1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
|
/* Copyright (c) 1997-2024
Ewgenij Gawrilow, Michael Joswig, and the polymake team
Technische Universität Berlin, Germany
https://polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#pragma once
#include <type_traits>
#include "polymake/meta_function.h"
namespace polymake {
/***********************************************************************
*
* Elementary manipulations on meta-lists
*/
/// construct a meta-list with given elements unless it's already a meta-list itself
template <typename... T>
struct mlist_wrap {
using type = mlist<T...>;
};
template <>
struct mlist_wrap<void> {
using type = mlist<>;
};
template <typename... T>
struct mlist_wrap<mlist<T...>> {
using type = mlist<T...>;
};
/// extract the single element from a meta-list, preserve the list if it contains more than one element
template <typename T>
struct mlist_unwrap {
using type = T;
};
template <typename T>
struct mlist_unwrap<mlist<T>> {
using type = T;
};
template <>
struct mlist_unwrap<mlist<>> {
using type = void;
};
/// extract the leading element of a meta-list
/// for an empty list, return void
template <typename T>
struct mlist_head
: mlist_unwrap<T> {};
template <typename T, typename... Tail>
struct mlist_head< mlist<T, Tail...> > {
using type = T;
};
/// extract all but the leading element of a meta-list
/// as a new meta-list
template <typename T>
struct mlist_tail {
using type = mlist<>;
};
template <typename T, typename... Tail>
struct mlist_tail<mlist<T, Tail...>> {
using type = mlist<Tail...>;
};
/// An apparently endless meta-list consisting of arbitrarily many copies of the same value.
/// Can be used as a second argument of mlist_filter_binary, mlist_transform_binary,
/// and similar operations involving two meta-lists.
template <typename T>
struct mrepeat {};
template <typename T>
struct mlist_wrap< mrepeat<T> > {
using type = mrepeat<T>;
};
template <typename T>
struct mlist_unwrap< mrepeat<T> > {
using type = T;
};
template <typename T>
struct mlist_head< mrepeat<T> > {
using type = T;
};
template <typename T>
struct mlist_tail< mrepeat<T> > {
using type = mrepeat<T>;
};
/// compute the length of a meta-list
template <typename T>
struct mlist_length
: int_constant<!std::is_same<T, void>::value> {};
template <typename... Elements>
struct mlist_length<mlist<Elements...>>
: int_constant<int(sizeof...(Elements))> {};
template <typename T>
using mlist_is_empty
= bool_constant<mlist_length<T>::value==0>;
/// retrieve the element at the given position;
/// positions are counted starting with 0.
/// For an out-of-range position no result is defined.
template <typename T, int Pos>
struct mlist_at {};
template <typename T>
struct mlist_at<T, 0>
: mlist_head<T> {};
template <typename T, typename... Tail>
struct mlist_at<mlist<T, Tail...>, 0> {
using type = T;
};
template <typename T, typename... Tail, int Pos>
struct mlist_at<mlist<T, Tail...>, Pos>
: mlist_at<mlist<Tail...>, Pos-1> {};
/// counting position backwards
template <typename T, int Pos>
using mlist_at_rev = mlist_at<T, mlist_length<T>::value-Pos-1>;
template <typename T1, typename T2>
struct mlist_concat2;
template <typename T1, typename... T2>
struct mlist_concat2<T1, mlist<T2...>> {
using type = mlist<T1, T2...>;
};
template <typename... T1, typename... T2>
struct mlist_concat2<mlist<T1...>, mlist<T2...>> {
using type = mlist<T1..., T2...>;
};
/// Concatenate single elements and meta-lists into one meta-list.
/// `void' entries and empty meta-lists are elided.
/// The result is always a instance of mlist regardless of the number of contained elements.
template <typename... T>
struct mlist_concat
: mlist_wrap<T...> {};
template <typename T1, typename T2, typename... Tail>
struct mlist_concat<T1, T2, Tail...>
: mlist_concat2<typename mlist_wrap<T1>::type,
typename mlist_concat<T2, Tail...>::type> {};
/// Concatenate elements conditionally.
/// If Condition is `true', the function is equivalent to mlist_concat.
/// If Condition is `false',List is returned.
template <bool Condition, typename List, typename Suffix>
struct mlist_append_if
: mlist_concat<List, Suffix> {};
template <typename List, typename Suffix>
struct mlist_append_if<false, List, Suffix>
: mlist_wrap<List> {};
/// Concatenate elements conditionally.
/// If Condition is `true', the function is equivalent to mlist_concat.
/// If Condition is `false', List is returned.
template <bool Condition, typename Prefix, typename List>
struct mlist_prepend_if
: mlist_concat<Prefix, List> {};
template <typename Prefix, typename List>
struct mlist_prepend_if<false, Prefix, List>
: mlist_wrap<List> {};
/** Extract a contiguous slice of a meta-list.
* @tparam Start position of the first element to extract.
* @tparam End position behind the last element to extract.
* If omitted, the selected subset stretches up to the end of the source meta-list.
* Positions are counted starting with 0.
*/
template <typename List, int Start, int End = mlist_length<List>::value, int TotalSize = mlist_length<List>::value>
struct mlist_slice
: mlist_slice<typename mlist_wrap<List>::type, Start, End, TotalSize> {};
template <typename... Elements, int TotalSize>
struct mlist_slice<mlist<Elements...>, 0, TotalSize, TotalSize> {
static_assert(sizeof...(Elements) == TotalSize,
"mlist_slice: total list size mismatch");
using type = mlist<Elements...>;
};
template <typename... Elements, int TotalSize>
struct mlist_slice<mlist<Elements...>, 0, 0, TotalSize> {
static_assert(sizeof...(Elements) == TotalSize,
"mlist_slice: total list size mismatch");
using type = mlist<>;
};
template <>
struct mlist_slice<mlist<>, 0, 0, 0> {
using type = mlist<>;
};
template <typename... Elements, int End, int TotalSize>
struct mlist_slice<mlist<Elements...>, 0, End, TotalSize>
: mlist_concat<typename mlist_head<mlist<Elements...>>::type,
typename mlist_slice<typename mlist_tail<mlist<Elements...>>::type, 0, End-1, TotalSize-1>::type> {
static_assert(End > 0 && TotalSize > 0, "mlist_slice - invalid end index");
};
template <typename... Elements, int Start, int End, int TotalSize>
struct mlist_slice<mlist<Elements...>, Start, End, TotalSize>
: mlist_slice<typename mlist_tail<mlist<Elements...>>::type, Start-1, End-1, TotalSize-1> {
static_assert(Start > 0, "mlist_slice - invalid start index");
static_assert(End > 0 && TotalSize > 0, "mlist_slice - invalid end index");
};
/// Extract elements at even positions
template <typename List>
struct mlist_even_subset
: mlist_even_subset<typename mlist_wrap<List>::type> {};
template <typename T1, typename T2, typename... Tail>
struct mlist_even_subset<mlist<T1, T2, Tail...>>
: mlist_concat<T1, typename mlist_even_subset<mlist<Tail...>>::type> {};
template <>
struct mlist_even_subset<mlist<>> {
using type = mlist<>;
};
/// Extract elements at odd positions
template <typename List>
struct mlist_odd_subset
: mlist_odd_subset<typename mlist_wrap<List>::type> {};
template <typename T1, typename T2, typename... Tail>
struct mlist_odd_subset<mlist<T1, T2, Tail...>>
: mlist_concat<T2, typename mlist_odd_subset<mlist<Tail...>>::type> {};
template <>
struct mlist_odd_subset<mlist<>> {
using type = mlist<>;
};
/// Check whether one list coincides with the tail of another list
template <typename List1, typename List2, bool valid=(mlist_length<List2>::value >= mlist_length<List1>::value)>
struct mlist_is_tail_of : std::false_type {};
template <typename List1, typename List2>
struct mlist_is_tail_of<List1, List2, true>
: std::is_same<List1, typename mlist_slice<List2, (mlist_length<List2>::value - mlist_length<List1>::value)>::type> {};
/// Replace a slice in a meta-list with new elements.
/// The slice is specified like in mlist_slice.
/// If Start==End, no elements are removed; the new elements are inserted at the given position.
template <typename List, int Start, int End, typename... Insert>
using mlist_replace_between
= mlist_concat<typename mlist_slice<List, 0, Start>::type,
Insert...,
typename mlist_slice<List, End>::type>;
/// Replace a single element in a meta-list with new elements.
/// When Pos==-1, nothing is changed.
template <typename List, int Pos, typename... Insert>
struct mlist_replace_at
: mlist_replace_between<List, Pos, Pos+1, Insert...> {};
template <typename List, typename... Insert>
struct mlist_replace_at<List, -1, Insert...> {
using type = List;
};
/// Remove an element from a meta-list at the given position.
/// When Pos==-1, nothing is changed.
template <typename List, int Pos>
using mlist_remove_at
= mlist_replace_at<List, Pos>;
/// Construct a meta-list consisting of N copies of the same element
template <typename T, size_t N>
struct mreplicate {
using type = typename mlist_concat2< typename mreplicate<T, N/2>::type,
typename mreplicate<T, N-N/2>::type >::type;
};
template <typename T>
struct mreplicate<T, 0> {
using type = mlist<>;
};
template <typename T>
struct mreplicate<T, 1> {
using type = mlist<T>;
};
/***********************************************************************
*
* Search in and comparison of meta-lists
*/
/// Find the first element in a meta-list evaluating the given unary boolean meta-function to true
/// Avoids instantiation of the meta-function for the tail after the match.
/// @return value true or false
/// @return match list element or void
/// @return pos position of match in the list
/// @return match_with_tail list tail starting with match
template <typename List, template <typename> class Func,
bool Match = msafely_eval_boolean<typename mlist_head<List>::type, Func>::value>
struct mlist_find_first
: std::true_type {
static constexpr int pos = 0;
using match = typename mlist_head<List>::type;
using match_with_tail = List;
};
template <template <typename> class Func>
struct mlist_find_first<mlist<>, Func, false>
: std::false_type {
static constexpr int pos = -1;
using match = void;
using match_with_tail = mlist<>;
};
template <typename List, template <typename> class Func>
struct mlist_find_first<List, Func, false>
: mlist_find_first<typename mlist_tail<List>::type, Func> {
using base_t = mlist_find_first<typename mlist_tail<List>::type, Func>;
static constexpr int pos = base_t::pos + (base_t::pos >= 0);
};
/// Find the first element in a meta-list satisying the given unary or binary boolean meta-function
/// @return @see mlist_find_first
template <typename List, template <typename...> class Func, typename... Args>
struct mlist_find_if;
template <typename List, template <typename> class UnaryFunc>
struct mlist_find_if<List, UnaryFunc>
: mlist_find_first<typename mlist_wrap<List>::type, UnaryFunc> {};
template <typename List, template <typename, typename> class BinaryFunc, typename RightArg>
struct mlist_find_if<List, BinaryFunc, RightArg>
: mlist_find_first<typename mlist_wrap<List>::type, mbind2nd<BinaryFunc, RightArg>::template func> {};
/// Find the first occurrence of an element in a meta-list
template <typename List, typename Value>
using mlist_find = mlist_find_if<List, std::is_same, Value>;
/// Tell whether an element is contained in a meta-list
template <typename List, typename Value, template <typename, typename> class Compare = std::is_same>
using mlist_contains
= bool_constant<mlist_find_if<List, Compare, Value>::value>;
/// Replace an element in a meta-list
/// If it does not occur in the list, the result equals the input list.
template <typename List, typename Element, typename NewElement, template <typename, typename> class Compare = std::is_same>
using mlist_replace
= mlist_replace_at<List, mlist_find_if<List, Compare, Element>::pos, NewElement>;
/// Remove an element from a meta-list.
/// If it does not occur in the list, the result equals the input list.
template <typename List, typename Element, template <typename, typename> class Compare = std::is_same>
using mlist_remove
= mlist_remove_at<List, mlist_find_if<List, Compare, Element>::pos>;
/// Tell whether the first type occurs among the rest.
/// Convenience wrapper for SFINAE-overloaded functions.
template <typename T, typename... Expected>
using is_among
= mlist_contains<typename mlist_wrap<Expected...>::type, T>;
/** Find all pairs of elements of two meta-lists evaluating a binary meta-function to true.
* Every element may be used only once.
* The search is greedy, it does not try to maximize the mapping.
* Following results are defined:
* type list of elements from List1 satisfying Compare
* type2 list of corresponding elements from List2
* complement list of elements from List1 left without matching mate
* complement2 list of elements from List2 left without matching mate
*/
template <typename List1, typename List2, template <typename, typename> class Compare>
struct mlist_match_impl {
using head2 = typename mlist_head<List2>::type;
using find_head2 = mlist_find_if<List1, Compare, head2>;
static constexpr bool head2_matched = find_head2::pos >= 0;
using rest1 = typename mlist_remove_at<List1, find_head2::pos>::type;
using match_rest = mlist_match_impl<rest1, typename mlist_tail<List2>::type, Compare>;
using type = typename mlist_prepend_if<head2_matched, typename find_head2::match, typename match_rest::type>::type;
using type2 = typename mlist_prepend_if<head2_matched, head2, typename match_rest::type2>::type;
using complement = typename match_rest::complement;
using complement2 = typename mlist_prepend_if<!head2_matched, head2, typename match_rest::complement2>::type;
};
template <typename List1, template <typename, typename> class Compare>
struct mlist_match_impl<List1, mlist<>, Compare> {
using type = mlist<>;
using complement = List1;
using type2 = mlist<>;
using complement2 = mlist<>;
};
template <typename List2, template <typename, typename> class Compare>
struct mlist_match_impl<mlist<>, List2, Compare> {
using type = mlist<>;
using complement = mlist<>;
using type2 = mlist<>;
using complement2 = List2;
};
template <template <typename, typename> class Compare>
struct mlist_match_impl<mlist<>, mlist<>, Compare> {
using type = mlist<>;
using complement = mlist<>;
using type2 = mlist<>;
using complement2 = mlist<>;
};
template <typename List1, typename List2, template <typename, typename> class Compare = std::is_same>
using mlist_match = mlist_match_impl<typename mlist_wrap<List1>::type, typename mlist_wrap<List2>::type, Compare>;
/// Shortcut wrappers around mlist_match
/// Tell whether meta-lists are equal regardless the element order
template <typename List1, typename List2, template <typename, typename> class Compare = std::is_same>
using mlists_are_equivalent
= bool_constant<(mlist_is_empty<typename mlist_match<List1, List2, Compare>::complement>::value &&
mlist_is_empty<typename mlist_match<List1, List2, Compare>::complement2>::value)>;
/// Tell whether meta-lists have any elements in common
template <typename List1, typename List2, template <typename, typename> class Compare = std::is_same>
using mlists_are_intersecting
= bool_not<mlist_is_empty<typename mlist_match<List1, List2, Compare>::type>>;
/// Tell whether meta-lists do not have any elements in common
template <typename List1, typename List2, template <typename, typename> class Compare = std::is_same>
using mlists_are_disjoint
= mlist_is_empty<typename mlist_match<List1, List2, Compare>::type>;
/// Tell whether one meta-list is completely contained in another one regardless the element order
template <typename List1, typename List2, template <typename, typename> class Compare = std::is_same>
using mlist_is_included
= mlist_is_empty<typename mlist_match<List1, List2, Compare>::complement>;
/***********************************************************************
*
* Logical operations on meta-lists
*/
/// Compute the boolean conjunction (AND) of one or more constants.
template <typename... T>
using mlist_and
= bool_not<mlist_find_first<typename mlist_concat<T...>::type, bool_not>>;
/// Compute the boolean disjunction (OR) of one or more constants.
template <typename... T>
using mlist_or
= mlist_find_first<typename mlist_concat<T...>::type, mvalue_of>;
/// like mlist_and, but delivers false_type on empty input
template <typename... T>
struct mlist_and_nonempty
: mlist_and<T...> {};
template <>
struct mlist_and_nonempty<>
: std::false_type {};
/***********************************************************************
*
* Meta-list transformation
*/
/// Reverse the elements in a meta-list
template <typename T>
struct mlist_reverse {
using type = T;
};
template <typename T, typename... Tail>
struct mlist_reverse<mlist<T, Tail...>>
: mlist_concat<typename mlist_reverse<mlist<Tail...>>::type, T> {};
template <typename T, int Depth>
struct mlist_flatten_impl {
using type = T;
};
template <typename T, typename... Tail>
struct mlist_flatten_impl<mlist<T, Tail...>, 0> {
using type = mlist<T, Tail...>;
};
template <typename T, typename... Tail, int Depth>
struct mlist_flatten_impl<mlist<T, Tail...>, Depth>
: mlist_concat< typename mlist_flatten_impl<T, Depth-1>::type,
typename mlist_flatten_impl<Tail, Depth-1>::type... > {};
/*! Create a flattened list from a list of (possibly) nested lists.
* Empty elements are elided.
* TDepth::value sets the descending depth limit:
* 0 means no conversion at all; -1 means unlimited descending
*/
template <typename List, typename Depth=int_constant<-1>>
using mlist_flatten
= mlist_flatten_impl<typename mlist_wrap<List>::type, Depth::value>;
/// Apply a unary meta-function to the elements of a meta-list
template <typename T, template <typename> class UnaryFunc>
struct mlist_transform_unary
: mlist_transform_unary<typename mlist_wrap<T>::type, UnaryFunc> {};
template <typename... T, template <typename> class UnaryFunc>
struct mlist_transform_unary<mlist<T...>, UnaryFunc> {
using type = mlist<typename UnaryFunc<T>::type...>;
};
/// Apply a binary meta-function pairwise to the elements of two meta-lists
template <typename T1, typename T2, template <typename, typename> class BinaryFunc>
struct mlist_transform_binary
: mlist_transform_binary<typename mlist_wrap<T1>::type, typename mlist_wrap<T2>::type, BinaryFunc> {};
template <typename... T1, typename... T2, template <typename, typename> class BinaryFunc>
struct mlist_transform_binary<mlist<T1...>, mlist<T2...>, BinaryFunc> {
static_assert(sizeof...(T1) == sizeof...(T2), "mlist_transform_binary - list size mismatch");
using type = mlist<typename BinaryFunc<T1, T2>::type...>;
};
template <typename... T1, typename T2, template <typename, typename> class BinaryFunc>
struct mlist_transform_binary<mlist<T1...>, mrepeat<T2>, BinaryFunc> {
using type = mlist<typename BinaryFunc<T1, T2>::type...>;
};
template <typename T1, typename... T2, template <typename, typename> class BinaryFunc>
struct mlist_transform_binary<mrepeat<T1>, mlist<T2...>, BinaryFunc> {
using type = mlist<typename BinaryFunc<T1, T2>::type...>;
};
template <typename T1, typename T2, template <typename, typename> class BinaryFunc>
struct mlist_transform_binary<mrepeat<T1>, mrepeat<T2>, BinaryFunc>
: mlist_wrap<typename BinaryFunc<T1, T2>::type> {};
template <typename... T>
struct mlist_remove_void;
template <typename T, typename... Tail>
struct mlist_remove_void<T, Tail...>
: mlist_concat2<T, typename mlist_remove_void<Tail...>::type> {};
template <typename... Tail>
struct mlist_remove_void<void, Tail...>
: mlist_remove_void<Tail...> {};
template <>
struct mlist_remove_void<> {
using type = mlist<>;
};
/// Select elements of a meta-list satisfying the given unary boolean meta-function.
/// The order of elements is preserved.
template <typename T, template <typename> class UnaryFunc>
struct mlist_filter_unary
: mlist_filter_unary<typename mlist_wrap<T>::type, UnaryFunc> {};
template <typename... T, template <typename> class UnaryFunc>
struct mlist_filter_unary<mlist<T...>, UnaryFunc>
: mlist_remove_void<std::conditional_t<UnaryFunc<T>::value, T, void>...> {};
/** Split the elements of two meta-lists depending on results of a binary meta-function.
* Following results are defined:
* type list of elements from List1 evaluating BinaryFunc to true
* type2 list of corresponding elements from List2
* complement list of elements from List1 evaluating BinaryFunc to false
* complement2 list of corresponding elements from List2
*/
template <typename List1, typename List2, template <typename, typename> class BinaryFunc>
struct mlist_filter_binary
: mlist_filter_binary<typename mlist_wrap<List1>::type, typename mlist_wrap<List2>::type, BinaryFunc> {};
template <typename... T1, typename... T2, template <typename, typename> class BinaryFunc>
struct mlist_filter_binary<mlist<T1...>, mlist<T2...>, BinaryFunc> {
static_assert(sizeof...(T1) == sizeof...(T2), "mlist_filter_binary - meta-lists size mismatch");
using type = typename mlist_remove_void<std::conditional_t<BinaryFunc<T1, T2>::value, T1, void>...>::type;
using type2 = typename mlist_remove_void<std::conditional_t<BinaryFunc<T1, T2>::value, T2, void>...>::type;
using complement = typename mlist_remove_void<std::conditional_t<BinaryFunc<T1, T2>::value, void, T1>...>::type;
using complement2 = typename mlist_remove_void<std::conditional_t<BinaryFunc<T1, T2>::value, void, T2>...>::type;
};
template <typename... T1, typename T2, template <typename, typename> class BinaryFunc>
struct mlist_filter_binary<mlist<T1...>, mrepeat<T2>, BinaryFunc> {
using type = typename mlist_remove_void<std::conditional_t<BinaryFunc<T1, T2>::value, T1, void>...>::type;
using complement = typename mlist_remove_void<std::conditional_t<BinaryFunc<T1, T2>::value, void, T1>...>::type;
using type2 = std::conditional_t<mlist_is_empty<type>::value, mlist<>, typename mlist_wrap<T2>::type>;
using complement2 = std::conditional_t<mlist_is_empty<type>::value, typename mlist_wrap<T2>::type, mlist<>>;
};
template <typename T1, typename... T2, template <typename, typename> class BinaryFunc>
struct mlist_filter_binary<mrepeat<T1>, mlist<T2...>, BinaryFunc> {
using type2 = typename mlist_remove_void<std::conditional_t<BinaryFunc<T1, T2>::value, T2, void>...>::type;
using complement2 = typename mlist_remove_void<std::conditional_t<BinaryFunc<T1, T2>::value, void, T2>...>::type;
using type = std::conditional_t<mlist_is_empty<type2>::value, mlist<>, typename mlist_wrap<T1>::type>;
using complement = std::conditional_t<mlist_is_empty<type2>::value, typename mlist_wrap<T1>::type, mlist<>>;
};
template <typename T1, typename T2, template <typename, typename> class BinaryFunc>
struct mlist_filter_binary<mrepeat<T1>, mrepeat<T2>, BinaryFunc> {
static constexpr bool match = BinaryFunc<T1, T2>::value;
using type = std::conditional_t<match, typename mlist_wrap<T1>::type, mlist<>>;
using type2 = std::conditional_t<match, typename mlist_wrap<T2>::type, mlist<>>;
using complement = std::conditional_t<match, mlist<>, typename mlist_wrap<T1>::type>;
using complement2 = std::conditional_t<match, mlist<>, typename mlist_unwrap<T2>::type>;
};
/** Fold a meta-list applying a binary meta-function to its elements.
* Folding starts at the tail of the list.
* If it should start at the head, the input list must be reversed (@see mlist_reverse).
* The elements of the list are passed as the left argument of BinaryFunc,
* the accumulated intermediate result as the right argument.
* The initial value is passed as the right argument for the very first application of BinaryFunc.
* If it is void, the tail input element is taken as is.
*/
template <typename T, template <typename, typename> class BinaryFunc, typename InitVal=void>
struct mlist_fold
: mlist_fold<typename mlist_wrap<T>::type, BinaryFunc, InitVal> {};
template <typename T, typename... Tail, template <typename, typename> class BinaryFunc, typename InitVal>
struct mlist_fold<mlist<T, Tail...>, BinaryFunc, InitVal> {
using folded_tail = typename mlist_fold<mlist<Tail...>, BinaryFunc, InitVal>::type;
using type = typename BinaryFunc<T, folded_tail>::type;
};
template <typename T, template <typename, typename> class BinaryFunc>
struct mlist_fold<mlist<T>, BinaryFunc, void> {
using type = T;
};
template <template <typename, typename> class BinaryFunc, typename InitVal>
struct mlist_fold<mlist<>, BinaryFunc, InitVal> {
using type = InitVal;
};
/** Transform and fold a meta-list.
* Every element is transformed with a given unary meta-function Transform, the result is passed
* as a left argument to a binary meta-function Fold; the right argument is the accumulated result
* for the processed part of the list.
* Folding starts at the tail of the list.
* If it should start at the head, the input list must be reversed (@see mlist_reverse).
*/
template <typename T, template <typename> class Transform, template <typename, typename> class Fold>
struct mlist_fold_transform
: mlist_fold_transform<typename mlist_wrap<T>::type, Transform, Fold> {};
template <typename T, template <typename> class Transform, template <typename, typename> class Fold>
struct mlist_fold_transform<mlist<T>, Transform, Fold> {
using type = typename Transform<T>::type;
};
template <template <typename> class Transform, template <typename, typename> class Fold>
struct mlist_fold_transform<mlist<>, Transform, Fold> {
using type = void;
};
template <typename T, typename T2, typename... Tail, template <typename> class Transform, template <typename, typename> class Fold>
struct mlist_fold_transform<mlist<T, T2, Tail...>, Transform, Fold> {
using folded_tail = typename mlist_fold_transform<mlist<T2, Tail...>, Transform, Fold>::type;
using type = typename Fold<typename Transform<T>::type, folded_tail>::type;
};
template <template <typename, typename> class Compare>
struct mlist_remove_duplicates_impl {
template <typename Element, typename List>
using func
= mlist_prepend_if<!mlist_contains<List, Element, Compare>::value, Element, List>;
};
/// Remove duplicate elements from a meta-list
template <typename List, template <typename, typename> class Compare = std::is_same>
using mlist_remove_duplicates
= mlist_wrap<typename mlist_fold<List, mlist_remove_duplicates_impl<Compare>::template func>::type>;
/// Compute a union of two meta-lists.
/// Lists are supposed to be free from duplicates.
template <typename List1, typename List2>
using mlist_union
= mlist_fold<List1, mlist_remove_duplicates_impl<std::is_same>::template func, List2>;
/// Compute an intersection of two meta-lists.
/// Lists are supposed to be free from duplicates.
template <typename List1, typename List2>
struct mlist_intersection {
using type = typename mlist_match<List1, List2>::type;
};
/// Compute a difference of two meta-lists.
/// Lists are supposed to be free from duplicates.
template <typename List1, typename List2>
struct mlist_difference {
using type = typename mlist_match<List1, List2>::complement;
};
/// Compute a symmetric difference of two meta-lists.
/// Lists are supposed to be free from duplicates.
template <typename List1, typename List2>
using mlist_symdifference
= mlist_concat<typename mlist_match<List1, List2>::complement,
typename mlist_match<List1, List2>::complement2>;
/** Find all pairs of elements of two meta-lists evaluating a binary meta-function to true.
* Elements can be paired multiple times with different mates.
* Results are structured like in mlist_match.
* type and type2 may have different length, the order of their elements is unrelated to each other.
*/
template <typename List1, typename List2, template <typename, typename> class Compare = std::is_same>
struct mlist_match_all {
using head2 = typename mlist_head<List2>::type;
using match_head = mlist_filter_binary<List1, mrepeat<head2>, Compare>;
using match_tail = mlist_match_all<List1, typename mlist_tail<List2>::type, Compare>;
using type = typename mlist_union<typename match_head::type, typename match_tail::type>::type;
using complement = typename mlist_intersection<typename match_head::complement, typename match_tail::complement>::type;
using type2 = typename mlist_concat<typename match_head::type2, typename match_tail::type2>::type;
using complement2 = typename mlist_concat<typename match_head::complement2, typename match_tail::complement2>::type;
};
template <typename List1, template <typename, typename> class Compare>
struct mlist_match_all<List1, mlist<>, Compare> {
using type = mlist<>;
using complement = typename mlist_wrap<List1>::type;
using type2 = mlist<>;
using complement2 = mlist<>;
};
/***********************************************************************
*
* Tagged meta-lists
*/
template <template <typename> class Tag, typename T>
struct mtag_value {
using type = Tag<T>;
};
template <template <typename> class Tag>
struct mtag_value<Tag, void> {
using type = void;
};
template <typename T>
struct muntag {
using type = T;
};
template <template <typename> class Tag, typename T>
struct muntag<Tag<T>> {
using type = T;
};
template <typename T>
using muntag_t = typename muntag<T>::type;
template <template <typename> class Tag>
struct mmatching_tag {
template <typename T>
using func = is_instance_of<T, Tag>;
};
template <typename T>
struct mis_properly_tagged
: std::false_type {};
template <template <typename> class... Tag, typename... T>
struct mis_properly_tagged< mlist<Tag<T>...> >
: std::true_type {};
/** Extract an element with a desired tag from a tagged meta-list.
* Defines following results:
* value = matching value or Default if nothing found
* is_specified = true If the tag occurs in the list
* tagged_value = Tag<Value> or void if nothing found
*/
template <typename List, template <typename> class Tag, typename Default = void>
struct mtagged_list_extract {
static_assert(mis_properly_tagged<List>::value, "not a proper tagged meta-list");
using finder = mlist_find_if<List, mmatching_tag<Tag>::template func>;
static constexpr bool is_specified = finder::value;
using tagged_value = typename finder::match;
using tagged_list = typename mlist_wrap<tagged_value>::type;
using type = std::conditional_t<is_specified, muntag_t<tagged_value>, Default>;
static_assert(!mlist_find_if<typename mlist_tail<typename finder::match_with_tail>::type, mmatching_tag<Tag>::template func>::value,
"a tag occurs multiple times in a meta-list");
};
template <typename List, template <typename> class Tag, typename Value>
constexpr
Value tagged_list_extract_integral(const Value deflt)
{
using extractor = mtagged_list_extract<List, Tag, std::integral_constant<Value, Value(0)>>;
return extractor::is_specified ? extractor::type::value : deflt;
}
/** Modify a tagged meta-list: Replace the element with the given tag by the result of a binary meta-function
* applied to the element and a second value.
* If the tag does not occur in the source list, TOperation<void, TValue2>::type is appended to the result list.
*/
template <typename List, template <typename> class Tag, template <typename...> class Operation, typename... MoreOperands>
struct mtagged_list_modify
: mlist_concat< typename mlist_head<List>::type,
typename mtagged_list_modify<typename mlist_tail<List>::type, Tag, Operation, MoreOperands...>::type >
{
static_assert(mis_properly_tagged<List>::value, "not a proper tagged meta-list");
};
template <typename Value, typename... Tail, template <typename> class Tag,
template <typename...> class Operation, typename... MoreOperands>
struct mtagged_list_modify<mlist<Tag<Value>, Tail...>, Tag, Operation, MoreOperands...>
: mlist_concat< typename mtag_value<Tag, typename Operation<Value, MoreOperands...>::type>::type, mlist<Tail...> > {
static_assert(!mtagged_list_extract<mlist<Tail...>, Tag>::is_specified, "a tag occurs multiple times in a meta-list");
};
template <template <typename> class Tag, template <typename...> class Operation, typename... MoreOperands>
struct mtagged_list_modify<mlist<>, Tag, Operation, MoreOperands...>
: mlist_wrap<typename mtag_value<Tag, typename Operation<void, MoreOperands...>::type>::type> {};
/// Replace values of elements of a tagged meta-list.
/// If some tag does not occur in the source list, the new value is appended to the result.
template <typename List, typename... Replacements>
struct mtagged_list_replace;
template <typename List>
struct mtagged_list_replace<List> {
using type = List;
};
template <typename List, template <typename> class Tag, typename Value, typename... MoreReplacements>
struct mtagged_list_replace<List, Tag<Value>, MoreReplacements...>
: mtagged_list_modify<typename mtagged_list_replace<List, MoreReplacements...>::type, Tag, mproject2nd, Value> {};
/// Append elements to a tagged meta-list unless another elements with identical tags are already there.
template <typename List, typename... Defaults>
struct mtagged_list_add_default;
template <typename List>
struct mtagged_list_add_default<List> {
using type = List;
};
template <typename List, template <typename> class Tag, typename Value, typename... MoreDefaults>
struct mtagged_list_add_default<List, Tag<Value>, MoreDefaults...>
: mtagged_list_modify<typename mtagged_list_add_default<List, MoreDefaults...>::type, Tag, mprefer1st, Value> {};
/// Remove an element with a given tag from a tagged meta-list.
/// If the tag does not occur in the source list, the result list is identical to the source one.
template <typename List, template <typename> class Tag>
struct mtagged_list_remove {
using type = typename mlist_remove_at<List, mlist_find_if<List, mmatching_tag<Tag>::template func>::pos>::type;
static_assert(!mtagged_list_extract<type, Tag>::is_specified, "a tag occurs multiple times in a meta-list");
};
template <typename T1, typename T2>
struct has_same_tag
: std::false_type {};
template <typename T1, typename T2, template <typename> class Tag>
struct has_same_tag<Tag<T1>, Tag<T2>>
: std::true_type {};
/// Find all elements with desired tags in a tagged meta-list.
/// The desired tags can be specified with arbitrary contents, e.g. with void.
template <typename List, typename Tags>
using mtagged_list_intersect
= mlist_match_all<List, Tags, has_same_tag>;
/// Combine two tagged meta-lists.
/// Elements with equal tags are merged by concatenation and elimination of duplicates.
template <typename List1, typename List2>
struct mtagged_list_concat
: mlist_concat<List1, List2> {};
template <template <typename> class Tag, typename Value, typename... Tail, typename List2>
struct mtagged_list_concat<mlist<Tag<Value>, Tail...>, List2> {
using value2 = typename mtagged_list_extract<List2, Tag>::type;
using combined_value = typename mlist_unwrap<typename mlist_remove_duplicates<typename mlist_concat<Value, value2>::type>::type>::type;
using result_tail = typename mtagged_list_concat<mlist<Tail...>, typename mtagged_list_remove<List2, Tag>::type>::type;
using type = typename mlist_concat<Tag<combined_value>, result_tail>::type;
};
/***********************************************************************
*
* Ordered meta-lists
*/
/// Insert an element into a sorted meta-list at the appropriate position
/// Duplicates are allowed
template <typename List, typename AddElement, template <typename, typename> class Less = mis_less>
struct mlist_insert {
using finder = mlist_find_if<List, mnegate_binary<Less>::template func, AddElement>;
static constexpr int cnt_before = finder::value ? finder::pos : mlist_length<List>::value;
using type = typename mlist_concat<
typename mlist_slice<List, 0, cnt_before>::type,
AddElement,
typename finder::match_with_tail>::type;
};
/// Insert an element into a sorted meta-list at the appropriate position
/// unless it is already contained in the list
template <typename List, typename AddElement, template <typename, typename> class Less = mis_less>
struct mlist_insert_unique {
using finder = mlist_find_if<List, mnegate_binary<Less>::template func, AddElement>;
static constexpr int cnt_before = finder::value ? finder::pos : mlist_length<List>::value;
using type = typename mlist_concat<
typename mlist_slice<List, 0, cnt_before>::type,
typename mlist_prepend_if<!std::is_same<AddElement, typename finder::match>::value,
AddElement, typename finder::match_with_tail>::type>::type;
};
/// Sort a meta-list according to the given element comparator
template <typename List, template <typename, typename> class Less = mis_less>
struct mlist_sort
: mlist_sort<typename mlist_wrap<List>::type, Less> {};
template <typename T, typename... Tail, template <typename, typename> class Less>
struct mlist_sort<mlist<T, Tail...>, Less>
: mlist_insert<typename mlist_sort<mlist<Tail...>, Less>::type, T, Less> {};
template <template <typename, typename> class Less>
struct mlist_sort<mlist<>, Less> {
using type = mlist<>;
};
}
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|