1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
/* Copyright (c) 1997-2024
Ewgenij Gawrilow, Michael Joswig, and the polymake team
Technische Universität Berlin, Germany
https://polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#pragma once
#include "polymake/vector"
namespace pm {
template <typename E>
std::enable_if_t<is_field<E>::value, E>
det(SparseMatrix<E> M)
{
const Int dim = M.rows();
if (dim == 0) return one_value<E>();
std::vector<Int> column_permutation(dim), column_permutation_inv(dim);
copy_range(entire(sequence(0, dim)), column_permutation.begin());
copy_range(entire(sequence(0, dim)), column_permutation_inv.begin());
E result = one_value<E>();
for (auto pivotrow = entire(rows(M)); !pivotrow.at_end(); ++pivotrow) {
if (pivotrow->empty())
return zero_value<E>();
auto pivot = pivotrow->begin();
const Int pr = pivotrow.index();
const Int pc = pivot.index(); // row and column index
result *= *pivot;
if (column_permutation[pc] != pr) {
Int i = column_permutation_inv[pr];
std::swap(column_permutation_inv[pr], column_permutation_inv[column_permutation[pc]]);
std::swap(column_permutation[i], column_permutation[pc]);
negate(result);
}
auto beneath = cross_direction(pivot);
++beneath;
while (!beneath.at_end()) {
// delete all elements below pivot
Int r = beneath.index();
const E factor = (*beneath) / (*pivot);
++beneath;
M[r] -= factor * M[pr];
}
}
return result;
}
template <typename E>
std::enable_if_t<is_field<E>::value, SparseVector<E>>
reduce(SparseMatrix<E> M, SparseVector<E> V)
{
const Int n_cols=M.cols();
Int col = 0;
for (auto pivotrow = entire(rows(M)); !pivotrow.at_end() && col < n_cols; ++pivotrow) {
if (pivotrow->empty()) continue;
auto pivot = pivotrow->begin();
const E pivotelem = *pivot;
(*pivotrow) /= pivotelem;
auto in_col = cross_direction(pivotrow->begin());
for (++in_col; !in_col.at_end(); ) {
const E factor = *in_col;
const Int r2 = in_col.index();
++in_col;
M.row(r2) -= (*pivotrow) * factor;
}
const E factor = V[pivot.index()];
V -= (*pivotrow) * factor;
++col;
}
return V;
}
template <typename E>
std::enable_if_t<is_field<E>::value, SparseMatrix<E>>
inv(SparseMatrix<E> M)
{
const Int dim = M.rows();
SparseMatrix<E> L = unit_matrix<E>(dim), R = unit_matrix<E>(dim);
for (auto c=entire(cols(M)); !c.at_end(); ++c) {
if (c->empty()) throw degenerate_matrix();
auto in_col = c->begin();
auto in_row = cross_direction(in_col);
Int pr = in_col.index(), pc = c.index();
const E pivotelem = *in_col;
M.row(pr) /= pivotelem; L.row(pr) /= pivotelem; ++in_col;
while (! in_col.at_end()) {
const E factor = *in_col;
Int r = in_col.index(); ++in_col;
M.row(r) -= factor * M.row(pr); L.row(r) -= factor * L.row(pr);
}
++in_row;
while (! in_row.at_end()) {
R.col(in_row.index()) -= (*in_row) * R.col(pc);
M.row(pr).erase(in_row++);
}
}
R.permute_cols(attach_operation(rows(M), BuildUnary<operations::front_index>()));
return R*L;
}
template <typename E, bool ensure_nondegenerate = true>
std::enable_if_t<is_field<E>::value, Vector<E>>
lin_solve(SparseMatrix<E> A, Vector<E> B)
{
const Int m = A.rows();
const Int n = A.cols();
Int non_empty_rows = m-n;
if (ensure_nondegenerate && non_empty_rows < 0)
throw underdetermined();
for (auto r = entire(rows(A)); !r.at_end(); ++r) {
const Int pr = r.index();
if (r->empty()) {
if (ensure_nondegenerate && --non_empty_rows < 0)
throw degenerate_matrix();
if (!is_zero(B[pr]))
throw infeasible();
continue;
}
auto in_row = r->begin();
auto in_col = cross_direction(in_row);
const E pivotelem = *in_row;
if (!is_one(pivotelem)) {
(*r) /= pivotelem;
B[pr] /= pivotelem;
}
for (++in_col; !in_col.at_end(); ) {
const E factor = *in_col;
const Int r2 = in_col.index();
++in_col;
A.row(r2) -= (*r) * factor;
B[r2] -= B[pr] * factor;
}
}
Vector<E> result(A.cols());
for (auto r = entire<reversed>(rows(A)); !r.at_end(); ++r) {
if (r->empty()) continue;
auto in_row = r->begin();
auto in_col = cross_direction(in_row);
const E& elem = result[in_row.index()] = B[r.index()];
while (!(--in_col).at_end())
B[in_col.index()] -= elem * (*in_col);
}
return result;
}
} // end namespace pm
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|