_t::operation>::type();
   }

   iterator begin()
   {
      return iterator(ensure(this->manip_top().get_container1(), typename base_t::needed_features1()).begin(),
                      ensure(this->manip_top().get_container2(), typename base_t::needed_features2()).begin(),
                      this->manip_top().get_operation());
   }
   iterator end()
   {
      return iterator(ensure(this->manip_top().get_container1(), typename base_t::needed_features1()).end(),
                      ensure(this->manip_top().get_container2(), typename base_t::needed_features2()).end(),
                      this->manip_top().get_operation());
   }
   const_iterator begin() const
   {
      return const_iterator(ensure(this->manip_top().get_container1(), typename base_t::needed_features1()).begin(),
                            ensure(this->manip_top().get_container2(), typename base_t::needed_features2()).begin(),
                            this->manip_top().get_operation());
   }
   const_iterator end() const
   {
      return const_iterator(ensure(this->manip_top().get_container1(), typename base_t::needed_features1()).end(),
                            ensure(this->manip_top().get_container2(), typename base_t::needed_features2()).end(),
                            this->manip_top().get_operation());
   }
};

template <typename Top, typename Params>
class modified_container_pair_impl<Top, Params, true>
   : public modified_container_pair_impl<Top, Params, false>,
     public reverse_modified_container_pair_typebase<Top, Params> {
   typedef modified_container_pair_impl<Top, Params, false> base_t;
   typedef reverse_modified_container_pair_typebase<Top, Params> rbase_t;
public:
   typename rbase_t::reverse_iterator rbegin()
   {
      return typename rbase_t::reverse_iterator(ensure(this->manip_top().get_container1(), typename base_t::needed_features1()).rbegin(),
                                                ensure(this->manip_top().get_container2(), typename base_t::needed_features2()).rbegin(),
                                                this->manip_top().get_operation());
   }
   typename rbase_t::reverse_iterator rend()
   {
      return typename rbase_t::reverse_iterator(ensure(this->manip_top().get_container1(), typename base_t::needed_features1()).rend(),
                                                ensure(this->manip_top().get_container2(), typename base_t::needed_features2()).rend(),
                                                this->manip_top().get_operation());
   }
   typename rbase_t::const_reverse_iterator rbegin() const
   {
      return typename rbase_t::const_reverse_iterator(ensure(this->manip_top().get_container1(), typename base_t::needed_features1()).rbegin(),
                                                      ensure(this->manip_top().get_container2(), typename base_t::needed_features2()).rbegin(),
                                                      this->manip_top().get_operation());
   }
   typename rbase_t::const_reverse_iterator rend() const
   {
      return typename rbase_t::const_reverse_iterator(ensure(this->manip_top().get_container1(), typename base_t::needed_features1()).rend(),
                                                      ensure(this->manip_top().get_container2(), typename base_t::needed_features2()).rend(),
                                                      this->manip_top().get_operation());
   }
};

template <typename Top, typename Params, typename Category, bool is_bijective, bool is_identity>
class modified_container_pair_elem_access {
   typedef modified_container_pair_typebase<Top, Params> base_t;
protected:
   typename base_t::manip_top_type& _top()
   {
      return static_cast<modified_container_pair_impl<Top, Params>*>(this)->manip_top();
   }
   const typename base_t::manip_top_type& _top() const
   {
      return static_cast<const modified_container_pair_impl<Top, Params>*>(this)->manip_top();
   }
private:
   Int size_impl(std::false_type) const { return _top().get_container1().size(); }
   Int size_impl(std::true_type) const { return _top().get_container2().size(); }
   Int dim_impl(std::false_type) const { return get_dim(_top().get_container1()); }
   Int dim_impl(std::true_type) const { return get_dim(_top().get_container2()); }
   bool empty_impl(std::false_type) const { return _top().get_container1().empty(); }
   bool empty_impl(std::true_type) const { return _top().get_container2().empty(); }

   typedef bool_constant<(object_classifier::what_is<typename deref<typename base_t::container1>::type>::value
                          == object_classifier::is_constant)> unlimited1;
public:
   Int size() const { return size_impl(unlimited1()); }
   Int dim() const { return dim_impl(unlimited1()); }
   bool empty() const { return empty_impl(unlimited1()); }
};

template <typename Top, typename Params>
class modified_container_pair_elem_access<Top, Params, forward_iterator_tag, true, false>
   : public modified_container_pair_elem_access<Top, Params, input_iterator_tag, true, false> {
   typedef modified_container_pair_typebase<Top, Params> base_t;

   decltype(auto) front_impl(const typename base_t::iterator::operation& op, std::true_type, std::true_type)
   {
      return op(this->_top().get_container1().front(),
                this->_top().get_container2().front());
   }
   decltype(auto) front_impl(const typename base_t::const_iterator::operation& op, std::true_type, std::true_type) const
   {
      return op(this->_top().get_container1().front(),
                this->_top().get_container2().front());
   }
   decltype(auto) front_impl(const typename base_t::iterator::operation& op, std::false_type, std::true_type)
   {
      return op(this->_top().get_container1().begin(),
                this->_top().get_container2().front());
   }
   decltype(auto) front_impl(const typename base_t::const_iterator::operation& op, std::false_type, std::true_type) const
   {
      return op(this->_top().get_container1().begin(),
                this->_top().get_container2().front());
   }
   decltype(auto) front_impl(const typename base_t::iterator::operation& op, std::true_type, std::false_type)
   {
      return op(this->_top().get_container1().front(),
                this->_top().get_container2().begin());
   }
   decltype(auto) front_impl(const typename base_t::const_iterator::operation& op, std::true_type, std::false_type) const
   {
      return op(this->_top().get_container1().front(),
                this->_top().get_container2().begin());
   }
   decltype(auto) front_impl(const typename base_t::iterator::operation& op, std::false_type, std::false_type)
   {
      return op(this->_top().get_container1().begin(),
                this->_top().get_container2().begin());
   }
   decltype(auto) front_impl(const typename base_t::const_iterator::operation& op, std::false_type, std::false_type) const
   {
      return op(this->_top().get_container1().begin(),
                this->_top().get_container2().begin());
   }
public:
   decltype(auto) front()
   {
      typedef typename base_t::iterator::helper opb;
      return front_impl(opb::create(this->_top().get_operation()),
                        bool_constant<opb::first_data_arg>(), bool_constant<opb::second_data_arg>());
   }
   decltype(auto) front() const
   {
      typedef typename base_t::const_iterator::helper opb;
      return front_impl(opb::create(this->_top().get_operation()),
                        bool_constant<opb::first_data_arg>(), bool_constant<opb::second_data_arg>());
   }
};

template <typename Top, typename Params>
class modified_container_pair_elem_access<Top, Params, forward_iterator_tag, true, true>
   : public modified_container_pair_elem_access<Top, Params, input_iterator_tag, true, true> {
public:
   decltype(auto) front()
   {
      return this->_top().get_container1().front();
   }
   decltype(auto) front() const
   {
      return this->_top().get_container1().front();
   }
};

template <typename Top, typename Params>
class modified_container_pair_elem_access<Top, Params, bidirectional_iterator_tag, true, false>
   : public modified_container_pair_elem_access<Top, Params, forward_iterator_tag, true, false> {
   typedef modified_container_pair_typebase<Top, Params> base_t;
   typedef reverse_modified_container_pair_typebase<Top, Params> rbase_t;

   decltype(auto) back_impl(const typename rbase_t::reverse_iterator::operation& op, std::true_type, std::true_type)
   {
      return op(this->_top().get_container1().back(),
                this->_top().get_container2().back());
   }
   decltype(auto) back_impl(const typename rbase_t::const_reverse_iterator::operation& op, std::true_type, std::true_type) const
   {
      return op(this->_top().get_container1().back(),
                this->_top().get_container2().back());
   }
   decltype(auto) back_impl(const typename rbase_t::reverse_iterator::operation& op, std::false_type, std::true_type)
   {
      return op(this->_top().get_container1().rbegin(),
                this->_top().get_container2().back());
   }
   decltype(auto) back_impl(const typename rbase_t::const_reverse_iterator::operation& op, std::false_type, std::true_type) const
   {
      return op(this->_top().get_container1().rbegin(),
                this->_top().get_container2().back());
   }
   decltype(auto) back_impl(const typename rbase_t::reverse_iterator::operation& op, std::true_type, std::false_type)
   {
      return op(this->_top().get_container1().back(),
                this->_top().get_container2().rbegin());
   }
   decltype(auto) back_impl(const typename rbase_t::const_reverse_iterator::operation& op, std::true_type, std::false_type) const
   {
      return op(this->_top().get_container1().back(),
                this->_top().get_container2().rbegin());
   }
   decltype(auto) back_impl(const typename rbase_t::reverse_iterator::operation& op, std::false_type, std::false_type)
   {
      return op(this->_top().get_container1().rbegin(),
                this->_top().get_container2().rbegin());
   }
   decltype(auto) back_impl(const typename rbase_t::const_reverse_iterator::operation& op, std::false_type, std::false_type) const
   {
      return op(this->_top().get_container1().rbegin(),
                this->_top().get_container2().rbegin());
   }
public:
   decltype(auto) back()
   {
      typedef typename rbase_t::reverse_iterator::helper opb;
      return back_impl(opb::create(this->_top().get_operation()),
                       bool_constant<opb::first_data_arg>(), bool_constant<opb::second_data_arg>());
   }
   decltype(auto) back() const
   {
      typedef typename rbase_t::const_reverse_iterator::helper opb;
      return back_impl(opb::create(this->_top().get_operation()),
                       bool_constant<opb::first_data_arg>(), bool_constant<opb::second_data_arg>());
   }
};

template <typename Top, typename Params>
class modified_container_pair_elem_access<Top, Params, bidirectional_iterator_tag, true, true>
   : public modified_container_pair_elem_access<Top, Params, forward_iterator_tag, true, true> {
public:
   decltype(auto) back()
   {
      return this->_top().get_container1().back();
   }
   decltype(auto) back() const
   {
      return this->_top().get_container1().back();
   }
};

template <typename Top, typename Params>
class modified_container_pair_elem_access<Top, Params, random_access_iterator_tag, true, false>
   : public modified_container_pair_elem_access<Top, Params, bidirectional_iterator_tag, true, false> {
   typedef modified_container_pair_typebase<Top, Params> base_t;

   decltype(auto) elem_by_index(Int i, const typename base_t::iterator::operation& op, std::true_type, std::true_type)
   {
      return op(this->_top().get_container1()[i],
                this->_top().get_container2()[i]);
   }
   decltype(auto) elem_by_index(Int i, const typename base_t::const_iterator::operation& op, std::true_type, std::true_type) const
   {
      return op(this->_top().get_container1()[i],
                this->_top().get_container2()[i]);
   }
   decltype(auto) elem_by_index(Int i, const typename base_t::iterator::operation& op, std::false_type, std::true_type)
   {
      return op(this->_top().get_container1().begin()+i,
                this->_top().get_container2()[i]);
   }
   decltype(auto) elem_by_index(Int i, const typename base_t::const_iterator::operation& op, std::false_type, std::true_type) const
   {
      return op(this->_top().get_container1().begin()+i,
                this->_top().get_container2()[i]);
   }
   decltype(auto) elem_by_index(Int i, const typename base_t::iterator::operation& op, std::true_type, std::false_type)
   {
      return op(this->_top().get_container1()[i],
                this->_top().get_container2().begin()+i);
   }
   decltype(auto) elem_by_index(Int i, const typename base_t::const_iterator::operation& op, std::true_type, std::false_type) const
   {
      return op(this->_top().get_container1()[i],
                this->_top().get_container2().begin()+i);
   }
   decltype(auto) elem_by_index(Int i, const typename base_t::iterator::operation& op, std::false_type, std::false_type)
   {
      return op(this->_top().get_container1().begin()+i,
                this->_top().get_container2().begin()+i);
   }
   decltype(auto) elem_by_index(Int i, const typename base_t::const_iterator::operation& op, std::false_type, std::false_type) const
   {
      return op(this->_top().get_container1().begin()+i,
                this->_top().get_container2().begin()+i);
   }
public:
   decltype(auto) operator[] (Int i)
   {
      typedef typename base_t::iterator::helper opb;
      const bool via_container1=opb::first_data_arg || !iterator_traits<typename base_t::container1::iterator>::is_random,
                 via_container2=opb::second_data_arg || !iterator_traits<typename base_t::container2::iterator>::is_random;
      return elem_by_index(i, opb::create(this->_top().get_operation()),
                           bool_constant<via_container1>(), bool_constant<via_container2>());
   }
   decltype(auto) operator[] (Int i) const
   {
      typedef typename base_t::const_iterator::helper opb;
      const bool via_container1=opb::first_data_arg || !iterator_traits<typename base_t::container1::const_iterator>::is_random,
                 via_container2=opb::second_data_arg || !iterator_traits<typename base_t::container2::const_iterator>::is_random;
      return elem_by_index(i, opb::create(this->_top().get_operation()),
                           bool_constant<via_container1>(), bool_constant<via_container2>());
   }
};

template <typename Top, typename Params>
class modified_container_pair_elem_access<Top, Params, random_access_iterator_tag, true, true>
   : public modified_container_pair_elem_access<Top, Params, bidirectional_iterator_tag, true, true> {
public:
   decltype(auto) operator[] (Int i)
   {
      return this->_top().get_container1()[i];
   }
   decltype(auto) operator[] (Int i) const
   {
      return this->_top().get_container1()[i];
   }
};

template <typename Top, typename Params, typename Category>
class modified_container_pair_elem_access<Top, Params, Category, false, false>
   : public modified_container_non_bijective_elem_access<Top, is_derived_from<Category, bidirectional_iterator_tag>::value> {};

template <typename ContainerRef, typename Operation>
class modified_container_base {
protected:
   using alias_t = alias<ContainerRef>;
   alias_t src;
   typedef typename is_identity_transform<Operation>::type operation_type;
   operation_type op;
public:
   modified_container_base() = default;

   template <typename SrcArg, typename... OpArgs,
             typename=std::enable_if_t<std::is_constructible<alias_t, SrcArg>::value &&
                                       std::is_constructible<operation_type, OpArgs...>::value> >
   explicit modified_container_base(SrcArg&& src_arg, OpArgs&&... op_args)
      : src(std::forward<SrcArg>(src_arg))
      , op(std::forward<OpArgs>(op_args)...) {}

   decltype(auto) get_container() { return *src; }
   decltype(auto) get_container() const { return *src; }
   const alias_t& get_container_alias() const { return src; }
   const operation_type& get_operation() const { return op; }
};

template <typename ContainerRef1, typename ContainerRef2>
class container_pair_base {
protected:
   using first_alias_t = alias<ContainerRef1>;
   using second_alias_t = alias<ContainerRef2>;
   first_alias_t src1;
   second_alias_t src2;
public:
   container_pair_base() = default;

   template <typename Arg1, typename Arg2,
             typename=std::enable_if_t<std::is_constructible<first_alias_t, Arg1>::value &&
                                       std::is_constructible<second_alias_t, Arg2>::value>>
   container_pair_base(Arg1&& src1_arg, Arg2&& src2_arg)
      : src1(std::forward<Arg1>(src1_arg))
      , src2(std::forward<Arg2>(src2_arg)) {}

   decltype(auto) get_container1() { return *src1; }
   decltype(auto) get_container2() { return *src2; }
   decltype(auto) get_container1() const { return *src1; }
   decltype(auto) get_container2() const { return *src2; }
   const first_alias_t& get_container1_alias() const { return src1; }
   const second_alias_t& get_container2_alias() const { return src2; }
};

template <typename ContainerRef1, typename ContainerRef2, typename Operation>
class modified_container_pair_base
   : public container_pair_base<ContainerRef1, ContainerRef2> {
   using base_t = container_pair_base<ContainerRef1, ContainerRef2>;
protected:
   typedef typename is_identity_transform<Operation>::type operation_type;
   operation_type op;
public:
   modified_container_pair_base() = default;

   template <typename Arg1, typename Arg2, typename... OpArgs,
             typename=std::enable_if_t<std::is_constructible<base_t, Arg1, Arg2>::value &&
                                       std::is_constructible<operation_type, OpArgs...>::value>>
   modified_container_pair_base(Arg1&& src1_arg, Arg2&& src2_arg, OpArgs&&... op_args)
      : base_t(std::forward<Arg1>(src1_arg), std::forward<Arg2>(src2_arg))
      , op(std::forward<OpArgs>(op_args)...) {}

   const operation_type& get_operation() const { return op; }
};

template <typename Top, typename ElemRef=typename Top::element_reference, typename Params=mlist<>>
class repeated_value_container_impl
   : public modified_container_pair_impl< Top,
                                          typename mlist_concat<
                                             Container1RefTag< same_value_container<ElemRef> >,
                                             Container2RefTag< sequence_raw >,
                                             OperationTag< pair<nothing,
                                                                operations::apply2< BuildUnaryIt<operations::dereference> > > >,
                                             Params >::type > {
public:
   using element_reference = ElemRef;

   decltype(auto) get_container1() const
   {
      return as_same_value_container(this->manip_top().get_elem_alias());
   }
   sequence_raw get_container2() const
   {
      return sequence_raw(0, this->manip_top().size());
   }

   decltype(auto) front() const { return this->manip_top().get_container1().front(); }
   decltype(auto) back() const { return front(); }
};

template <typename ElemRef>
class repeated_value_container
   : public repeated_value_container_impl<repeated_value_container<ElemRef>, ElemRef> {
protected:
   using alias_t = alias<ElemRef>;
   alias_t value;
   Int d;
public:
   // TODO: remove this when iterators stop outliving containers
   repeated_value_container()
      : d(0) {}

   template <typename Arg, typename=std::enable_if_t<std::is_constructible<alias_t, Arg>::value>>
   repeated_value_container(Arg&& value_arg, Int dim_arg)
      : value(std::forward<Arg>(value_arg))
      , d(dim_arg)
   {
      if (POLYMAKE_DEBUG && dim_arg<0)
         throw std::runtime_error("repeated_value_container - invalid dimension");
   }

   alias_t& get_elem_alias() { return value; }
   const alias_t& get_elem_alias() const { return value; }

   Int dim() const { return d; }
   Int size() const { return d; }
   bool empty() const { return d==0; }

   void stretch_dim(Int to_dim)
   {
      d = to_dim;
   }
};

template <typename ElemRef>
struct spec_object_traits< repeated_value_container<ElemRef> >
   : spec_object_traits<is_container> {
   static constexpr bool
      is_temporary = true,
      is_always_const = true;
};

template <typename E>
auto repeat_value(E&& value, Int count)
{
   return repeated_value_container<prevent_int_element<E>>(std::forward<E>(value), count);
}

template <typename E>
auto single_value_as_container(E&& value)
{
   return repeated_value_container<prevent_int_element<E>>(std::forward<E>(value), 1);
}

template <typename Container, int kind = object_classifier::what_is<Container>::value>
struct extract_expected_features {
   using type = mlist<>;
};

template <typename Container>
struct extract_expected_features<Container, object_classifier::is_manip> {
   using type = typename Container::expected_features;
};

template <typename Container>
class construct_sequence_indexed
   : public modified_container_pair_impl< construct_sequence_indexed<Container>,
                                          mlist< Container1Tag< Container >,
                                                 Container2Tag< sequence_raw >,
                                                 OperationTag< pair<nothing, operations::apply2< BuildUnaryIt<operations::dereference> > > >,
                                                 ExpectedFeaturesTag< typename extract_expected_features<Container>::type >,
                                                 HiddenTag< Container > > > {
public:
   sequence_raw get_container2() const
   {
      // the size is being determined on the first (main) container unless it is of unlimited-const nature
      return sequence_raw(0, object_classifier::what_is<Container>::value == object_classifier::is_constant ? Int(this->hidden().size()) : 1);
   }
};

template <typename Container>
class construct_random_indexed : public Container {
protected:
   construct_random_indexed();
   ~construct_random_indexed();
public:
   typedef indexed_random_iterator<typename Container::iterator> iterator;
   typedef indexed_random_iterator<typename Container::const_iterator> const_iterator;
   typedef indexed_random_iterator<typename Container::reverse_iterator, true> reverse_iterator;
   typedef indexed_random_iterator<typename Container::const_reverse_iterator, true> const_reverse_iterator;

   iterator begin() { return iterator(Container::begin()); }
   iterator end() { return iterator(Container::end(), Container::begin()); }
   const_iterator begin() const { return const_iterator(Container::begin()); }
   const_iterator end() const { return const_iterator(Container::end(), Container::begin()); }
   reverse_iterator rbegin() { return reverse_iterator(Container::rbegin(), Container::rend()); }
   reverse_iterator rend() { return reverse_iterator(Container::rend()); }
   const_reverse_iterator rbegin() const { return const_reverse_iterator(Container::rbegin(), Container::rend()); }
   const_reverse_iterator rend() const { return const_reverse_iterator(Container::rend()); }
};

template <typename Container>
struct default_enforce_feature<Container, indexed> {
   typedef typename std::conditional<std::is_same<typename iterator_traits<typename container_traits<Container>::iterator>::iterator_category,
                                                  random_access_iterator_tag>::value,
                                     construct_random_indexed<Container>, construct_sequence_indexed<Container> >::type
      container;
};

template <typename Container>
struct redirect_object_traits< construct_random_indexed<Container> >
   : object_traits<Container> {
   typedef Container masquerade_for;
   static constexpr bool is_temporary=false;
};

template <typename Container, typename Features>
struct default_enforce_features<Container, Features, object_classifier::is_constant>
   : default_enforce_features<construct_sequence_indexed<Container>, Features, object_classifier::is_manip> {};

template <typename Container>
struct default_enforce_features<Container, reversed, object_classifier::is_constant> {
   using container = Container;
};

} // end namespace pm

namespace polymake {

using pm::entire;
using pm::entire_const;
using pm::repeat_value;
using pm::single_value_as_container;

}


// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End: