1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
/* Copyright (c) 1997-2024
Ewgenij Gawrilow, Michael Joswig, and the polymake team
Technische Universität Berlin, Germany
https://polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#pragma once
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wzero-as-null-pointer-constant"
#elif defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wzero-as-null-pointer-constant"
#endif
#include "boost/numeric/ublas/lu.hpp"
#if defined(__clang__)
#pragma clang diagnostic pop
#elif defined(__GNUC__)
#pragma GCC diagnostic pop
#endif
#include "polymake/SparseMatrix.h"
#include "polymake/Matrix.h"
#include "polymake/Vector.h"
#include "polymake/internal/linalg_exceptions.h"
#include "polymake/internal/sparse_linalg.h"
#include "polymake/internal/dense_linalg.h"
namespace pm {
/*
We solve the matrix equation AX=B for X by transforming the system
____d___ ___e____
| a1 | | b1 |
| a2 | ___e___ | b2 |
| | | | | |
n| | |x1 xe| = | |
| | d | | |
| | |_____| | |
| an | | bn |
|________| |______|
into
-a1- 0 0 | b11
0 -a1- 0 x1 b12
0 0 -a1- | b1e
-a2- 0 0 | |
0 -a2- 0 b2
0 0 -a2- | = |
-an- 0 0 | |
0 -an- 0 xe bn
0 0 -an- | |
*/
template <typename TMatrix1, typename TMatrix2, typename E>
std::enable_if_t<is_field<E>::value, std::pair<SparseMatrix<E>, Vector<E>>>
augmented_system(const GenericMatrix<TMatrix1, E>& A, const GenericMatrix<TMatrix2, E>& B)
{
const Int n(A.rows()), d(A.cols()), e(B.cols());
SparseMatrix<E> A_aug(n*e, d*e);
Vector<E> rhs(n*e);
auto rhs_it = rhs.begin();
for (Int i = 0; i < n; ++i) {
for (Int j = 0; j < e; ++j, ++rhs_it) {
A_aug.minor(scalar2set(i*e+j), sequence(d*j, d)) = A.minor(scalar2set(i),All);
*rhs_it = B[i][j];
}
}
return std::make_pair(A_aug, rhs);
}
template <typename TMatrix1, typename TMatrix2, typename E>
std::enable_if_t<is_field<E>::value, Matrix<E>>
solve_right(const GenericMatrix<TMatrix1, E>& A, const GenericMatrix<TMatrix2, E>& B)
{
if (POLYMAKE_DEBUG || is_wary<TMatrix1>() || is_wary<TMatrix2>()) {
if (B.rows() != A.rows())
throw std::runtime_error("solve_right - mismatch in number of rows");
}
const auto aug_rhs(augmented_system(A,B));
return T(Matrix<E>(B.cols(), A.cols(), lin_solve<E,false>(aug_rhs.first, aug_rhs.second).begin()));
}
/*
In the floating-point case, to solve the matrix equation AX = B for X, we use the LU factorization provided by boost.
By expressing A as a product A = LU of a Lower and an Upper triangular matrix, we can find the solution to
A X = L U X = B
via
L Y = B // solve for Y
U X = Y // solve for X
In fact, we use partial pivoting, so the LU decomposition reads PA = LU, so to solve AX = B we instead solve
P A X = L U X = P B
via
L Y = P B
U X = Y
Because boost::ublas's LU solver only works for square matrices (even if this is not documented),
we need additional steps to process rectangular matrices.
(1) If A has more rows than columns, instead of solving
A X = B
we solve
A^T A X == A^T B
by LU-decomposing the (small) matrix A^T A. Numerically, it would be better to use QR decomposition here, see
https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse#The_QR_method ,
but boost::ublas also doesn't provide this.
(2) The case where A has more columns than rows needs SVD decomposition; this is easy implement and will be done when the need arises.
*/
template <typename TMatrix1, typename TMatrix2>
Matrix<double>
solve_right(const GenericMatrix<TMatrix1, double>& A, const GenericMatrix<TMatrix2, double>& B)
{
if (POLYMAKE_DEBUG || is_wary<TMatrix1>() || is_wary<TMatrix2>()) {
if (B.rows() != A.rows())
throw std::runtime_error("solve_right: mismatch in number of rows");
}
if (A.cols() > A.rows()) {
throw std::runtime_error("solve_right: the case A.cols() > A.rows() is not implemented yet.");
}
const bool square( A.cols() == A.rows() );
const Int
Arows ( square ? A.rows() : A.cols() ),
Brows ( square ? B.rows() : A.cols() );
boost::numeric::ublas::matrix<double> ublasA (Arows, A.cols());
if (square)
copy_range(entire(concat_rows(Matrix<double>(A))), ublasA.data().begin());
else
copy_range(entire(concat_rows(Matrix<double>(T(A)*A))), ublasA.data().begin());
boost::numeric::ublas::matrix<double> ublasB (Brows, B.cols());
if (square)
copy_range(entire(concat_rows(Matrix<double>(B))), ublasB.data().begin());
else
copy_range(entire(concat_rows(Matrix<double>(T(A)*B))), ublasB.data().begin());
boost::numeric::ublas::permutation_matrix<> ublasP(Arows); // permutation matrix for LU factorization
boost::numeric::ublas::lu_factorize(ublasA, ublasP); // now ublasA is factored in-place into L and U
boost::numeric::ublas::lu_substitute(ublasA, ublasP, ublasB); // now ublasB contains the solution
Matrix<double> sol(Brows, B.cols());
for (Int i = 0; i < Brows; ++i)
for (Int j = 0; j < B.cols(); ++j) {
const double b = ublasB(i,j);
sol(i,j) = fabs(b) < 10.0 * std::numeric_limits<double>::epsilon()
? 0
: b;
}
return sol;
}
// solve the matrix equation X A = B for X by reducing it to A^T X^T = B^T
template <typename TMatrix1, typename TMatrix2, typename E>
std::enable_if_t<is_field<E>::value, Matrix<E>>
solve_left(const GenericMatrix<TMatrix1, E>& A, const GenericMatrix<TMatrix2, E>& B)
{
return T(solve_right(T(A), T(B)));
}
} // end namespace pm
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|