1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
|
# Copyright (c) 1997-2024
# Ewgenij Gawrilow, Michael Joswig, and the polymake team
# Technische Universität Berlin, Germany
# https://polymake.org
#
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 2, or (at your option) any
# later version: http://www.gnu.org/licenses/gpl.txt.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#-------------------------------------------------------------------------------
# @topic category objects/QuotientSpace/properties/Basic properties
# Properties defining a quotient space.
# A topological quotient space obtained from a [[Polytope]] by identifying faces.
# This object will sit inside the polytope.
# @category Symmetry
declare object QuotientSpace {
# @category Basic properties
# The group encoding the quotient space.
# The faces of the space are the orbits of the faces of the polytope under the group.
property IDENTIFICATION_ACTION : group::PermutationAction;
# @category Combinatorics
# The dimension of the quotient space, defined to be the dimension of the polytope.
property DIM : Int;
# @category Combinatorics
# A simplicial complex obtained by two stellar subdivisions of the defining polytope.
property SIMPLICIAL_COMPLEX : topaz::SimplicialComplex : multiple;
# @category Combinatorics
# The faces of the quotient space, ordered by dimension. One representative of each orbit class is kept.
property FACES : Array<Set<Set<Int>>>;
# @category Combinatorics
# The orbits of faces of the quotient space, ordered by dimension.
property FACE_ORBITS : Array<Set<Set<Set<Int>>>>;
# @category Combinatorics
# Some listing of equivalence classes of faces of the quotient space, ordered by dimension.
# Analogous to FACE_ORBITS, but not necessarily coming from a group
property FACE_CLASSES : Array<Set<Set<Set<Int>>>>;
# @category Combinatorics
# The symmetry group induced by the symmetry group of the polytope on the [[FACES]] of the quotient space
property SYMMETRY_GROUP : group::Group;
# @category Combinatorics
# All simplices in the quotient space
property SIMPLICES : Array<Array<Set<Int>>>;
# @category Combinatorics
# The (//d//-1)-dimensional simplices in the interior.
property REPRESENTATIVE_INTERIOR_RIDGE_SIMPLICES : Array<Bitset>;
# @category Combinatorics
# The interior //d//-dimensional simplices of a cone of combinatorial dimension //d//
property REPRESENTATIVE_MAX_INTERIOR_SIMPLICES : Array<Bitset>;
# @category Combinatorics
# The boundary (//d//-1)-dimensional simplices of a cone of combinatorial dimension //d//
property REPRESENTATIVE_MAX_BOUNDARY_SIMPLICES : Array<Bitset>;
# @category Combinatorics
# The simplices made from points of the quotient space (also internal simplices, not just faces)
property N_SIMPLICES : Array<Int>;
# @category Combinatorics
# An array that tells how many faces of each dimension there are
property F_VECTOR : Array<Int>;
# @category Combinatorics
# a SparseMatrix whose rows are the sum of all cocircuit equations corresponding to a fixed symmetry class of interior ridge
property COCIRCUIT_EQUATIONS : SparseMatrix;
# @category Combinatorics
# A lower bound for the number of simplices needed to triangulate the quotient space
property SIMPLEXITY_LOWER_BOUND: Int;
}
object Polytope {
# @category Geometry
# A topological quotient space obtained from a polytope by identifying faces.
property QUOTIENT_SPACE : QuotientSpace : multiple;
rule QUOTIENT_SPACE(any).DIM = COMBINATORIAL_DIM;
}
# @category Quotient spaces
# Return a 2-dimensional __cylinder__ obtained by identifying two opposite sides of a square.
# @return Polytope
# @example To obtain a topological space homeomorphic to a cylinder, type
# > $p = cylinder_2();
# > print $p->QUOTIENT_SPACE->IDENTIFICATION_ACTION->GENERATORS;
# | 2 3 0 1
# > print $p->QUOTIENT_SPACE->IDENTIFICATION_ACTION->ORBITS;
# | {0 2}
# | {1 3}
# Thus, vertices 0,2 and vertices 1,3 are identified.
# > print $p->QUOTIENT_SPACE->FACES;
# | {{0} {1}}
# | {{0 1} {0 2} {1 3}}
# | {{0 1 2 3}}
# Thus, after identification two vertices, three edges, and one two-dimensional face remain:
# > print $p->QUOTIENT_SPACE->F_VECTOR;
# | 2 3 1
user_function cylinder_2 {
my $p = cube(2);
my $g = new group::PermutationAction(GENERATORS=>[[2,3,0,1]]);
my $qs = new QuotientSpace(IDENTIFICATION_ACTION=>$g);
$p->QUOTIENT_SPACE = $qs;
$p->description="2-dimensional cylinder";
return $p;
}
# @category Quotient spaces
# Return the 3-dimensional Euclidean manifold obtained by identifying opposite faces
# of a 3-dimensional cube by a quarter turn. After identification, two classes
# of vertices remain.
# @return Polytope
# @example To obtain a topological space homeomorphic to the quarter turn manifold, type
# > $p = quarter_turn_manifold();
# > print $p->QUOTIENT_SPACE->IDENTIFICATION_ACTION->GENERATORS;
# | 5 7 4 6 2 0 3 1
# | 6 2 1 5 7 3 0 4
# To see which vertices are identified, type
# > print $p->QUOTIENT_SPACE->IDENTIFICATION_ACTION->ORBITS;
# | {0 3 5 6}
# | {1 2 4 7}
# Thus, two classes of vertices remain, with 0 and 1 being representatives.
# To see the faces remaining after identification, type
# > print $p->QUOTIENT_SPACE->FACES;
# | {{0} {1}}
# | {{0 1} {0 2} {0 4} {0 7}}
# | {{0 1 2 3} {0 1 4 5} {0 1 6 7}}
# | {{0 1 2 3 4 5 6 7}}
# > print $p->QUOTIENT_SPACE->F_VECTOR;
# | 2 4 3 1
user_function quarter_turn_manifold {
my $p = cube(3);
my $g = new group::PermutationAction(GENERATORS=>[[5,7,4,6,2,0,3,1],[6,2,1,5,7,3,0,4]]);
my $q = new QuotientSpace(IDENTIFICATION_ACTION=>$g);
$q->name = "Quarter turn manifold";
$q->description = "Quarter turn manifold obtained by identifying facets of a 3-cube";
$p->QUOTIENT_SPACE = $q;
return $p;
}
# @category Quotient spaces
# For a centrally symmetric polytope, divide
# out the central symmetry, i.e, identify diametrically opposite faces.
# @param Polytope P, centrally symmetric
# @example
# > $P = cube(3);
# > cs_quotient($P);
# > print $P->CS_PERMUTATION;
# | 7 6 5 4 3 2 1 0
# The zeroth vertex gets identified with the seventh, the first with the sixth etc.
user_function cs_quotient {
my $this = shift;
die "cs_quotient: input not centrally symmetric" unless $this->CENTRALLY_SYMMETRIC;
my $gen = $this->CS_PERMUTATION;
my $arr = new Array<Array<Int>>([ $gen ]);
my $g = new group::PermutationAction(GENERATORS=>$arr);
my $qs = new QuotientSpace(IDENTIFICATION_ACTION=>$g);
$qs->description = "Quotient space mod Z_2 of " . $this->description;
$this->QUOTIENT_SPACE = $qs;
return $this;
}
# @category Quotient spaces
# Return the 4-dimensional hyperbolic manifold obtained by Michael Davis
# @return Polytope
# [Proceedings of the AMS, Vol. 93, No. 2 (Feb., 1985), pp. 325-328]
# by identifying opposite faces of the 120-cell
# @example The Davis manifold is the centrally symmetric quotient of the regular 210-cell:
# > $d = davis_manifold();
# > print $d->F_VECTOR;
# | 600 1200 720 120
# > print $d->QUOTIENT_SPACE->F_VECTOR;
# | 300 600 360 60 1
user_function davis_manifold {
my $c120=regular_120_cell();
return cs_quotient($c120);
}
object Polytope {
rule QUOTIENT_SPACE.FACES, QUOTIENT_SPACE.FACE_ORBITS, QUOTIENT_SPACE.SYMMETRY_GROUP.PERMUTATION_ACTION(new).GENERATORS : \
COMBINATORIAL_DIM, N_VERTICES, \
HASSE_DIAGRAM.ADJACENCY, HASSE_DIAGRAM.DECORATION, HASSE_DIAGRAM.INVERSE_RANK_MAP, HASSE_DIAGRAM.TOP_NODE, HASSE_DIAGRAM.BOTTOM_NODE, \
GROUP.VERTICES_ACTION.GENERATORS, QUOTIENT_SPACE.IDENTIFICATION_ACTION.GENERATORS {
quotient_space_faces($this);
}
rule QUOTIENT_SPACE.FACES, QUOTIENT_SPACE.FACE_ORBITS : \
COMBINATORIAL_DIM, N_VERTICES, \
HASSE_DIAGRAM.ADJACENCY, HASSE_DIAGRAM.DECORATION, HASSE_DIAGRAM.INVERSE_RANK_MAP, HASSE_DIAGRAM.TOP_NODE, HASSE_DIAGRAM.BOTTOM_NODE, \
QUOTIENT_SPACE.IDENTIFICATION_ACTION.GENERATORS {
quotient_space_faces($this);
}
rule QUOTIENT_SPACE.F_VECTOR : QUOTIENT_SPACE.FACES {
my $cds = $this->QUOTIENT_SPACE->FACES;
my @n_vector = map { $cds->[$_]->size } (0..$cds->size-1);
$this->QUOTIENT_SPACE->F_VECTOR = \@n_vector;
}
rule QUOTIENT_SPACE.SIMPLICIAL_COMPLEX(new).FACETS, QUOTIENT_SPACE.SIMPLICIAL_COMPLEX(new).VERTEX_LABELS, \
QUOTIENT_SPACE.SIMPLICIAL_COMPLEX(new).PURE, QUOTIENT_SPACE.SIMPLICIAL_COMPLEX(new).DIM : \
VERTICES_IN_FACETS, HASSE_DIAGRAM.ADJACENCY, HASSE_DIAGRAM.DECORATION, HASSE_DIAGRAM.INVERSE_RANK_MAP, HASSE_DIAGRAM.TOP_NODE, HASSE_DIAGRAM.BOTTOM_NODE, \
QUOTIENT_SPACE.IDENTIFICATION_ACTION {
$this->QUOTIENT_SPACE->SIMPLICIAL_COMPLEX = topaz::bs2quotient_by_group($this);
}
rule QUOTIENT_SPACE.SIMPLICIAL_COMPLEX(new).FACETS, QUOTIENT_SPACE.SIMPLICIAL_COMPLEX(new).VERTEX_LABELS, \
QUOTIENT_SPACE.SIMPLICIAL_COMPLEX(new).PURE, QUOTIENT_SPACE.SIMPLICIAL_COMPLEX(new).DIM : \
VERTICES_IN_FACETS, HASSE_DIAGRAM.ADJACENCY, HASSE_DIAGRAM.DECORATION, HASSE_DIAGRAM.INVERSE_RANK_MAP, HASSE_DIAGRAM.TOP_NODE, HASSE_DIAGRAM.BOTTOM_NODE, \
QUOTIENT_SPACE.FACE_CLASSES {
$this->QUOTIENT_SPACE->SIMPLICIAL_COMPLEX = topaz::bs2quotient_by_equivalence($this);
}
rule QUOTIENT_SPACE.SIMPLICES : COMBINATORIAL_DIM, VERTICES, QUOTIENT_SPACE.SYMMETRY_GROUP.PERMUTATION_ACTION.GENERATORS {
$this->QUOTIENT_SPACE->SIMPLICES = representative_simplices($this->COMBINATORIAL_DIM, $this->VERTICES, $this->QUOTIENT_SPACE->SYMMETRY_GROUP->PERMUTATION_ACTION->GENERATORS);
}
# @category Combinatorics
# The equivalence classes of maximal-dimensional simplices in the interior and boundary under a symmetry group
rule QUOTIENT_SPACE.REPRESENTATIVE_INTERIOR_RIDGE_SIMPLICES, QUOTIENT_SPACE.REPRESENTATIVE_MAX_BOUNDARY_SIMPLICES \
: COMBINATORIAL_DIM, RAYS_IN_FACETS, RAYS, QUOTIENT_SPACE.SYMMETRY_GROUP.PERMUTATION_ACTION.GENERATORS {
my $pair = representative_interior_and_boundary_ridges($this);
$this->QUOTIENT_SPACE->REPRESENTATIVE_INTERIOR_RIDGE_SIMPLICES = $pair->first;
$this->QUOTIENT_SPACE->REPRESENTATIVE_MAX_BOUNDARY_SIMPLICES = $pair->second;
}
# @category Combinatorics
# The equivalence classes of maximal-dimensional simplices in the boundary under a symmetry group
rule QUOTIENT_SPACE.REPRESENTATIVE_MAX_INTERIOR_SIMPLICES : COMBINATORIAL_DIM, RAYS, QUOTIENT_SPACE.SYMMETRY_GROUP.PERMUTATION_ACTION.GENERATORS {
$this->QUOTIENT_SPACE->REPRESENTATIVE_MAX_INTERIOR_SIMPLICES = representative_max_interior_simplices($this->COMBINATORIAL_DIM, $this->RAYS, $this->QUOTIENT_SPACE->SYMMETRY_GROUP->PERMUTATION_ACTION->GENERATORS);
}
rule QUOTIENT_SPACE.N_SIMPLICES : QUOTIENT_SPACE.SIMPLICES {
my $cds = $this->QUOTIENT_SPACE->SIMPLICES;
my @n_vector = map { $cds->[$_]->size } (0..$cds->size-1);
$this->QUOTIENT_SPACE->N_SIMPLICES = \@n_vector;
}
rule QUOTIENT_SPACE.COCIRCUIT_EQUATIONS : QUOTIENT_SPACE.REPRESENTATIVE_INTERIOR_RIDGE_SIMPLICES, QUOTIENT_SPACE.REPRESENTATIVE_MAX_INTERIOR_SIMPLICES, COMBINATORIAL_DIM, RAYS, RAYS_IN_FACETS, QUOTIENT_SPACE.SYMMETRY_GROUP.PERMUTATION_ACTION.GENERATORS {
my $d = $this->COMBINATORIAL_DIM;
my $interior_ridge_reps = $this->QUOTIENT_SPACE->REPRESENTATIVE_INTERIOR_RIDGE_SIMPLICES;
my $facet_reps = $this->QUOTIENT_SPACE->REPRESENTATIVE_MAX_INTERIOR_SIMPLICES;
$this->QUOTIENT_SPACE->COCIRCUIT_EQUATIONS = symmetrized_cocircuit_equations_0($d, $this->RAYS, $this->RAYS_IN_FACETS, $this->QUOTIENT_SPACE->SYMMETRY_GROUP->PERMUTATION_ACTION->GENERATORS, $interior_ridge_reps, $facet_reps);
}
rule QUOTIENT_SPACE.SIMPLEXITY_LOWER_BOUND : COMBINATORIAL_DIM, RAYS, RAYS_IN_FACETS, QUOTIENT_SPACE.REPRESENTATIVE_MAX_BOUNDARY_SIMPLICES, QUOTIENT_SPACE.REPRESENTATIVE_MAX_INTERIOR_SIMPLICES, VOLUME, QUOTIENT_SPACE.COCIRCUIT_EQUATIONS, QUOTIENT_SPACE.SYMMETRY_GROUP.PERMUTATION_ACTION.GENERATORS, QUOTIENT_SPACE.IDENTIFICATION_ACTION.GENERATORS {
my $d = $this->COMBINATORIAL_DIM;
my $exterior_ridge_reps = $this->QUOTIENT_SPACE->REPRESENTATIVE_MAX_BOUNDARY_SIMPLICES;
my $facet_reps = $this->QUOTIENT_SPACE->REPRESENTATIVE_MAX_INTERIOR_SIMPLICES;
$this->QUOTIENT_SPACE->SIMPLEXITY_LOWER_BOUND = quotient_space_simplexity_lower_bound($d, $this->VERTICES, $this->VERTICES_IN_FACETS, $exterior_ridge_reps, $facet_reps, $this->VOLUME, $this->QUOTIENT_SPACE->COCIRCUIT_EQUATIONS, $this->QUOTIENT_SPACE->SYMMETRY_GROUP->PERMUTATION_ACTION->GENERATORS, $this->QUOTIENT_SPACE->IDENTIFICATION_ACTION->GENERATORS);
}
}
# @category Quotient spaces
# outputs a linear program whose optimal value is a lower bound for the number of simplices
# necessary to triangulate the polytope in such a way that its symmetries respect the triangulation
# of the boundary.
user_function write_quotient_space_simplexity_ilp<Scalar>(Polytope<Scalar> $) {
my ($q, $outfilename) = @_;
return quotient_space_simplexity_ilp($q->COMBINATORIAL_DIM, $q->VERTICES, $q->VERTICES_IN_FACETS, $q->QUOTIENT_SPACE->REPRESENTATIVE_MAX_BOUNDARY_SIMPLICES, $q->QUOTIENT_SPACE->REPRESENTATIVE_MAX_INTERIOR_SIMPLICES, $q->VOLUME, $q->QUOTIENT_SPACE->COCIRCUIT_EQUATIONS, $q->QUOTIENT_SPACE->SYMMETRY_GROUP->PERMUTATION_ACTION->GENERATORS, $q->QUOTIENT_SPACE->IDENTIFICATION_ACTION->GENERATORS, filename => $outfilename);
}
# Local Variables:
# mode: perl
# cperl-indent-level: 3
# indent-tabs-mode:nil
# End:
|