1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
|
/* Copyright (c) 1997-2024
Ewgenij Gawrilow, Michael Joswig, and the polymake team
Technische Universität Berlin, Germany
https://polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#include "polymake/Array.h"
#include "polymake/Set.h"
#include <map>
#include "polymake/Map.h"
#include "polymake/Graph.h"
#include "polymake/graph/GraphIso.h"
#include "polymake/IncidenceMatrix.h"
/*
** Data structures for tropical curves **
We have the problem of deciding when two graphs with possibly
multiple edges and multiple loops between nodes, and with assigned
edge lengths, are isomorphic. The edge lengths will be modeled by
colors; this is the job of the three maps
length_of: Edges -> Scalar,
color_of_length: Scalar -> Int,
color_of_edge: Edges -> Int
below.
Given the interface in GraphIso.h, there are two possible data structures:
- An IncidenceMatrix allows multiple edges and loops, but not colors
on the edges;
- A Graph<Undirected,Multi> allows multiple edges and loops, but does not
permit access to unique identifiers of those edges, so we can't consistently
talk about the color of an edge.
Therefore, we have to build our own data structure to encode these graphs.
At the moment, they're realized using the data structure
InputEdgeIndicesBetween : (node, node) -> Set of original edge indices
which tells the (original, uncontracted) names of the edges between
two given nodes of the tropical graph.
In order to solve the isomorphism problem, we build an auxiliary graph
by modifying the input tropical graph as follows:
(1) marked edges get a new (end-)vertex
(2) unmarked non-loop edges get subdivided with an additional vertex
(3) unmarked loop edges get subdivided with two additional vertices.
The new vertices then get colored according to
- whether they're "marked" vertices or "loop" vertices in cases (1) and (3)
- the color_of_edge in case (2).
The resulting simple, undirected graph G with node colors is then
fed into the GraphIso.h interface.
In the code, G is built in the constructor of SubdividedGraph, which
elaborates some bookkeeping data and then calls build_G, where that
simple undirected graph is actually constructed.
All this is complicated by the fact that some of the edges of the
original tropical graph will need to be contracted, which changes
the connectivity and the resulting simple undirected graph G. We
have opted to track these connectivity changes at the level of
InputEdgeIndicesBetween, and to construct G from scratch each time
all edges have been contracted. (By the way we construct all those
contracted graphs in the beginning, in fill_cgc(), we actually
contract these edges one at a time).
It would also be possible to implement this directly on G, but the
pay-off seems to be too small at the moment to put effort into this.
Apart from this, SubdividedGraph also contains more bookkeeping data
to correctly map non-contracted edges onto original coordinates, and
to translate automorphisms of G into coordinate permutations of the
original cone.
Since we need to repeatedly test rays of the fan for whether the
corresponding simple undirected graphs are isomorphic, we actually
construct most of the coloring upon construction (and store the
result in partial_G_node_colors), and only finish the coloring of
the nodes corresponding to cases (2) and (3) once those colors
become available. This happens in induced_node_coloring().
Finally, the class TropicalGraph takes care of constructing an
InputEdgeIndicesBetween and a SubdividedGraph from a given
IncidenceMatrix, marked edges, vertex weights, and set of indices of
contracted edges. Via auto_group_on_coordinates(), it also gives
access to the translation of the automorphism group of G to the
original coordinates.
*/
namespace polymake { namespace tropical {
#if POLYMAKE_DEBUG
template<typename Container>
void
ensure_permutation(const Container& c)
{
if (Set<Int>(entire(c)) == sequence(0,c.size()))
return;
cerr << "not a permutation: " << c << endl;
throw std::runtime_error("stop");
}
#endif
template<typename Scalar>
Map<Scalar,Int>
find_color_of_length(const Map<Int,Scalar>& length_of,
const Int verbosity)
{
Set<Scalar> values;
for (const auto& is: length_of)
values += is.second;
Map<Scalar,Int> color_of_length;
Int next_new_color(0);
for (const auto& s: values)
color_of_length[s] = next_new_color++;
if (verbosity > 4)
cerr << "find_color_of_length: length_of " << length_of << " yields " << color_of_length << endl;
return color_of_length;
}
template<typename Scalar>
Map<Int,Int>
find_color_of_edge(const Map<Int,Scalar>& length_of,
const Map<Scalar,Int>& color_of_length,
const Int verbosity)
{
Map<Int,Int> color_of_edge;
for (const auto& is: length_of)
color_of_edge[is.first] = color_of_length[is.second];
if (verbosity > 4)
cerr << "find_color_of_edge: length_of " << length_of
<< ", color_of_length " << color_of_length
<< " yields color_of_edge " << color_of_edge << endl;
return color_of_edge;
}
template<typename Scalar>
Set<Int>
zeros_of(const Vector<Scalar>& v)
{
Set<Int> zero_indices;
for (auto it = entire<indexed>(v); !it.at_end(); ++it)
if (is_zero(*it))
zero_indices += it.index();
return zero_indices;
}
template<typename Scalar>
Map<Int,Scalar>
nonzero_lengths_of(const Vector<Scalar>& v)
{
Map<Int,Scalar> length_of_edge;
for (auto it = entire<indexed>(v); !it.at_end(); ++it)
if (!is_zero(*it))
length_of_edge[it.index()] = *it;
return length_of_edge;
}
template<typename Scalar>
Map<Scalar,Int>
multiplicity_of_length(const Map<Int,Scalar>& length_of)
{
Map<Scalar,Int> mult_of;
for (const auto& is: length_of)
mult_of[is.second]++;
return mult_of;
}
class InputEdgeIndicesBetween : public std::map<std::pair<Int,Int>, Set<Int>> {
typedef std::map<std::pair<Int,Int>, Set<Int>> super_class;
public:
InputEdgeIndicesBetween() {}
void
add(const Int a,
const Int b,
const Int value) {
const auto key(std::make_pair(std::min(a,b), std::max(a,b)));
auto find_it = find(key);
if (find_it == end())
emplace(std::make_pair(key, scalar2set(value)));
else
find_it->second += value;
}
void
erase(const Int a,
const Int b) {
const auto key(std::make_pair(std::min(a,b), std::max(a,b)));
super_class::erase(key);
}
// let's not confuse ourselves and error out if we try to access the map directly
auto operator[](const std::pair<Int,Int>&) = delete;
};
class SubdividedGraph {
protected:
Int n_unsqueezed_edges;
Int verbosity;
Int next_available_color;
Set<Int> loop_edges;
Set<Int> non_loop_edges;
Set<Int> squeezed_marked_edge_vertices;
Map<Int,Int> non_loop_squeezed_edge_vertex_of_edge;
Map<Int,std::pair<Int,Int>> loop_squeezed_edge_vertices_of_edge;
Graph<Undirected> G;
Set<Int> contracted_edges;
Map<Int,Int> input_edge_index_of_squeezed_edge_node;
Array<Int> original_node_of_squeezed_node;
Map<Int,Int> squeezed_node_of_original_node;
Array<Int> partial_G_node_colors;
void build_G(const InputEdgeIndicesBetween& input_edge_indices_between) {
for (const auto& eib: input_edge_indices_between) {
const Int
cons_a(squeezed_node_of_original_node[eib.first.first ]),
cons_b(squeezed_node_of_original_node[eib.first.second]);
if (cons_a == cons_b) { // these are loop edges
for (const Int i: eib.second) {
const auto& new_pair(loop_squeezed_edge_vertices_of_edge[i]);
const Int cons_c(new_pair.first);
const Int cons_d(new_pair.second);
G.edge(cons_a, cons_c);
G.edge(cons_c, cons_d);
G.edge(cons_d, cons_a);
}
} else { // these are non-loop edges
for (const Int i: eib.second) {
const Int cons_j(non_loop_squeezed_edge_vertex_of_edge[i]);
if (cons_a != cons_j) // special cases for marked vertices
G.edge(cons_a, cons_j);
if (cons_j != cons_b)
G.edge(cons_j, cons_b);
}
}
}
if (verbosity > 4)
cerr << "G:\n" << G << endl;
}
void initialize_non_edge_colors(const Array<Int>& contraction_image_of_node,
const Array<Int>& vertex_weights) {
next_available_color = 0;
partial_G_node_colors.resize(G.nodes());
for (Int i: squeezed_marked_edge_vertices)
partial_G_node_colors[i] = next_available_color++;
Map<Int,Int> color_of_weight;
const Set<Int> contraction_images(entire(contraction_image_of_node));
for (auto vit = entire(select(vertex_weights, contraction_images)); !vit.at_end(); ++vit)
if (!color_of_weight.exists(*vit))
color_of_weight[*vit] = next_available_color++;
if (verbosity > 4)
cerr << "color_of_weight: " << color_of_weight << endl;
for (Int i: contraction_images)
partial_G_node_colors[squeezed_node_of_original_node[i]] = color_of_weight[vertex_weights[i]];
}
public:
SubdividedGraph() {}
SubdividedGraph(const InputEdgeIndicesBetween& input_edge_indices_between,
const Map<Int,Int>& marked_edge_vertex_of_input_edge,
const Array<Int>& contraction_image_of_node,
const Array<Int>& vertex_weights,
const Int _n_unsqueezed_edges,
const Int _verbosity)
: n_unsqueezed_edges(_n_unsqueezed_edges)
, verbosity(_verbosity)
{
Set<Int> original_nodes_with_holes;
for (const auto& eib: input_edge_indices_between) {
if (eib.first.first == eib.first.second)
loop_edges += eib.second;
else
non_loop_edges += eib.second;
original_nodes_with_holes += eib.first.first;
original_nodes_with_holes += eib.first.second;
}
original_node_of_squeezed_node = Array<Int>(original_nodes_with_holes.size(), entire(original_nodes_with_holes));
Int next_squeezed_node_index(0);
for (const Int i: original_nodes_with_holes)
squeezed_node_of_original_node[i] = next_squeezed_node_index++;
for (const auto& mit: marked_edge_vertex_of_input_edge)
squeezed_marked_edge_vertices += squeezed_node_of_original_node[mit.second];
if (verbosity > 4)
cerr << "SubdividedGraph(): original_node_of_squeezed_node: " << original_node_of_squeezed_node
<< ", squeezed_node_of_original_node: " << squeezed_node_of_original_node
<< ", loop_edges: " << loop_edges
<< ", non_loop_edges: " << non_loop_edges
<< ", marked_edge_vertex_of_input_edge: " << marked_edge_vertex_of_input_edge
<< ", squeezed_marked_edge_vertices: " << squeezed_marked_edge_vertices
<< ", n_unsqueezed_edges: " << n_unsqueezed_edges
<< endl;
G = Graph<Undirected>(next_squeezed_node_index
+ non_loop_edges.size()
+ 2 * loop_edges.size()
- marked_edge_vertex_of_input_edge.size());
// the node nodes will be indexed with the original node indices
// next come the non_loop_edges nodes
// then the loop nodes
for (const Int i: non_loop_edges)
non_loop_squeezed_edge_vertex_of_edge[i] = marked_edge_vertex_of_input_edge.exists(i)
? squeezed_node_of_original_node[marked_edge_vertex_of_input_edge[i]]
: next_squeezed_node_index++;
for (const Int i: loop_edges) {
loop_squeezed_edge_vertices_of_edge[i] = std::make_pair(next_squeezed_node_index, next_squeezed_node_index+1);
next_squeezed_node_index += 2;
}
if (verbosity > 4)
cerr << "non_loop_squeezed_edge_vertex_of_edge: " << non_loop_squeezed_edge_vertex_of_edge << endl
<< "loop_squeezed_edge_vertices_of_edge: " << loop_squeezed_edge_vertices_of_edge << endl;
for (const auto& nle_it: non_loop_squeezed_edge_vertex_of_edge)
input_edge_index_of_squeezed_edge_node[nle_it.second] = nle_it.first;
for (const auto& le_it: loop_squeezed_edge_vertices_of_edge)
input_edge_index_of_squeezed_edge_node[le_it.second.first] =
input_edge_index_of_squeezed_edge_node[le_it.second.second] = le_it.first;
if (verbosity > 4)
cerr << "input_edge_index_of_squeezed_edge_node: " << input_edge_index_of_squeezed_edge_node << endl;
build_G(input_edge_indices_between);
if (G.nodes())
initialize_non_edge_colors(contraction_image_of_node, vertex_weights);
}
const Graph<Undirected>& the_graph() const { return G; }
protected:
Array<Array<Int>> convert_to_unsqueezed_edge_perms(const Array<Array<Int>>& SD_graph_autos) const {
if (!SD_graph_autos.size())
return Array<Array<Int>>();
// some graph_autos might just interchange the auxiliary loop edges,
// and we won't need those. So right now we don't know how many autos there will be
std::vector<Array<Int>> edge_perms;
edge_perms.reserve(SD_graph_autos.size());
const Array<Int> id(sequence(0, n_unsqueezed_edges));
for (const auto& graph_auto: SD_graph_autos) {
Array<Int> edge_perm(id);
for (auto it = entire<indexed>(graph_auto); !it.at_end(); ++it) {
if (input_edge_index_of_squeezed_edge_node.exists(it.index()))
edge_perm[input_edge_index_of_squeezed_edge_node[it.index()]] = input_edge_index_of_squeezed_edge_node[*it];
}
if (edge_perm != id)
edge_perms.push_back(edge_perm);
}
if (verbosity > 4)
cerr << "edge_perms:\n" << edge_perms
<< "input_edge_index_of_squeezed_edge_node: " << input_edge_index_of_squeezed_edge_node
<< endl;
#if POLYMAKE_DEBUG
for (const auto& g: edge_perms)
ensure_permutation(g);
#endif
return Array<Array<Int>>(edge_perms.size(), entire(edge_perms));
}
void color_non_loop_edge_nodes(Array<Int>& final_G_node_colors,
const bool trivial_lengths,
const Map<Int,Int>& color_of_edge,
const std::map<Int,Int>& coordinate_of_input_edge) const {
for (const auto& nle_it: non_loop_squeezed_edge_vertex_of_edge) {
if (squeezed_marked_edge_vertices.contains(nle_it.second))
continue;
else if (trivial_lengths)
final_G_node_colors[nle_it.second] = next_available_color;
else {
const auto find_it = coordinate_of_input_edge.find(nle_it.first);
if (find_it == coordinate_of_input_edge.end())
throw std::runtime_error("induced_node_coloring (color_non_loop_edge_nodes): could not find coordinate of edge");
final_G_node_colors[nle_it.second] = next_available_color + color_of_edge[find_it->second];
}
}
}
void color_loop_edge_nodes(Array<Int>& final_G_node_colors,
const bool trivial_lengths,
const Map<Int,Int>& color_of_edge,
const std::map<Int,Int>& coordinate_of_input_edge) const {
for (const auto& le_it: loop_squeezed_edge_vertices_of_edge) {
if (squeezed_marked_edge_vertices.contains(le_it.second))
continue;
else if (trivial_lengths)
final_G_node_colors[le_it.second.second] =
final_G_node_colors[le_it.second.first] = next_available_color + 1;
else {
const auto find_it = coordinate_of_input_edge.find(le_it.first);
if (find_it == coordinate_of_input_edge.end())
throw std::runtime_error("induced_node_coloring (color_loop_edge_nodes): could not find coordinate of edge");
final_G_node_colors[le_it.second.second] =
final_G_node_colors[le_it.second.first] = next_available_color + color_of_edge[find_it->second];
}
}
}
public:
Array<Int> induced_node_coloring(const Array<Int>& vertex_weights,
const Map<Int, Int>& color_of_edge,
const std::map<Int,Int>& coordinate_of_input_edge) const
{
if (verbosity > 4)
cerr << "\ninduced_node_coloring: vertex_weights " << vertex_weights
<< ", color_of_edge " << color_of_edge << endl;
const bool trivial_lengths(0 == color_of_edge.size());
Array<Int> final_G_node_colors(partial_G_node_colors);
color_non_loop_edge_nodes(final_G_node_colors, trivial_lengths, color_of_edge, coordinate_of_input_edge);
color_loop_edge_nodes (final_G_node_colors, trivial_lengths, color_of_edge, coordinate_of_input_edge);
if (verbosity > 4)
cerr << "final_G_node_colors: " << final_G_node_colors << endl;
return final_G_node_colors;
}
template<typename Scalar>
Array<Array<Int>> edge_autos(const Array<Int>& vertex_weights,
const Map<Int,Scalar>& length_of_edge,
const std::map<Int,Int>& coordinate_of_input_edge) const {
if (verbosity > 4)
cerr << "edge_autos with vertex_weights " << vertex_weights
<< ", length_of_edge " << length_of_edge << ". "
<< endl;
const Map<Int,Int> color_of_edge = find_color_of_edge(length_of_edge, find_color_of_length(length_of_edge, verbosity), verbosity);
const Array<Array<Int>> SD_graph_autos = graph::automorphisms(G, induced_node_coloring(vertex_weights, color_of_edge, coordinate_of_input_edge));
if (verbosity > 4)
cerr << "SD_graph_autos:\n" << SD_graph_autos << endl;
return convert_to_unsqueezed_edge_perms(SD_graph_autos);
}
};
class Curve {
protected:
const IncidenceMatrix<>& original_etv;
Array<Int> vertex_weights;
Int verbosity;
Set<Int> marked_edges;
Array<Int> edge_index_of_coordinate;
Array<Int> unmarked_edges;
Set<Int> contracted_edges;
Int original_n_edges;
Array<Int> node_contracts_to;
InputEdgeIndicesBetween input_edge_indices_between;
std::map<Int,Int> coordinate_of_input_edge;
Map<Int,Int> marked_edge_vertex_of_input_edge;
private:
SubdividedGraph SD_graph;
protected:
struct ToModify {
std::vector<std::pair<Int,Int>> to_erase;
std::vector<std::array<Int,3>> to_add;
};
ToModify
indices_to_modify(const Int a,
const Int b) const {
// in input_edge_indices_between, map the indices of
// (b,x) -> { i1, i2, ... } and (x,b) -> { j1, j2, ... }
// to (a,x) and (x,a), respectively
assert(a != b);
ToModify to_modify;
for (auto mit = input_edge_indices_between.begin(); mit != input_edge_indices_between.end(); ++mit) {
const bool
b_first(mit->first.first == b),
b_second(mit->first.second == b);
if (b_first && b_second) {
for (const Int j: mit->second)
to_modify.to_add.push_back({{a,a,j}});
to_modify.to_erase.push_back({b,b});
} else if (b_first) {
const Int c(mit->first.second);
for (const Int j: mit->second)
to_modify.to_add.push_back({{a,c,j}});
to_modify.to_erase.push_back({b,c});
} else if (b_second) {
const Int c(mit->first.first);
for (const Int j: mit->second)
to_modify.to_add.push_back({{a,c,j}});
to_modify.to_erase.push_back({c,b});
}
}
return to_modify;
}
void contract_edge(const Int edge_index) {
if (verbosity > 4)
cerr << "contracting edge " << edge_index
<< " with vertex weights being " << vertex_weights
<< endl;
if (marked_edges.contains(edge_index))
throw std::runtime_error("cannot contract marked edge");
// we will do as little erasing and reindexing as possible,
auto ie_it = input_edge_indices_between.begin();
for (; ie_it != input_edge_indices_between.end(); ++ie_it) {
if (ie_it->second.contains(edge_index)) {
ie_it->second -= edge_index;
break;
}
}
if (ie_it == input_edge_indices_between.end())
throw std::runtime_error("could not find edge to remove");
if (verbosity > 4)
cerr << "removed " << edge_index << " from " << ie_it->first << " -> " << ie_it->second << endl;
const Int
a(ie_it->first.first),
b(ie_it->first.second);
if (a >= vertex_weights.size() ||
b >= vertex_weights.size())
throw std::runtime_error("contract_edge: illegal index");
// now a is the valid node
node_contracts_to[b] = a;
if (a==b) {
vertex_weights[a]++;
if (!ie_it->second.size())
input_edge_indices_between.erase(a,a);
} else { // a != b
vertex_weights[a] += vertex_weights[b];
const ToModify itm = indices_to_modify(a,b);
for (const auto& p: itm.to_erase)
input_edge_indices_between.erase(p.first, p.second);
for (const auto& t: itm.to_add)
input_edge_indices_between.add(t[0], t[1], t[2]);
}
if (verbosity > 4) {
cerr << "after erasing edge " << edge_index << ", input_edge_indices_between:" << endl;
for (const auto& p: input_edge_indices_between)
cerr << p.first << " -> " << p.second << endl;
cerr << "coordinate_of_input_edge: ";
for (const auto& it: coordinate_of_input_edge)
cerr << "(" << it.first << " -> " << it.second << ") ";
cerr << ", edge_index_of_coordinate: " << edge_index_of_coordinate
<< ", vertex_weights: " << vertex_weights << endl;
}
}
Array<Int> make_contraction_image_of_node() const {
Array<Int> contraction_image_of_node(node_contracts_to.size());
for (Int i=0; i<node_contracts_to.size(); ++i) {
Int j(i);
while(node_contracts_to[j] != j)
j = node_contracts_to[j];
contraction_image_of_node[i] = j;
}
if (verbosity > 4)
cerr << "node_contracts_to " << node_contracts_to
<< ", contraction_image_of_node " << contraction_image_of_node << endl;
return contraction_image_of_node;
}
public:
Curve() = delete;
Curve(const IncidenceMatrix<>& _etv,
const Set<Int>& _marked_edges,
const Array<Int>& _vertex_weights,
const Set<Int>& _contracted_edges,
const Int _verbosity)
: original_etv(_etv)
, vertex_weights(_vertex_weights)
, verbosity(_verbosity)
, marked_edges(_marked_edges)
, edge_index_of_coordinate(_etv.cols() - _marked_edges.size())
, unmarked_edges(_etv.cols() - _marked_edges.size(), entire(Set<Int>(sequence(0, _etv.cols())) - marked_edges))
, contracted_edges(_contracted_edges)
, original_n_edges(_etv.cols())
, node_contracts_to(Array<Int>(_etv.rows(), entire(sequence(0, _etv.rows()))))
{
if (_vertex_weights.size() &&
_vertex_weights.size() != _etv.rows())
throw std::runtime_error("Curve: Unexpected length of vertex weights");
if (verbosity > 4)
cerr << "Curve constructor with etv\n" << original_etv
<< "original_n_edges = " << original_n_edges
<< ", vertex weights " << vertex_weights << endl;
Int max_marked_index_processed(0);
Int unmarked_edge_counter(0);
for (auto cit = entire<indexed>(cols(_etv)); !cit.at_end(); ++cit) {
const Set<Int> verts(*cit);
if (1 != verts.size() &&
2 != verts.size())
throw std::runtime_error("Curve: unexpected size of edge");
const bool edge_is_marked(marked_edges.contains(cit.index()));
const Int
a(verts.front()),
b((1 == verts.size() && edge_is_marked)
? (_etv.rows() + max_marked_index_processed++)
: verts.back());
assert(a <= b);
if (verbosity > 4)
cerr << "edge " << cit.index() << ": verts " << verts << " -> connects a=" << a << " and b=" << b
<< "; max_marked_index_processed " << max_marked_index_processed << endl;
// the next data structure, input_edge_indices_between, implements the graph,
// because there seems to be no way of getting a consistent edge_id, contractions, and automorphism groups with Graph<UndirectedMulti>
// the edge indices come from the column indices of the incidence matrix
input_edge_indices_between.add(a,b,cit.index());
if (!edge_is_marked) {
coordinate_of_input_edge[cit.index()] = unmarked_edge_counter;
edge_index_of_coordinate[unmarked_edge_counter] = cit.index();
++unmarked_edge_counter;
} else
marked_edge_vertex_of_input_edge[cit.index()] = b;
if (verbosity > 4)
cerr << "unmarked_edge_counter now " << unmarked_edge_counter << endl;
}
if (verbosity > 4) {
cerr << "coordinate_of_input_edge: ";
for (const auto& it: coordinate_of_input_edge)
cerr << "(" << it.first << " -> " << it.second << ") ";
cerr << ", edge_index_of_coordinate: " << edge_index_of_coordinate << endl
<< "input_edge_indices_between:\n";
for (const auto& p: input_edge_indices_between)
cerr << p.first << " -> " << p.second << endl;
}
for (const Int i: _contracted_edges)
contract_edge(i);
SD_graph = SubdividedGraph(input_edge_indices_between, marked_edge_vertex_of_input_edge, make_contraction_image_of_node(), vertex_weights, original_n_edges, verbosity);
}
Curve(const IncidenceMatrix<>& _etv,
const Int _verbosity)
: Curve(_etv,
Set<Int>(), // marked_edges
Array<Int>(_etv.rows(), 1), // vertex_weights
Set<Int>(), // contracted_edges
_verbosity)
{}
Curve(const IncidenceMatrix<>& _etv,
const Set<Int>& _contracted_edges,
const Int _verbosity)
: Curve(_etv,
Set<Int>(), // marked_edges
Array<Int>(_etv.rows()), // vertex_weights
_contracted_edges, // contracted_edges
_verbosity)
{}
Curve(const IncidenceMatrix<>& _etv,
const Set<Int>& _marked_edges,
const Array<Int>& _vertex_weights,
const Int _verbosity)
: Curve(_etv,
_marked_edges,
_vertex_weights,
Set<Int>(), // contracted_edges
_verbosity)
{}
Curve(const IncidenceMatrix<>& _etv,
const Array<Int>& _vertex_weights,
const Set<Int>& _contracted_edges,
const Int _verbosity)
: Curve(_etv,
Set<Int>(), // marked_edges
_vertex_weights,
_contracted_edges,
_verbosity)
{}
Curve(const Curve& tg,
const Set<Int>& additionally_contracted_edges)
: Curve(tg)
{
if (verbosity > 3)
cerr << "Curve: additionally contracting from graph with already contracted edges " << tg.contracted_edges << endl;
for (const Int i: additionally_contracted_edges - tg.contracted_edges)
contract_edge(i);
SD_graph = SubdividedGraph(input_edge_indices_between, marked_edge_vertex_of_input_edge, make_contraction_image_of_node(), vertex_weights, original_n_edges, verbosity);
}
Curve(const Curve& tg,
const Int additionally_contracted_edge)
: Curve(tg)
{
if (verbosity > 3)
cerr << "Curve: additionally contracting edge " << additionally_contracted_edge << " from graph with already contracted edges " << tg.contracted_edges << endl;
contract_edge(additionally_contracted_edge);
contracted_edges += additionally_contracted_edge;
SD_graph = SubdividedGraph(input_edge_indices_between, marked_edge_vertex_of_input_edge, make_contraction_image_of_node(), vertex_weights, original_n_edges, verbosity);
}
const Int get_coordinate_of_input_edge(const Int edge_index) const {
if (contracted_edges.contains(edge_index))
throw std::runtime_error("getting coordinate of contracted edge");
const auto find_it = coordinate_of_input_edge.find(edge_index);
if (find_it == coordinate_of_input_edge.end())
throw std::runtime_error("get_coordinate_of_input_edge: edge_index not found");
return find_it->second;
}
const std::map<Int,Int>& get_coordinate_of_unmarked_edge() const { return coordinate_of_input_edge; }
const Set<Int>& get_marked_edges() const { return marked_edges; }
const Array<Int>& get_unmarked_edges() const { return unmarked_edges; }
const Int get_edge_index_of_coordinate(const Int coordinate) const {
return edge_index_of_coordinate[coordinate];
}
const Array<Int>& get_vertex_weights() const { return vertex_weights; }
const Set<Int>& get_contracted_edges() const { return contracted_edges; }
const Int get_verbosity() const { return verbosity; }
const InputEdgeIndicesBetween& get_edge_indices_between() const { return input_edge_indices_between; }
const Graph<Undirected>& subdivided_graph() const { return SD_graph.the_graph(); }
const Set<Int> get_participating_node_indices() const {
Set<Int> node_indices;
for (const auto& eib: input_edge_indices_between) {
node_indices += eib.first.first;
node_indices += eib.first.second;
}
return node_indices;
}
const Set<Int> get_participating_edge_indices() const {
Set<Int> edge_indices;
for (const auto& eib: input_edge_indices_between)
edge_indices += eib.second;
return edge_indices;
}
const IncidenceMatrix<> get_incidence_matrix() const {
const Set<Int>
node_indices = get_participating_node_indices(),
edge_indices = get_participating_edge_indices();
if (verbosity)
cerr << "get_incidence_matrix: participating nodes " << node_indices
<< ", participating edges " << edge_indices
<< endl;
Map<Int,Int> edge_index_of, node_index_of;
Int next_edge_index(0), next_node_index(0);
for (const Int i: edge_indices)
edge_index_of[i] = next_edge_index++;
for (const Int i: node_indices)
node_index_of[i] = next_node_index++;
IncidenceMatrix<> inc(node_indices.size(), edge_indices.size());
for (const auto& eib: input_edge_indices_between)
for (const Int j: eib.second)
inc(node_index_of[eib.first.first], edge_index_of[j]) =
inc(node_index_of[eib.first.second], edge_index_of[j]) = true;
return inc;
}
Array<Int> induced_node_coloring(const Map<Int, Int>& color_of_edge) const {
return SD_graph.induced_node_coloring(vertex_weights, color_of_edge, coordinate_of_input_edge);
}
protected:
Array<Array<Int>> convert_to_action_on_coordinates(const Array<Array<Int>>& auto_group_on_unsqueezed_edges) const
{
if (verbosity > 4) {
cerr << "convert_to_action_on_coordinates"
<< ", coordinate_of_input_edge: {";
for (const auto& it: coordinate_of_input_edge)
cerr << "(" << it.first << " " << it.second << ") ";
cerr << "}" << endl;
}
Array<Array<Int>> auto_group_on_coordinates(auto_group_on_unsqueezed_edges.size());
auto orig_it = entire(auto_group_on_unsqueezed_edges);
auto target_it = entire(auto_group_on_coordinates);
while (!orig_it.at_end()) {
Array<Int> g(sequence(0, coordinate_of_input_edge.size()));
if (verbosity > 4)
cerr << "orig_it: " << *orig_it << ", initial g: " << g << endl;
for (const auto& ec: coordinate_of_input_edge) {
if (ec.first >= orig_it->size()) // a high-index input edge got deleted, so that index stays constant
continue;
const auto find_target_coo = coordinate_of_input_edge.find((*orig_it)[ec.first]);
if (find_target_coo == coordinate_of_input_edge.end()) {
cerr << "ec: (" << ec.first << "," << ec.second << ")" << endl;
throw std::runtime_error("convert_to_action_on_coordinates: could not find target coordinate");
}
if (ec.second >= g.size())
throw std::runtime_error("convert_to_action_on_coordinates: illegal coordinate");
g[ec.second] = find_target_coo->second;
}
*target_it = g;
++orig_it; ++target_it;
}
if (verbosity > 2)
cerr << "auto_group_on_coordinates (" << auto_group_on_coordinates.size() << "):\n" << auto_group_on_coordinates;
#if POLYMAKE_DEBUG
for (const auto& g: auto_group_on_coordinates)
ensure_permutation(g);
#endif
return auto_group_on_coordinates;
}
public:
template<typename Scalar>
Array<Array<Int>> auto_group_on_coordinates(const Map<Int,Scalar>& length_of_edge) const {
return convert_to_action_on_coordinates(SD_graph.edge_autos(vertex_weights, length_of_edge, coordinate_of_input_edge));
}
Array<Array<Int>> auto_group_on_coordinates() const {
Map<Int,Int> dummy_map;
return convert_to_action_on_coordinates(SD_graph.edge_autos(vertex_weights, dummy_map, coordinate_of_input_edge));
}
template<typename Output>
friend Output& operator<< (GenericOutput<Output>& os, const Curve& tg) {
os.top() << "Curve with"
<< " vertex_weights " << tg.vertex_weights
<< ", marked_edges " << tg.marked_edges
<< ", edge_index_of_coordinate " << tg.edge_index_of_coordinate
<< ", unmarked_edges " << tg.unmarked_edges
<< ", coordinate_of_input_edge: {";
for (const auto& it: tg.coordinate_of_input_edge)
os.top() << "(" << it.first << " " << it.second << ")";
return
os.top() << "}, graph\n" << tg.SD_graph.the_graph();
}
};
bool
isomorphic_curves_impl(const Curve& ct_v,
const Curve& ct_w,
const Array<Int>& coloring_v,
const Map<Int,Int>& color_of_edge_for_w,
const Int verbosity);
typedef std::map<Set<Int>, Curve> ContractedGraphCollection;
void
fill_contracted_graph_collection(ContractedGraphCollection& cgc,
const Curve& tg);
template<typename Scalar>
class UniqueRepFinder {
protected:
Int& next_new_global_index_of_vertex;
Array<Int>& global_vertex_of;
std::vector<Int>& original_vertex_of;
const Matrix<Scalar>& coordinates;
std::vector<Map<Int,Scalar>>& nonzero_lengths_of_vertex;
std::vector<Set<Int>>& zeros_of_support_of_vertex;
Map<Array<Scalar>, Set<Int>>& possibly_isomorphic_to_vertex;
std::vector<std::string>& vertex_labels;
const ContractedGraphCollection& cgc;
const Int n_vertices;
std::ostringstream& os;
const Int verbosity;
virtual
const Curve& find_curve_of(const Int k) {
const auto find_w_it = cgc.find(zeros_of_support_of_vertex[k]);
assert (find_w_it != cgc.end());
return find_w_it->second;
}
virtual
void notify_found(const Int v_index,
const Vector<Scalar>& v,
const Int k) const {
if (verbosity)
cerr << "moduli_space: vertex " << v_index << " = " << v
<< " is isomorphic to previous vertex " << k
<< " with label " << vertex_labels[k]
<< endl;
}
virtual
void post_processing(const Vector<Scalar>& v) {
os.str("");
wrap(os) << v;
vertex_labels.push_back(os.str());
}
public:
UniqueRepFinder() = delete;
UniqueRepFinder(Int& _next_new_global_index_of_vertex,
Array<Int>& _global_vertex_of,
std::vector<Int>& _original_vertex_of,
const Matrix<Scalar>& _coordinates,
std::vector<Map<Int,Scalar>>& _nonzero_lengths_of_vertex,
std::vector<Set<Int>>& _zeros_of_support_of_vertex,
Map<Array<Scalar>, Set<Int>>& _possibly_isomorphic_to_vertex,
std::vector<std::string>& _vertex_labels,
const ContractedGraphCollection& _cgc,
const Int _n_vertices,
std::ostringstream& _os,
const Int _verbosity)
: next_new_global_index_of_vertex(_next_new_global_index_of_vertex)
, global_vertex_of(_global_vertex_of)
, original_vertex_of(_original_vertex_of)
, coordinates(_coordinates)
, nonzero_lengths_of_vertex(_nonzero_lengths_of_vertex)
, zeros_of_support_of_vertex(_zeros_of_support_of_vertex)
, possibly_isomorphic_to_vertex(_possibly_isomorphic_to_vertex)
, vertex_labels(_vertex_labels)
, cgc(_cgc)
, n_vertices(_n_vertices)
, os(_os)
, verbosity(_verbosity)
{
global_vertex_of.resize(n_vertices);
}
void find_unique_reps() {
for (Int v_index=0; v_index < n_vertices; ++v_index) {
const Vector<Scalar> v(coordinates[v_index]);
const Map<Int, Scalar> nzl_v(nonzero_lengths_of(v));
const Map<Scalar, Int> mult_v(multiplicity_of_length(nzl_v));
const Map<Scalar, Int> col_v(find_color_of_length(nzl_v, verbosity));
const Map<Int,Int> color_of_edge_for_v(find_color_of_edge(nzl_v, col_v, verbosity));
const Set<Int> zeros_v(zeros_of(v));
const auto find_v_it = cgc.find(zeros_v);
assert (find_v_it != cgc.end());
const Array<Int> coloring_v(find_v_it->second.induced_node_coloring(color_of_edge_for_v));
bool found_isomorphic_previous_vertex(false);
Array<Scalar> v_sorted(v.dim(), entire(v));
std::sort(v_sorted.begin(), v_sorted.end());
for (const Int k: possibly_isomorphic_to_vertex[v_sorted]) {
const Map<Int,Int> color_of_edge_for_w(find_color_of_edge(nonzero_lengths_of_vertex[k], col_v, verbosity));
const Curve& tg_w = find_curve_of(k);
if (isomorphic_curves_impl(find_v_it->second, tg_w, coloring_v, color_of_edge_for_w, verbosity)) {
global_vertex_of[v_index] = k;
found_isomorphic_previous_vertex = true;
notify_found(v_index, v, k);
break;
}
}
if (found_isomorphic_previous_vertex)
continue;
nonzero_lengths_of_vertex.push_back(nzl_v);
zeros_of_support_of_vertex.push_back(zeros_v);
global_vertex_of[v_index] = next_new_global_index_of_vertex;
original_vertex_of.push_back(v_index);
possibly_isomorphic_to_vertex[v_sorted] += next_new_global_index_of_vertex;
post_processing(v);
++next_new_global_index_of_vertex;
}
}
};
template<typename Scalar>
class UniqueRepFinderFromArray : public UniqueRepFinder<Scalar> {
protected:
const Int i;
const Array<ContractedGraphCollection>& cgcs;
std::vector<Int>& graph_containing_index_of_vertex;
Int ell;
public:
UniqueRepFinderFromArray() = delete;
UniqueRepFinderFromArray(Int& _next_new_global_index_of_vertex,
Array<Int>& _global_vertex_of,
std::vector<Int>& _original_vertex_of,
const Matrix<Scalar>& _coordinates,
std::vector<Map<Int,Scalar>>& _nonzero_lengths_of_vertex,
std::vector<Set<Int>>& _zeros_of_support_of_vertex,
Map<Array<Scalar>, Set<Int>>& _possibly_isomorphic_to_vertex,
std::vector<std::string>& _vertex_labels,
const ContractedGraphCollection& _cgc,
const Int _n_vertices,
std::ostringstream& _os,
const Int _verbosity,
const Int _i,
const Array<ContractedGraphCollection>& _cgcs,
std::vector<Int>& _graph_containing_index_of_vertex)
: UniqueRepFinder<Scalar>(_next_new_global_index_of_vertex, _global_vertex_of, _original_vertex_of, _coordinates, _nonzero_lengths_of_vertex, _zeros_of_support_of_vertex, _possibly_isomorphic_to_vertex, _vertex_labels, _cgc, _n_vertices, _os, _verbosity)
, i(_i)
, cgcs(_cgcs)
, graph_containing_index_of_vertex(_graph_containing_index_of_vertex)
, ell(0)
{}
const Curve& find_curve_of(const Int k) {
ell = graph_containing_index_of_vertex[k];
const auto find_w_it = cgcs[ell].find(this->zeros_of_support_of_vertex[k]);
assert (find_w_it != cgcs[ell].end());
return find_w_it->second;
}
void notify_found(const Int v_index,
const Vector<Scalar>& v,
const Int k) const {
if (this->verbosity)
cerr << "moduli_space: vertex " << v_index << " = " << v
<< " is isomorphic to previous vertex " << k
<< " from graph " << ell
<< " with label " << this->vertex_labels[k]
<< endl;
}
void post_processing(const Vector<Scalar>& v) {
this->os.str("");
wrap(this->os) << i << ": " << v;
this->vertex_labels.push_back(this->os.str());
graph_containing_index_of_vertex.push_back(i);
}
};
} }
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|