1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
|
/* Copyright (c) 1997-2024
Ewgenij Gawrilow, Michael Joswig, and the polymake team
Technische Universität Berlin, Germany
https://polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#pragma once
#include "polymake/client.h"
#include "polymake/Matrix.h"
#include "polymake/ReverseSearch.h"
#include "polymake/group/action.h"
#include "polymake/Set.h"
namespace polymake {
namespace fan {
namespace reverse_search_chamber_decomposition {
template<typename Scalar>
Vector<Scalar> signature_to_vertex(const Matrix<Scalar>& hyp, const Bitset& signature, const Vector<Scalar>& apv){
Vector<Scalar> result = ones_vector<Scalar>(hyp.rows());
result.slice(~signature) *= -1;
result = T(hyp) * result;
return -apv*result | result;
}
template<typename Scalar, typename CacheType>
class Node {
private:
const Matrix<Scalar>& hyperplanes;
Bitset signature;
CacheType& cache;
Vector<Scalar> vertex;
Map<Vector<Scalar>, Bitset> upNeighbors, downNeighbors;
Bitset neighbor_signature_from_facet(const Vector<Scalar>& facet, bool& facet_is_hyperplane){
// This should be done more efficiently:
// We could normalize the hyperplanes and check for equality. Although
// we would have to modify signatures in this case.
Bitset result(signature);
Int i = 0;
Matrix<Scalar> tmp(cache.get_support_eq());
tmp /= facet;
Int tmprk = rank(tmp);
for(const auto& f : rows(hyperplanes)){
if(rank(tmp/f) == tmprk){
facet_is_hyperplane = true;
result ^= i;
}
i++;
}
return result;
}
void populate_neighbors(){
const Matrix<Scalar> F = cache.get_facets(signature);
const Vector<Scalar>& apv(cache.all_positive_eq());
for(const auto& f : rows(F)){
if(!cache.facet_belongs_to_support(f)){
bool facet_is_hyperplane = false;
Bitset neighborS = neighbor_signature_from_facet(f, facet_is_hyperplane);
if(facet_is_hyperplane){
Vector<Scalar> neighborV = signature_to_vertex(hyperplanes, neighborS, apv);
Scalar apvdiff = neighborV[0]-vertex[0];
if(apvdiff<0){
upNeighbors[neighborV] = neighborS;
} else if (apvdiff==0){
if(lex_compare(neighborV, vertex) == 1){
upNeighbors[neighborV] = neighborS;
} else {
downNeighbors[neighborV] = neighborS;
}
} else {
downNeighbors[neighborV] = neighborS;
}
}
}
}
}
public:
Node& operator=(const Node& in){
signature = in.signature;
vertex = in.vertex;
upNeighbors = in.upNeighbors;
downNeighbors = in.downNeighbors;
return *this;
}
Node(const Matrix<Scalar>& hyp, const Bitset& sig, CacheType& c):
hyperplanes(hyp), signature(sig), cache(c) {
vertex = signature_to_vertex(hyperplanes, signature, cache.all_positive_eq());
populate_neighbors();
}
bool operator==(const Node& other) const {
return signature == other.signature;
}
bool has_jth_child(Int j) const {
return j < downNeighbors.size();
}
bool has_predecessor(const Node& pred) const {
if(!has_upneighbor()){ return false; }
const auto& front = upNeighbors.front();
return front.first == pred.vertex;
}
Node get_jth_child(Int j) const {
Int i = 0;
for(const auto& neighbor : downNeighbors){
if(i == j){
return Node(hyperplanes, neighbor.second, cache);
}
i++;
}
return *this;
}
Node get_predecessor(Int& j) const {
const auto& front = upNeighbors.front();
Node result(hyperplanes, front.second, cache);
j = 0;
for(const auto& neighbor : result.downNeighbors){
if(neighbor.second == signature){
break;
}
j++;
}
return result;
}
Int get_Delta() const {
return downNeighbors.size();
}
bool has_upneighbor() const {
return upNeighbors.size() > 0;
}
Matrix<Scalar> get_rays() const {
return cache.get_rays(signature);
}
const Bitset& get_signature() const {
return signature;
}
};
// Get a generic point in the [[SUPPORT]] of a HyperplaneArrangement, i.e. a
// point that does not lie on any of the [[HYPERPLANES]].
template<typename Scalar>
Vector<Scalar> get_generic_point(const Matrix<Scalar>& hyp, BigObject support){
// TODO: Check whether some of the hyperplanes contain support and ignore these.
// Make sure that generic point is not contained in one of the hyperplanes.
Matrix<Scalar> rays = support.give("RAYS | INPUT_RAYS");
Matrix<Scalar> lineality = support.give("LINEALITY_SPACE | INPUT_LINEALITY");
Matrix<Scalar> gens(rays / lineality);
Vector<Scalar> result(gens.cols());
for(const auto& row : rows(gens)){
result += rand() * row;
}
return result;
}
template<typename Scalar>
Bitset point_to_signature(const Vector<Scalar>& point, const Matrix<Scalar>& hyp, BigObject support){
Bitset signature;
const Int n = hyp.rows();
for( Int i = 0; i < n; ++i){
if(hyp[i] * point > 0){
signature.insert(i);
}
}
return signature;
}
} // namespace reverse_search_chamber_decomposition
} // namespace fan
} // namespace polymake
|