1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
|
/* Copyright (c) 1997-2024
Ewgenij Gawrilow, Michael Joswig, and the polymake team
Technische Universität Berlin, Germany
https://polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#pragma once
#include "polymake/Set.h"
#include "polymake/PowerSet.h"
#include "polymake/FacetList.h"
namespace polymake { namespace matroid {
template<typename Container>
bool check_basis_exchange_axiom_impl(const Container& bases, bool verbose = false)
{
Set<Set<Int>> basis_set;
for (auto bit = entire(bases); !bit.at_end(); ++bit)
basis_set += *bit; // have to do it like this so that the comparison tree gets built properly
for (auto bit1 = entire(bases); !bit1.at_end(); ++bit1) {
for (auto bit2 = entire(bases); !bit2.at_end(); ++bit2) {
const Set<Int> AmB = *bit1 - *bit2;
const Set<Int> BmA = *bit2 - *bit1;
for (auto ambit = entire(AmB); !ambit.at_end(); ++ambit) {
bool verified = false;
for (auto bmait = entire(BmA); !verified && !bmait.at_end(); ++bmait) {
verified = basis_set.contains(*bit1 - *ambit + *bmait);
}
if (!verified) {
if (verbose) {
cout << "The given set of bases\n" << basis_set
<< "\nis not a matroid.\nProof: A=" << *bit1 << ", B=" << *bit2 << "; A-B contains " << *ambit << ", B-A=" << BmA
<< "; but A - " << *ambit << " + b is not a basis for any b in " << BmA << endl;
}
return false;
}
}
}
}
return true;
}
template <typename SetType>
bool check_hyperplane_axiom_impl(const Array<SetType>& H, bool verbose = false)
{
/*
The hyperplane axioms are:
(H1) E is not in H;
(H2) No set in H properly contains any other;
(H3) If h1 ne h2 in H , and x in E setminus (h1 cup h2) ,
then there exists h in H such that (h1 intersect h2) union x subset h.
*/
SetType E; // ground set
for (auto hit = entire(H); !hit.at_end(); ++hit)
E += *hit;
for (auto pit=entire(all_subsets_of_k(H, 2)); !pit.at_end(); ++pit) {
const Set<SetType> p(*pit);
const SetType& h1(p.front()), h2(p.back());
if( E==h1 || E==h2){
if (verbose) cout << "The given sets H =\n" << H << endl
<< "do not form the sets of hyperplanes of a matroid, because the groud set is in H." << endl;
return false;
}
if (incl(h1,h2) != 2) {
if (verbose) cout << "The given sets H =\n" << H << endl
<< "do not form the sets of hyperplanes of a matroid, because the sets "
<< h1 << " and " << h2 << " are not independent." << endl;
return false;
}
const SetType C(E-h1-h2);
for (auto sit = entire(C); !sit.at_end(); ++sit) {
const SetType U(h1 * h2 + *sit);
bool found_container(false);
for (auto hit = entire(H); !hit.at_end() && !found_container; ++hit) {
found_container = incl(U, *hit) <= 0;
}
if (!found_container) {
if (verbose) cout << "The given sets H =\n" << H << endl
<< "do not form the sets of hyperplanes of a matroid, because "
<< "h1=" << h1 << ", h2=" << h2 << ", x=" << *sit
<< " do not satisfy that there exists h in H such that (h1 intersect h2) union x subset h." << endl;
return false;
}
}
}
return true;
}
template <typename SetType>
bool check_flat_axiom_impl(const Array<SetType>& F, bool verbose = false)
{
// Extract the hyperplanes from the flats, then check the hyperplane axioms.
SetType E; // ground set
for (auto fit = entire(F); !fit.at_end(); ++fit)
E += *fit;
FacetList HL(E.size());
for (auto fit = entire(F); !fit.at_end(); ++fit)
if (fit->size() != E.size())
HL.insertMax(*fit);
Array<Set<Int>> H(HL.size(), entire(HL));
return check_hyperplane_axiom_impl(H, verbose);
}
template<typename Container>
bool check_circuits_axiom_impl(const Container& circuits, bool verbose = false){
/*
The circuits axioms are:
(C1) The empty set is not in C;
(C2) If c, c' are in C, and c is a subset of c' then c=c'
(C3) If c ne c' both in C and e is an element in there intersection
then there exists c* in C such that c* si a subset of c cup c' - e
*/
int r = 0;
for (auto c1it = entire(circuits); !c1it.at_end(); ++c1it, ++r){
// Check for the empty set
if ((*c1it).empty()) {
if (verbose) cout << "The given set of circuits\n" << circuits << "do not form a matroid.\nCircuit " << r << " is empty. " << endl;
return false;
}
}
for (auto c1it = entire(circuits); !c1it.at_end(); ++c1it){
for (auto c2it = entire(circuits); !c2it.at_end(); ++c2it){
if(c1it==c2it){break;}
Set<Int> inter = (*c1it) * (*c2it);
// Check for equal or contained supports
if (inter.size() == (*c1it).size() || inter.size() == (*c2it).size()) {
if (verbose) cout << "The given set of circuits\n" << circuits << "do not form a matroid.\nCircuits " << *c1it << " and " << *c2it << " are contained in one another." << endl;
return false;
}
// Check valuated circuit exchange axiom:
for (auto e = entire(inter); !e.at_end(); e++) {
bool found_one = false;
// Go through circuits that don't contain e
for (auto c3it = entire(circuits); !c3it.at_end(); ++c3it){
if(!(*c3it).contains(*e) && incl(*c3it,(*c1it)+(*c2it))==-1){
found_one = true;
break;
}
}
if (!found_one) {
if (verbose) {
cout << "The given set of circuits\n" << circuits << "do not form a matroid.\nThe Circuit exchange axiom fails for the circuits " << *c1it << " and " << *c2it << " wich have " << *e << " in their intersection." << endl;
}
return false;
}
}
}
}
return true;
}
}}
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|