File: operations_basic_defs.h

package info (click to toggle)
polymake 4.14-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 35,888 kB
  • sloc: cpp: 168,933; perl: 43,407; javascript: 31,575; ansic: 3,007; java: 2,654; python: 632; sh: 268; xml: 117; makefile: 61
file content (498 lines) | stat: -rw-r--r-- 15,235 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
/* Copyright (c) 1997-2024
   Ewgenij Gawrilow, Michael Joswig, and the polymake team
   Technische Universität Berlin, Germany
   https://polymake.org

   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 2, or (at your option) any
   later version: http://www.gnu.org/licenses/gpl.txt.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
--------------------------------------------------------------------------------
*/

#pragma once

#include "polymake/internal/type_manip.h"
#include <cmath>
#include <string>
#include <functional>

namespace pm {

template <typename T>
std::enable_if_t<std::is_arithmetic<T>::value, T&>
negate(T& x)
{
   x=-x;
   return x;
}

template <typename T>
std::enable_if_t<is_class_or_union<pure_type_t<T>>::value &&
                 !std::is_const<std::remove_reference_t<T>>::value, T&&>
negate(T&& x)
{
   return std::forward<T>(x.negate());
}

template <typename T>
std::enable_if_t<std::is_integral<T>::value, T&>
complement(T& x)
{
   x=~x;
   return x;
}

template <typename T, typename=std::enable_if_t<std::is_same<typename object_traits<T>::generic_tag, is_scalar>::value &&
                                                std::is_same<decltype(std::declval<const T&>() * std::declval<const T&>()), T>::value>>
T sqr(const T& x)
{
   return x*x;
}

namespace operations {

struct partial {};
struct partial_left : partial {};
struct partial_right : partial {};

#define GuessResultType(name, sign) \
template <typename T1, typename T2> \
struct name##_result { \
   using type = decltype(std::declval<const T1&>() sign std::declval<const T2&>()); \
}

GuessResultType(add,+);
GuessResultType(sub,-);
GuessResultType(mul,*);
GuessResultType(div,/);

template <typename Op, typename Result>
struct neg_scalar {
   typedef Op argument_type;
   typedef Result result_type;
   result_type operator() (typename function_argument<Op>::type a) const { return -a; }
   void assign(Op& a) const { negate(a); }
};

template <typename Op>
struct neg_scalar<Op,void> {
   typedef void result_type;
};

template <typename Left, typename Right, typename Result>
struct add_scalar {
   typedef Left first_argument_type;
   typedef Right second_argument_type;
   typedef Result result_type;

   result_type operator() (typename function_argument<Left>::type a, typename function_argument<Right>::type b) const { return a+b; }
   template <typename Iterator2>
   const Left& operator() (partial_left, const Left& a, const Iterator2&) const { return a; }
   template <typename Iterator1>
   const Right& operator() (partial_right, const Iterator1&, const Right& b) const { return b; }
   void assign(Left& a, typename function_argument<Right>::type b) const { a+=b; }
};

template <typename Left, typename Right, typename Result>
struct sub_scalar {
   typedef Left first_argument_type;
   typedef Right second_argument_type;
   typedef Result result_type;

   result_type operator() (typename function_argument<Left>::type a, typename function_argument<Right>::type b) const { return a-b; }
   template <typename Iterator2>
   const Left& operator() (partial_left, const Left& a, const Iterator2&) const { return a; }
   template <typename Iterator1>
   result_type operator() (partial_right, const Iterator1&, typename function_argument<Right>::type b) const { return -b; }
   void assign(Left& a, typename function_argument<Right>::type b) const { a-=b; }
};

template <typename Left, typename Right, typename Result>
struct mul_scalar {
   typedef Left first_argument_type;
   typedef Right second_argument_type;
   typedef Result result_type;

   result_type operator() (typename function_argument<Left>::type a, typename function_argument<Right>::type b) const { return a*b; }
   void assign(Left& a, typename function_argument<Right>::type b) const { a*=b; }
};

template <typename Left, typename Right>
struct mul_scalar<Left,Right,void> {
   typedef void result_type;
};

template <typename Left, typename Right, typename Result>
struct div_scalar {
   typedef Left first_argument_type;
   typedef Right second_argument_type;
   typedef Result result_type;

   result_type operator() (typename function_argument<Left>::type a, typename function_argument<Right>::type b) const { return a/b; }
   void assign(Left& a, typename function_argument<Right>::type b) const { a/=b; }
};

template <typename Left, typename Right>
struct div_scalar<Left,Right,void> {
   typedef void result_type;
};

template <typename Left, typename Right, typename Result>
struct divexact_scalar : div_scalar <Left, Right, Result> {};

} // end namespace operations

template <typename Char, typename Traits, typename Alloc>
struct spec_object_traits< std::basic_string<Char, Traits, Alloc> >
   : spec_object_traits<is_opaque> {};

using std::sqrt;

}
namespace polymake {

using pm::negate;
using pm::complement;
using pm::sqr;
using pm::sqrt;

// TODO: rename back to operations when the old stuff has gone
namespace cleanOperations {

using neg = std::negate<>;
using add = std::plus<>;
using sub = std::minus<>;
using mul = std::multiplies<>;
using div = std::divides<>;
using mod = std::modulus<>;
using bit_not = std::bit_not<>;
using bit_and = std::bit_and<>;
using bit_or = std::bit_or<>;
using bit_xor = std::bit_xor<>;

struct lshift {
   template <typename Left, typename Right>
   decltype(auto) operator() (Left&& l, Right&& r) const
   {
      return std::forward<Left>(l) << std::forward<Right>(r);
   }
};

struct rshift {
   template <typename Left, typename Right>
   decltype(auto) operator() (Left&& l, Right&& r) const
   {
      return std::forward<Left>(l) >> std::forward<Right>(r);
   }
};

/// check whether the given elementary operation is defined for given argument types
template <typename Operation, typename T1, typename T2=void, typename is_defined=void>
struct can : std::false_type {};

template <typename T>
struct can<neg, T, void, accept_valid_type<decltype(-std::declval<const T&>())>> : std::true_type {};

template <typename T1, typename T2>
struct can<add, T1, T2, accept_valid_type<decltype(std::declval<const T1&>() + std::declval<const T2&>())>> : std::true_type {
   using type = decltype(std::declval<const T1&>() + std::declval<const T2&>());
};

template <typename T1, typename T2>
struct can<sub, T1, T2, accept_valid_type<decltype(std::declval<const T1&>() - std::declval<const T2&>())>> : std::true_type {
   using type = decltype(std::declval<const T1&>() - std::declval<const T2&>());
};

template <typename T1, typename T2>
struct can<mul, T1, T2, accept_valid_type<decltype(std::declval<const T1&>() * std::declval<const T2&>())>> : std::true_type {
   using type = decltype(std::declval<const T1&>() * std::declval<const T2&>());
};

template <typename T1, typename T2>
struct can<div, T1, T2, accept_valid_type<decltype(std::declval<const T1&>() / std::declval<const T2&>())>> : std::true_type {
   using type = decltype(std::declval<const T1&>() / std::declval<const T2&>());
};

template <typename T1, typename T2>
struct can<mod, T1, T2, accept_valid_type<decltype(std::declval<const T1&>() % std::declval<const T2&>())>> : std::true_type {
   using type = decltype(std::declval<const T1&>() % std::declval<const T2&>());
};

template <typename T>
struct can<bit_not, T, void, accept_valid_type<decltype(~std::declval<const T&>())>> : std::true_type {};

template <typename T1, typename T2>
struct can<bit_and, T1, T2, accept_valid_type<decltype(std::declval<const T1&>() & std::declval<const T2&>())>> : std::true_type {
   using type = decltype(std::declval<const T1&>() & std::declval<const T2&>());
};

template <typename T1, typename T2>
struct can<bit_or, T1, T2, accept_valid_type<decltype(std::declval<const T1&>() | std::declval<const T2&>())>> : std::true_type {
   using type = decltype(std::declval<const T1&>() | std::declval<const T2&>());
};

template <typename T1, typename T2>
struct can<bit_xor, T1, T2, accept_valid_type<decltype(std::declval<const T1&>() ^ std::declval<const T2&>())>> : std::true_type {
   using type = decltype(std::declval<const T1&>() ^ std::declval<const T2&>());
};

template <typename T1, typename T2>
struct can<lshift, T1, T2, accept_valid_type<decltype(std::declval<const T1&>() << std::declval<const T2&>())>> : std::true_type {
   using type = decltype(std::declval<const T1&>() << std::declval<const T2&>());
};

template <typename T1, typename T2>
struct can<rshift, T1, T2, accept_valid_type<decltype(std::declval<const T1&>() >> std::declval<const T2&>())>> : std::true_type {
   using type = decltype(std::declval<const T1&>() >> std::declval<const T2&>());
};


/// execute the assignment flavor of the given operation
/// that is, the result is to be assigned to the left operand
/// by default a dedicated method assign() is assumed to the operation class
template <typename Operation>
struct assign : public Operation {
   template <typename Left, typename Right>
   decltype(auto) operator() (Left&& l, Right&& r) const
   {
      return Operation::assign(std::forward<Left>(l), std::forward<Right>(r));
   }
};

/// temporarily cast the given opration to its assignment flavor
template <typename Operation>
const assign<Operation>& assignment_flavor_of(const Operation& op)
{
   return static_cast<const assign<Operation>&>(op);
}

template <>
struct assign<neg> : neg {
   template <typename T>
   decltype(auto) operator() (T&& x) const
   {
      return pm::negate(std::forward<T>(x));
   }
};

template <>
struct assign<add> : add {
   template <typename Left, typename Right>
   decltype(auto) operator() (Left&& l, Right&& r) const
   {
      return std::forward<Left>(l += std::forward<Right>(r));
   }
};

template <>
struct assign<sub> : sub {
   template <typename Left, typename Right>
   decltype(auto) operator() (Left&& l, Right&& r) const
   {
      return std::forward<Left>(l -= std::forward<Right>(r));
   }
};

template <>
struct assign<mul> : mul {
   template <typename Left, typename Right>
   decltype(auto) operator() (Left&& l, Right&& r) const
   {
      return std::forward<Left>(l *= std::forward<Right>(r));
   }
};

template <>
struct assign<div> : div {
   template <typename Left, typename Right>
   decltype(auto) operator() (Left&& l, Right&& r) const
   {
      return std::forward<Left>(l /= std::forward<Right>(r));
   }
};

template <>
struct assign<mod> : mod {
   template <typename Left, typename Right>
   decltype(auto) operator() (Left&& l, Right&& r) const
   {
      return std::forward<Left>(l %= std::forward<Right>(r));
   }
};

template <>
struct assign<bit_not> : bit_not {
   template <typename T>
   decltype(auto) operator() (T&& x) const
   {
      return complement(std::forward<T>(x));
   }
};

template <>
struct assign<bit_and> : bit_and {
   template <typename Left, typename Right>
   decltype(auto) operator() (Left&& l, Right&& r) const
   {
      return std::forward<Left>(l &= std::forward<Right>(r));
   }
};

template <>
struct assign<bit_or> : bit_or {
   template <typename Left, typename Right>
   decltype(auto) operator() (Left&& l, Right&& r) const
   {
      return std::forward<Left>(l |= std::forward<Right>(r));
   }
};

template <>
struct assign<bit_xor> : bit_xor {
   template <typename Left, typename Right>
   decltype(auto) operator() (Left&& l, Right&& r) const
   {
      return std::forward<Left>(l ^= std::forward<Right>(r));
   }
};

template <>
struct assign<lshift> : lshift {
   template <typename Left, typename Right>
   decltype(auto) operator() (Left&& l, Right&& r) const
   {
      return std::forward<Left>(l <<= std::forward<Right>(r));
   }
};

template <>
struct assign<rshift> : rshift {
   template <typename Left, typename Right>
   decltype(auto) operator() (Left&& l, Right&& r) const
   {
      return std::forward<Left>(l >>= std::forward<Right>(r));
   }
};


/// the flavor of the operation with an implicit default right operand as in sparse containers
/// by default, such a flavor is undefined, which implies that the operation would deliver a default value
template <typename Operation>
struct partial_left : std::false_type {};

/// the flavor of the operation with an implicit default left operand as in sparse containers
/// by default, such a flavor is undefined, which implies that the operation would deliver a default value
template <typename Operation>
struct partial_right : std::false_type {};

/// temporarily cast the given operation to its partial flavor
template <typename Operation>
const partial_left<Operation>& partial_left_flavor_of(const Operation& op)
{
   return static_cast<const partial_left<Operation>&>(op);
}

template <typename Operation>
const partial_right<Operation>& partial_right_flavor_of(const Operation& op)
{
   return static_cast<const partial_right<Operation>&>(op);
}

template <>
struct partial_left<add> : add {
   template <typename Left, typename Iterator2>
   Left&& operator() (Left&& l, const Iterator2&) const
   {
      return std::forward<Left>(l);
   }
};

template <>
struct partial_right<add> : add {
   template <typename Iterator1, typename Right>
   Right&& operator() (const Iterator1&, Right&& r) const
   {
      return std::forward<Right>(r);
   }
};

template <>
struct partial_left<sub> : sub {
   template <typename Left, typename Iterator2>
   Left&& operator() (Left&& l, const Iterator2&) const
   {
      return std::forward<Left>(l);
   }
};

template <>
struct partial_right<sub> : sub {
   template <typename Iterator1, typename Right>
   decltype(auto) operator() (const Iterator1&, Right&& r) const
   {
      return -std::forward<Right>(r);
   }
};

template <>
struct partial_left<bit_or> : bit_or {
   template <typename Left, typename Iterator2>
   Left&& operator() (Left&& l, const Iterator2&) const
   {
      return std::forward<Left>(l);
   }
};

template <>
struct partial_right<bit_or> : bit_or {
   template <typename Iterator1, typename Right>
   Right&& operator() (const Iterator1&, Right&& r) const
   {
      return std::forward<Right>(r);
   }
};

template <>
struct partial_left<bit_xor> : bit_xor {
   template <typename Left, typename Iterator2>
   Left&& operator() (Left&& l, const Iterator2&) const
   {
      return std::forward<Left>(l);
   }
};

template <>
struct partial_right<bit_xor> : bit_xor {
   template <typename Iterator1, typename Right>
   Right&& operator() (const Iterator1&, Right&& r) const
   {
      return std::forward<Right>(r);
   }
};

/// tell whether the given operation has well-defined partial flavors dealing with implicit default operands
template <typename Operation>
using is_partially_defined
   = bool_not<mlist_or<is_derived_from<partial_left<Operation>, std::false_type>,
                       is_derived_from<partial_right<Operation>, std::false_type>>>;

}

}

namespace pm {
namespace cleanOperations = polymake::cleanOperations;
}


// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End: