1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
|
/* Copyright (c) 1997-2024
Ewgenij Gawrilow, Michael Joswig, and the polymake team
Technische Universität Berlin, Germany
https://polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#ifndef __POLYMAKE_GRASS_PLUCKER_H
#define __POLYMAKE_GRASS_PLUCKER_H
#include <vector>
namespace pm {
// this is to be able to make hash_set<std::vector<Sush>>
template<typename SizeT>
void
hash_combine(SizeT& h, long int k)
{
const std::size_t c1 = 0xcc9e2d51;
const std::size_t c2 = 0x1b873593;
if (k<0)
k = -k;
k *= c1;
k = (k << 15) | (k >> (32-15));
k *= c2;
h ^= k;
h = (h << 13) | (h >> (32-13));
h = h*5+0xe6546b64;
}
} // end namespace pm
#include <map>
#include <unordered_set>
#include "polymake/Array.h"
#include "polymake/Set.h"
#include "polymake/Map.h"
#include "polymake/PowerSet.h"
#include "polymake/hash_map"
#include "polymake/hash_set"
namespace polymake { namespace topaz {
namespace gp {
// this is based on
// https://www.fluentcpp.com/2016/12/08/strong-types-for-strong-interfaces/
template <typename T, typename tag>
class NamedType {
public:
using base_type = T;
using value_type = T;
explicit NamedType() {}
explicit NamedType(T const& value) : value_(value) {}
template<typename T_ = T>
explicit NamedType(T&& value,
typename std::enable_if<!std::is_reference<T_>{},
std::nullptr_t>::type = nullptr)
: value_(std::move(value)) {}
template<typename T_ = T>
std::enable_if_t<!std::is_integral<T_>::value, Int>
size() const {
return value_.size();
}
T& get() { return value_; }
T const& get() const { return value_; }
operator T const&() const { return value_; }
operator T&() { return value_; }
friend bool operator==(const NamedType<T, tag>& a,
const NamedType<T, tag>& b) {
return a.get() == b.get();
}
template<typename T_ = T>
std::enable_if_t<std::is_integral<T_>::value, NamedType<T,tag>>
operator-(const NamedType<T,tag>& x) {
return NamedType<T,tag>(-x.value_);
}
template<typename Output>
friend
Output& operator<< (GenericOutput<Output>& outs, const NamedType<T, tag>& x) {
return outs.top() << x.value_;
}
protected:
T value_;
};
struct TreeIndexTag {};
using TreeIndex = NamedType<Int, TreeIndexTag>;
struct CubeIndexTag {};
using CubeIndex = NamedType<Int, CubeIndexTag>;
/*
From c++17 on, the following defines can be
inline constexpr Int max_n_vertices(sizeof(Int)*4-1);
inline constexpr Int first_cube_index(Int(1) << (2*max_n_vertices));
*/
#define max_n_vertices ((Int) sizeof(Int)*4-1)
#define first_cube_index (CubeIndex(Int(1) << (2*max_n_vertices)))
#define MAGIC_VERTEX_MULTIPLE 256
struct PhiOrCubeIndexTag {};
class PhiOrCubeIndex : public NamedType<Int, PhiOrCubeIndexTag> {
public:
explicit PhiOrCubeIndex() {}
explicit PhiOrCubeIndex(Int const& value) : NamedType<Int, PhiOrCubeIndexTag>(value) {}
bool is_cube_index() const { return CubeIndex(value_) >= first_cube_index; }
CubeIndex cube_index() const {
if (!is_cube_index())
throw std::runtime_error("PhiOrCubeIndex: not a cube index");
return CubeIndex(value_ - first_cube_index);
}
};
} } }
namespace pm {
template<typename T, typename tag>
struct hash_func<polymake::topaz::gp::NamedType<T, tag>, pm::is_opaque> {
Int operator()(polymake::topaz::gp::NamedType<T, tag> const& x) const {
return hash_func<T>()(x);
}
};
template<>
struct hash_func<polymake::topaz::gp::PhiOrCubeIndex, pm::is_opaque> {
Int operator()(polymake::topaz::gp::PhiOrCubeIndex const& x) const {
return hash_func<Int>()(x.get());
}
};
} // end namespace pm
namespace std {
template<typename T, typename tag>
struct hash<polymake::topaz::gp::NamedType<T, tag>> {
size_t operator()(const polymake::topaz::gp::NamedType<T, tag>& nt) const {
return std::hash<T>()(nt.get());
}
};
template<typename T, typename tag>
struct hash<std::vector<polymake::topaz::gp::NamedType<T, tag>>> {
size_t operator()(const std::vector<polymake::topaz::gp::NamedType<T, tag>>& v) const {
const size_t prime = 257;
auto it = v.begin();
size_t h { hash<T>()(it->get()) };
++it;
while (it != v.end()) {
h = h * prime + hash<T>()(it->get());
++it;
}
return h;
}
};
} // end namespace std
namespace polymake { namespace topaz {
namespace gp {
struct SignImplTag {};
using SignImpl = NamedType<Int, SignImplTag>;
// PluckerHashIndex = Phi
struct PhiTag {};
using Phi = NamedType<Int, PhiTag>;
// SignedUndeterminedSolidHash = Sush
struct SushTag {};
using Sush = NamedType<Int, SushTag>;
struct FacetAsSetTag {};
using FacetAsSet = NamedType<Set<Int>, FacetAsSetTag>;
using IndexOfFacet = hash_map<FacetAsSet, Int>;
struct LabelData {
Array<std::string> vertex_labels;
std::size_t max_label_width;
};
using ExplicitGroup = Array<Array<Int>>;
using PhiOrbit = hash_set<Phi>;
struct SphereData {
Array<FacetAsSet> facets;
IndexOfFacet iof;
Array<Int> orientation;
LabelData label_data;
ExplicitGroup vertex_symmetry_group;
PhiOrbit seen_phis;
Int n;
Int d;
};
struct PluckerStats {
Int total_processed = 0;
Int n_duplicates = 0;
Int n_two_adjacent_undetermineds = 0;
Int n_determined_sign_negative = 0;
};
/*
The following class stores a pair of sets I,J and a sign
in an Int.
If max_n_vertices needs to be bigger that 31 at some point,
replace this with a proper bitset.
*/
// assert((max_n_vertices) <= 31);
class PluckerHasher {
Phi store;
public:
PluckerHasher(const Phi _store)
: store(_store)
{}
PluckerHasher(const Set<Int>& I,
const Set<Int>& J,
const SignImpl sign)
: store(0)
{
assert(I.size());
assert(J.size() == I.size() + 2);
assert(I.back() < max_n_vertices);
assert(J.back() < max_n_vertices);
for (const Int i: I)
store |= (Int(1) << (i + max_n_vertices));
for (const Int j: J)
store |= (Int(1) << j);
if (sign < 0)
store.get() = -store;
}
const Phi phi() const { return store; }
void invert() { store.get() = -store; }
private:
const Set<Int> constituent_set(const Int offset) const {
if (store > first_cube_index)
return Set<Int>();
const Int abs_store(abs(store));
Set<Int> I;
for (Int i=0; i<max_n_vertices - 1; ++i)
if (abs_store & (Int(1) << (i + offset)))
I += i;
return I;
}
public:
const Set<Int> I() const {
return constituent_set(max_n_vertices);
}
const Set<Int> J() const {
return constituent_set(0);
}
};
struct SolidSetTag {};
using SolidSet = NamedType<Set<Int>, SolidSetTag>;
struct CanonicalSolidTag {};
using CanonicalSolidArray = NamedType<Array<Int>, CanonicalSolidTag>;
class UndeterminedSolidHasher {
Sush store_;
public:
UndeterminedSolidHasher(const Sush store)
: store_(store)
{}
UndeterminedSolidHasher(const CanonicalSolidArray& solid,
const Int sign)
: store_(0)
{
for (const Int i: solid.get()) {
assert (i < max_n_vertices);
store_ |= (Int(1) << i);
}
if (sign < 0)
store_.get() = -store_;
}
const Sush hash() const { return store_; };
const SolidSet solid() const {
const Int abs_store(abs(store_.get()));
SolidSet solid;
for (Int i=0; i<max_n_vertices - 1; ++i)
if (abs_store & (Int(1) << i))
solid.get() += i;
return solid;
}
};
SignImpl
sgn(const Int j,
const Set<Int>& I,
const Set<Int>& J);
enum class SignDeterminedStatus {
determined,
undetermined
};
class MaybeUndeterminedSign {
SignImpl _sign;
SignDeterminedStatus _determined;
public:
MaybeUndeterminedSign()
: _sign(0)
, _determined(SignDeterminedStatus::undetermined)
{}
MaybeUndeterminedSign(const SignImpl& sign_,
const SignDeterminedStatus& determined_)
: _sign(sign_)
, _determined(determined_)
{}
SignImpl sign_or_signature() const {
return _sign;
}
bool determined() const {
return _determined == SignDeterminedStatus::determined;
}
SignDeterminedStatus determined_status() const {
return _determined;
}
void invert() {
_sign.get() = -_sign;
}
MaybeUndeterminedSign operator*=(const SignImpl& s) {
_sign *= s;
return *this;
}
};
MaybeUndeterminedSign operator*(const MaybeUndeterminedSign& s, const MaybeUndeterminedSign& t);
MaybeUndeterminedSign operator*(const MaybeUndeterminedSign& s, const SignImpl& t);
MaybeUndeterminedSign operator-(const MaybeUndeterminedSign& s);
bool operator==(const MaybeUndeterminedSign& s, const MaybeUndeterminedSign& t);
bool operator!=(const MaybeUndeterminedSign& s, const MaybeUndeterminedSign& t);
class PluckerRel;
struct PluckerData {
std::vector<PluckerRel> plucker_rel_list;
hash_set<Phi> seen_pluckers;
PluckerStats stats;
};
struct IntParams {
Int verbosity = 0;
Int max_length_ct = 0;
Int initial_undetermined_ct = 0;
Int max_undetermined_ct = 0;
Int abort_after = 0;
Int use_cubes = 0;
Int use_fixed_plucker_source = 0;
Int cube_log_interval = 0;
Int tree_log_interval = 0;
Int debug = 0;
Int output_ct = 0;
Int iter_ct = 0;
};
enum class SolutionStatus {
not_found,
found_single_positive_pr,
found_tree,
found_cube,
unsuccessful
};
using TreesWithSush = std::map<Sush, std::vector<TreeIndex>>;
using SushVector = std::vector<Sush>;
class GP_Tree;
class GP_Cube;
struct SearchData {
// a string to identify the currently running instance
std::string id_string;
// all trees
std::vector<GP_Tree> tree_list;
// which trees have exactly one undetermined solid, namely sush
hash_map<Sush, TreeIndex> leaf_of_sush;
// which trees with >= 2 undetermined solids have one of them being sush
hash_map<Sush, std::vector<TreeIndex>> nonleaf_trees_of_sush;
// which trees have we already seen
hash_set<SushVector> seen_tree_sushes;
TreeIndex next_tree_index = TreeIndex(0);
/*
// the cubes we found
std::vector<GP_Cube> cube_list;
CubeIndex next_cube_index = first_cube_index;
*/
};
// --------------------------------------------
// Memoizers: base class, first instances
// --------------------------------------------
template<typename CRTP, typename Key, typename Data>
class Memoizer {
protected:
struct Compare {
bool operator()(const typename Key::base_type& lhs,
const typename Key::base_type& rhs) const {
return operations::cmp()(lhs, rhs) < 0;
}
};
hash_map<typename Key::base_type, Data> storage_;
const Data& make_entry(const Key& key) {
return storage_.insert({ key.get(),
static_cast<CRTP*>(this)->data_from(key) }).first->second;
}
public:
const Data&
operator[](const Key& key) {
const auto it = storage_.find(key);
return (it != storage_.end())
? it->second
: make_entry(key);
}
const Data&
operator[](const Key& key) const {
const auto it = storage_.find(key);
assert (it != storage_.end());
return it->second;
}
Int size() const { return storage_.size(); }
const auto& storage() const { return storage_; }
};
// --------------------------------------------
// CanonicalSolidRep
// --------------------------------------------
class PermutationSignMemoizer
: public Memoizer<PermutationSignMemoizer, CanonicalSolidArray, SignImpl> {
public:
const SignImpl
data_from(const CanonicalSolidArray& p) {
Int c=0;
for (Int k=0; k<p.size()-1; ++k)
for (Int l=k+1; l<p.size(); ++l)
if (p.get()[k] > p.get()[l])
++c;
return c % 2
? SignImpl(-1)
: SignImpl(1);
}
};
class CanonicalSolidRep {
CanonicalSolidArray csa_;
MaybeUndeterminedSign sign_;
public:
CanonicalSolidRep(const CanonicalSolidArray& csa)
: csa_(csa)
, sign_(SignImpl(1), SignDeterminedStatus::undetermined)
{}
CanonicalSolidRep(const SolidSet& s,
const SphereData& sd,
PermutationSignMemoizer& psm)
: csa_(Array<Int>(s.size(), entire(s.get())))
{
const Int d(s.size() - 1); // the solid has d+1 elements
assert(d >= 2);
FacetAsSet F(s.get());
CanonicalSolidArray original_array = csa_;
for (auto cit = entire(csa_.get()); !cit.at_end(); ++cit) {
// By leaving out the element *cit, do we get a facet?
// If not, continue to search
F.get() -= *cit;
if (!sd.iof.exists(F)) {
F.get() += *cit;
continue;
}
// We only get here if csa_ contains a facet
// point to the last-but-one element
auto eit = csa_.get().end();
--eit;
// swap the vertex that is not in the facet to the end
std::swap(*cit, *eit);
// order the facet
std::sort(csa_.get().begin(), eit);
// adjust for orientation by maybe interchanging the last
// elements of the facet
if (-1 == sd.orientation[sd.iof[F]])
std::swap(csa_.get()[d-2], csa_.get()[d-1]);
sign_ = MaybeUndeterminedSign(SignImpl(psm[csa_] * psm[original_array]),
SignDeterminedStatus::determined);
return;
}
std::sort(csa_.get().begin(), csa_.get().end());
sign_ = MaybeUndeterminedSign(psm[original_array],
SignDeterminedStatus::undetermined);
}
MaybeUndeterminedSign sign() const { return sign_; }
const CanonicalSolidArray& representative() const {
return csa_;
}
template<typename Output>
friend
Output& operator<< (GenericOutput<Output>& outs, const CanonicalSolidRep& r) {
outs.top() << "[" << r.representative() << "]";
if (!r.sign().determined())
outs.top() << "?";
return outs.top();
}
};
// --------------------------------------
// GP_Term
// --------------------------------------
class CanonicalSolidMemoizer
: public Memoizer<CanonicalSolidMemoizer, SolidSet, CanonicalSolidRep> {
SphereData& sd_;
PermutationSignMemoizer& psm_;
public:
const CanonicalSolidRep
data_from(const SolidSet& f) {
return CanonicalSolidRep(f, sd_, psm_);
}
CanonicalSolidMemoizer(SphereData& sd,
PermutationSignMemoizer& psm)
: sd_(sd)
, psm_(psm)
{}
};
#if POLYMAKE_DEBUG
extern CanonicalSolidMemoizer* global_csm; // for debug printing
#endif
class GP_Term {
CanonicalSolidRep r1_, r2_;
MaybeUndeterminedSign sign_;
public:
GP_Term(const SolidSet& s1,
const SolidSet& s2,
const SignImpl& sigma,
CanonicalSolidMemoizer& csm)
: r1_(csm[s1])
, r2_(csm[s2])
, sign_(r1_.sign() * r2_.sign() * sigma)
{}
const CanonicalSolidRep& r1() const { return r1_; }
const CanonicalSolidRep& r2() const { return r2_; }
const MaybeUndeterminedSign& sign() const { return sign_; }
const bool two_undetermined_signs() const {
return
!r1_.sign().determined() &&
!r2_.sign().determined();
}
void invert_sign() { sign_.invert(); };
template<typename Output>
friend
Output& operator<< (GenericOutput<Output>& outs, const GP_Term& t) {
Output& os = outs.top();
os << "[" << t.r1() << "]";
if (!t.r1().sign().determined())
os << "?";
os << "[" << t.r2() << "]";
if (!t.r2().sign().determined())
os << "?";
return os;
}
};
struct SushSetTag {};
using SushSet = NamedType<Set<Int>, SushSetTag>;
class PluckerRel {
bool has_two_adjacent_undetermineds_;
Phi phi_;
std::vector<GP_Term> terms_;
SushVector sush_vector_;
void make_terms(const Set<Int>& I,
const Set<Int>& J,
const SignImpl sigma,
CanonicalSolidMemoizer& csm)
{
assert (I.size() + 2 == J.size());
SolidSet Iplus, Jminus;
for (const Int j: J) {
if (I.contains(j))
continue;
Iplus.get() = I; Iplus.get() += j;
Jminus.get() = J; Jminus.get() -= j;
terms_.emplace_back(Iplus, Jminus, SignImpl(sigma * sgn(j, I, J)), csm);
if (terms_.back().two_undetermined_signs()) {
has_two_adjacent_undetermineds_ = true;
return;
}
}
}
void
make_sushes() {
for (const auto& term: terms_)
if (!(term.sign().determined()))
sush_vector_.push_back(UndeterminedSolidHasher((term.r1().sign().determined()
? term.r2().representative()
: term.r1().representative()),
term.sign().sign_or_signature()).hash());
std::sort(sush_vector_.begin(), sush_vector_.end());
}
public:
PluckerRel(const Set<Int>& I,
const Set<Int>& J,
const SignImpl sigma,
CanonicalSolidMemoizer& csm)
: has_two_adjacent_undetermineds_(false)
, phi_(PluckerHasher(I, J, sigma).phi())
{
make_terms(I, J, sigma, csm);
make_sushes();
}
PluckerRel(const Phi& phi,
CanonicalSolidMemoizer& csm)
: has_two_adjacent_undetermineds_(false)
, phi_(phi)
{
PluckerHasher hasher_(phi);
make_terms(hasher_.I(), hasher_.J(), SignImpl(sign(phi.get())), csm);
make_sushes();
}
void invert_sign() {
for (auto& term: terms_)
term.invert_sign();
phi_.get() = -phi_;
for (auto& sush: sush_vector_)
sush.get() = -sush;
std::sort(sush_vector_.begin(), sush_vector_.end());
}
const SushVector&
sush_vector() const { return sush_vector_; }
const Int
n_undetermineds() const { return sush_vector_.size(); }
const bool
has_two_adjacent_undetermineds() const { return has_two_adjacent_undetermineds_; }
bool are_determined_signs_positive() const {
for (const auto& term: terms_)
if (term.sign().determined() &&
-1 == term.sign().sign_or_signature())
return false;
return true;
}
bool has_sush(const Sush sush) const {
return
std::find(sush_vector_.begin(), sush_vector_.end(), sush)
!= sush_vector_.end();
}
const Phi&
phi() const { return phi_; }
const std::vector<GP_Term>&
terms() const { return terms_; }
template<typename Output>
friend
Output& operator<< (GenericOutput<Output>& outs, const PluckerRel& r) {
Output& os = outs.top();
for (const auto& term: r.terms()) {
os << ( term.sign().sign_or_signature() == 1
? "+"
: "-" )
<< term.r1() << term.r2();
}
return os;
}
#if POLYMAKE_DEBUG
void dump() const __attribute__((used)) { cerr << *this << std::flush; }
#endif
};
// --------------------------------------
// more memoizers
// --------------------------------------
class PluckerRelationMemoizer
: public Memoizer<PluckerRelationMemoizer, Phi, PluckerRel> {
CanonicalSolidMemoizer& csm_;
public:
const PluckerRel
data_from(const Phi& phi) {
return PluckerRel(phi, csm_);
}
PluckerRelationMemoizer(CanonicalSolidMemoizer& csm)
: csm_(csm) {}
void insert(const PluckerRel& pr) {
// inserting a whole tree is costly, so we first check if it's needed
if (storage_.find(pr.phi().get()) == storage_.end())
storage_.insert({ pr.phi().get(), pr});
}
};
std::vector<Set<Int>>
facets_containing_H_rests(const Set<Int>& H,
const Array<FacetAsSet>& facets);
class SelfTamingMemoizer {
const SphereData& sphere_data_;
Int n_access;
Int n_duplicate;
std::map<Set<Int>, std::vector<Set<Int>>> self_tamed_Js_complementing;
bool
is_self_taming(const Set<Int>& Jpart,
const Set<Int>& candidate,
const std::vector<Set<Int>>& fcHr)
{
Set<Int> J(Jpart);
J += candidate;
if (fcHr.size() &&
fcHr.front().size() > J.size() - 1)
return false;
// TODO: Here is an opportunity for optimization.
// Maybe there is a way of not having to go through all max-minus-one subsets of J
for (auto rest_it = entire(all_subsets_less_1(J)); !rest_it.at_end(); ++rest_it) {
const Set<Int> rest(*rest_it); // instantiate this so that the repeated incl()s below are faster
bool contains_a_facet(false);
for (const auto& facet: fcHr) {
if (incl(facet, rest) <= 0) {
contains_a_facet = true;
break;
}
}
if (!contains_a_facet)
return false;
}
return true;
}
std::vector<Set<Int>>&
make_key_entry(const Set<Int>& Jpart) {
std::vector<Set<Int>> self_taming_Js;
const std::vector<Set<Int>> fcHr = facets_containing_H_rests(Jpart, sphere_data_.facets);
for (auto sit = entire(all_subsets_of_k(sequence(0,sphere_data_.n) - Jpart,
sphere_data_.d + 2 - Jpart.size())); !sit.at_end(); ++sit) {
const Set<Int> candidate(*sit);
if (is_self_taming(Jpart, candidate, fcHr))
self_taming_Js.emplace_back(candidate);
}
return self_tamed_Js_complementing.insert({Jpart, self_taming_Js}).first->second;
}
public:
SelfTamingMemoizer(const SphereData& sphere_data)
: sphere_data_(sphere_data)
, n_access(0)
, n_duplicate(0)
{}
std::vector<Set<Int>>&
possible_self_tamed_Js(const Set<Int>& Jpart) {
++n_access;
auto it = self_tamed_Js_complementing.find(Jpart);
if (it != self_tamed_Js_complementing.end()) {
++n_duplicate;
return it->second;
}
return make_key_entry(Jpart);
}
const Int n_accessed() const { return n_access; }
const Int n_duplicates() const { return n_duplicate; }
const Int size() const { return self_tamed_Js_complementing.size(); }
};
Int
image_of(const Int bitset,
const Array<Int>& g,
const Int offset);
constexpr Int low_bitmask ( (Int(1) << max_n_vertices) - 1);
constexpr Int high_bitmask( low_bitmask << max_n_vertices);
Phi
image_of_abs(const Phi phi,
const Array<Int>& g);
const std::vector<PluckerRel>
pluckers_containing_sush(SphereData& sphere_data,
CanonicalSolidMemoizer& csm,
PluckerRelationMemoizer& prm,
const Sush& sush,
SelfTamingMemoizer& stm,
IntParams& int_params);
class PluckersContainingSushMemoizer
: public Memoizer<PluckersContainingSushMemoizer, Sush, Set<Phi>> {
SphereData& sd_;
CanonicalSolidMemoizer& csm_;
PluckerRelationMemoizer& prm_;
SelfTamingMemoizer& stm_;
IntParams& ip_;
void
add_image(const Sush sush,
const Phi phi,
const Array<Int>& g)
{
const Sush sush_g(image_of(abs(sush.get()), g, 0));
PluckerRel pr_g(image_of_abs(Phi(abs(phi.get())), g), csm_);
if (pr_g.are_determined_signs_positive()) {
storage_[sush_g.get()] += pr_g.phi();
prm_.insert(pr_g);
}
pr_g.invert_sign();
if (pr_g.are_determined_signs_positive()) {
storage_[sush_g.get()] += pr_g.phi();
prm_.insert(pr_g);
}
}
public:
const Set<Phi>
data_from(const Sush& sush) {
Set<Phi> solicited_data;
for (const auto& pr: pluckers_containing_sush(sd_, csm_, prm_, sush, stm_, ip_)) {
if (std::find(pr.sush_vector().begin(), pr.sush_vector().end(), sush) != pr.sush_vector().end())
solicited_data += pr.phi();
for (const Array<Int>& g: sd_.vertex_symmetry_group)
add_image(sush, pr.phi(), g);
}
return solicited_data;
}
PluckersContainingSushMemoizer(SphereData& sd,
CanonicalSolidMemoizer& csm,
PluckerRelationMemoizer& prm,
SelfTamingMemoizer& stm,
IntParams& ip)
: sd_(sd)
, csm_(csm)
, prm_(prm)
, stm_(stm)
, ip_(ip)
{}
};
// --------------------------------------------
// GP_Tree
// --------------------------------------------
// the sush is the one on the phi. The phi in upstream will have -sush.
using TreeConnector = std::pair<PhiOrCubeIndex, Sush>;
struct GP_Tree_Node {
PhiOrCubeIndex self;
std::vector<TreeConnector> upstream;
GP_Tree_Node(const PhiOrCubeIndex i)
: self(i)
, upstream()
{}
// fake constructor for use in cubes
GP_Tree_Node(const PhiOrCubeIndex i,
const PhiOrCubeIndex upstream_index)
: self(i)
, upstream()
{
const TreeConnector tc(std::make_pair(upstream_index, Sush(0)));
upstream.push_back(tc);
}
};
using NodeContainer = std::vector<GP_Tree_Node>;
using HungrySushesAt = std::map<PhiOrCubeIndex, SushVector>;
// for use with cube vertices later on
struct VertexIdTag {};
using VertexId = NamedType<Int, VertexIdTag>;
bool
is_cube_vertex(const GP_Tree_Node& node);
class GP_Tree {
TreeIndex index_;
NodeContainer nodes_;
hash_set<PhiOrCubeIndex> node_support_;
HungrySushesAt hungry_sushes_at_;
SushVector sush_vector_;
hash_set<Sush> sushes_set_;
public:
const TreeIndex index() const { return index_; }
void set_index(const TreeIndex i) { index_ = i; }
void modify_nodes(const PhiOrCubeIndex from, const PhiOrCubeIndex to);
const PhiOrCubeIndex root() const { return nodes_.front().self; }
const Int size() const { return nodes_.size(); }
const NodeContainer& nodes() const { return nodes_; }
const hash_set<PhiOrCubeIndex>& node_support() const { return node_support_; }
const HungrySushesAt& hungry_sushes_at() const { return hungry_sushes_at_; }
const SushVector& hungry_sushes_at(const PhiOrCubeIndex phi) const { return hungry_sushes_at_.at(phi); }
const SushVector& sush_vector() const { return sush_vector_; }
const hash_set<Sush>& sushes_set() const { return sushes_set_; }
const PhiOrCubeIndex phi_containing_hungry_sush(const Sush sush) const {
for (const auto& phi_sushes: hungry_sushes_at_)
if (std::find(phi_sushes.second.begin(), phi_sushes.second.end(), sush) !=
phi_sushes.second.end())
return phi_sushes.first;
throw std::runtime_error("phi_containing_hungry_sush: looked for nonexistent sush");
}
const VertexId cube_vertex_upstream_of(const PhiOrCubeIndex phi) const;
private:
void
incorporate_nodes(const GP_Tree& other,
const Sush common_sush,
const PhiOrCubeIndex this_phi,
const PhiOrCubeIndex other_phi);
void remove_one_sush(const PhiOrCubeIndex phi,
const Sush sush);
void
remove_sush_from_hungry_sushes_at(const PhiOrCubeIndex this_phi,
const PhiOrCubeIndex other_phi,
const Sush common_sush) {
remove_one_sush(this_phi, common_sush);
remove_one_sush(other_phi, Sush(-common_sush));
}
void remove_sush(const Sush sush);
void
complete_coupling(const GP_Tree& other,
const Sush common_sush,
const PhiOrCubeIndex this_phi,
const PhiOrCubeIndex other_phi);
PhiOrCubeIndex
first_hungry_phi_with_sush(const Sush sush) const {
for (const auto& phi_sushes: hungry_sushes_at_)
if (std::find(phi_sushes.second.begin(), phi_sushes.second.end(), sush) != phi_sushes.second.end())
return phi_sushes.first;
return PhiOrCubeIndex(-1);
}
std::pair<PhiOrCubeIndex, PhiOrCubeIndex>
common_phis(const GP_Tree& other,
const Sush sush) const {
return { first_hungry_phi_with_sush( sush),
other.first_hungry_phi_with_sush(Sush(-sush)) };
}
/*
SolutionStatus
prune_from(const CubeIndex cid,
const VertexId vid,
const PhiOrCubeIndex phi_to_keep,
SearchData& sd,
const IntParams& ip);
*/
public:
GP_Tree() {}
// make a tree with a single node and predetermined hungry sushes
GP_Tree(const TreeIndex index,
const PhiOrCubeIndex phi,
const SushVector& sushes)
: index_(index)
{
nodes_.emplace_back(phi);
node_support_ += phi;
hungry_sushes_at_[phi] = sushes;
sush_vector_ = sushes;
for (const auto sush: sushes)
sushes_set_ += sush;
}
// make a tree with a single node and all hungry sushes
GP_Tree(const TreeIndex index,
const Phi phi,
CanonicalSolidMemoizer& csm)
: index_(index)
{
nodes_.emplace_back(PhiOrCubeIndex(phi.get()));
node_support_ += PhiOrCubeIndex(phi.get());
const PluckerRel pr(phi, csm);
hungry_sushes_at_[PhiOrCubeIndex(phi.get())] = pr.sush_vector();
sush_vector_ = pr.sush_vector();
for (const auto sush: pr.sush_vector())
sushes_set_ += sush;
}
// fake tree node inside a cube
GP_Tree(const VertexId vertex_id,
const CubeIndex cube_id);
void flat_insert_from(const GP_Tree& other,
const SushVector& signing);
void
add_tree(const GP_Tree& other,
const Sush common_sush,
SearchData& sd,
const IntParams& ip);
#if POLYMAKE_DEBUG
template<typename Output>
friend
Output& operator<< (GenericOutput<Output>& outs, const GP_Tree& t)
{
Output& os = outs.top();
os << "---- tree with id " << t.index() << " and nodes:\n";
Int ct(0);
for (const auto& node: t.nodes()) {
os << " " << ct++ << " (" << node.self << "): ";
if (node.self.get() < first_cube_index) {
// it's a tree node
if (is_cube_vertex(node)) {
// it's a cube vertex node
os << "connector node " << node.self;
} else {
// it's actually a Plucker node
const PluckerHasher ph(Phi(node.self));
os << ((node.self.get() < 0)
? "-"
: "+")
<< "(" << ph.I() << "|" << ph.J() << ") = "
<< PluckerRel(Phi(node.self), *global_csm);
}
} else
os << "cube node " << node.self.get() - first_cube_index;
os << endl;
}
os << "hungry_sushes_at { ";
for (const auto& phi_sushes: t.hungry_sushes_at()) {
os << phi_sushes.first << ": ";
for (const auto sush: phi_sushes.second) {
os << sush << "=";
if (sush.get() < 0)
os << "-";
for (const Int i: UndeterminedSolidHasher(sush).solid().get())
os << i << " ";
os << "; ";
}
}
os << "}\n"
<< "sushes: " << t.sush_vector() << "\n"
<< "* ..... connectivity:\n";
for (const auto& node: t.nodes()) {
os << node.self << ": " << node.upstream << endl;
}
return os << "---- done with tree " << t.index() << endl;
}
void dump() const __attribute__((used)) { cerr << *this << std::flush; }
#endif
};
// --------------------------------------------
// function forward declarations
// --------------------------------------------
SphereData
retrieve_sphere_data(BigObject s_in);
IntParams
retrieve_int_params(OptionSet& options,
const std::string& id_string);
// returns all plucker relations with at most int_params.max_undetermined_ct undetermined solids
SolutionStatus
initialize_plucker_relations(SphereData& sphere_data,
PluckerData& pd,
CanonicalSolidMemoizer& csm,
PluckerRelationMemoizer& prm,
const IntParams& ip,
const std::string& id_string);
// for cubes
SolutionStatus
re_initialize_plucker_relations(SphereData& sphere_data,
PluckerData& pd,
SearchData& sd,
CanonicalSolidMemoizer& csm,
PluckerRelationMemoizer& prm,
const IntParams& ip);
BigObject
make_solution(const SearchData& sd,
CanonicalSolidMemoizer& csm);
SolutionStatus
initialize_tree_list(SearchData& sd,
const SphereData& sphere_data,
IntParams& ip,
const PluckerData& pd,
CanonicalSolidMemoizer& csm);
enum class TreeAddingAction {
add_to_existing,
dont_add_to_existing
};
enum class TreeCompletingAction {
complete,
dont_complete
};
SolutionStatus
process_tree(SearchData& sd,
const IntParams& int_params,
GP_Tree& t,
const TreeAddingAction taa,
const TreeCompletingAction tca);
bool
is_plucker_rel_acceptable(const PluckerRel& pr,
const IntParams& int_params,
PluckerStats& stats);
template<typename SushSignAcceptanceCriterion>
SolutionStatus
process_one_plucker_rel(const PluckerRel& pr,
const IntParams& int_params,
PluckerData& local_pd,
PluckerRelationMemoizer& prm,
SushSignAcceptanceCriterion ssac)
{
++ local_pd.stats.total_processed;
if (!is_plucker_rel_acceptable(pr, int_params, local_pd.stats) ||
!ssac(pr))
return SolutionStatus::not_found;
local_pd.seen_pluckers += pr.phi();
local_pd.plucker_rel_list.push_back(pr);
prm.insert(pr);
if (0 == pr.n_undetermineds())
return SolutionStatus::found_single_positive_pr;
return SolutionStatus::not_found;
}
template<typename SushSignAcceptanceCriterion>
SolutionStatus
process_plucker_rel(const Set<Int>& I,
const Set<Int>& J,
CanonicalSolidMemoizer& csm,
PluckerRelationMemoizer& prm,
const IntParams& int_params,
PluckerData& local_pd,
SushSignAcceptanceCriterion ssac)
{
PluckerRel pr(I, J, SignImpl(1), csm);
const SolutionStatus ss =
process_one_plucker_rel(pr, int_params, local_pd, prm, ssac);
if (SolutionStatus::not_found != ss)
return ss;
pr.invert_sign();
return
process_one_plucker_rel(pr, int_params, local_pd, prm, ssac);
}
bool
already_in_orbit(const Set<Int>& I,
const Set<Int>& J,
const ExplicitGroup& G,
PhiOrbit& seen_phis);
IndexOfFacet
make_iof(const Array<FacetAsSet>& facets);
LabelData
make_labels(BigObject& s_in);
} // end namespace gp
} }
#endif // POLYMAKE_GRASS_PLUCKER_H
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|