File: cdd_interface_impl.h

package info (click to toggle)
polymake 4.15-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 35,892 kB
  • sloc: cpp: 168,945; perl: 43,410; javascript: 31,575; ansic: 3,007; java: 2,654; python: 632; sh: 268; xml: 117; makefile: 61
file content (752 lines) | stat: -rw-r--r-- 22,710 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
/* Copyright (c) 1997-2024
   Ewgenij Gawrilow, Michael Joswig, and the polymake team
   Technische Universität Berlin, Germany
   https://polymake.org

   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 2, or (at your option) any
   later version: http://www.gnu.org/licenses/gpl.txt.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
--------------------------------------------------------------------------------
*/

#pragma once

#include "polymake/polytope/cdd_interface.h"

// this define means that we want to use gmp rationals in cdd
// but also prefixes all float functions/types with ddf
// for the ddf stuff myfloat should be used instead of mytype
//
// there are a few macros to deal with this below
#define GMPRATIONAL

// cddlib headers:
extern "C" {
#include "setoper.h"
#include "cdd.h"
}

namespace polymake { namespace polytope { namespace cdd_interface {

template <typename Scalar> struct traits;

// this double indirection is needed for the macros to work!
#define CDDRESOLVE(a)      CDDRESOLVE_REAL(a)

#ifdef USE_DD_

#define CDDRESOLVE_REAL(a)  dd_ ## a

template <>
struct traits<Rational> {
   static const CDDRESOLVE(NumberType) number_type=CDDRESOLVE(Rational);

   // PTL -> cddlib
   template <typename Iterator>
   static
   void store(mytype *dst, const Iterator& src)
   {
      CDDRESOLVE(set)(*dst, src->get_rep());
   }

   typedef operations::move getter;
};

#else // use USE_DDF_

#define CDDRESOLVE_REAL(a)  ddf_ ## a
#define mytype             myfloat

template <>
struct traits<double> {
   static const CDDRESOLVE(NumberType) number_type=CDDRESOLVE(Real);

   template <typename Iterator>
   static void store(mytype *dst, const Iterator& src)
   {
      CDDRESOLVE(set_d)(*dst, *src);
   }

   struct getter {
      typedef mytype argument_type;
      typedef double result_type;

      result_type operator() (argument_type& src) const
      {
         return CDDRESOLVE(get_d)(src);
      }
   };
};
#endif

template <typename Scalar>
class vector_output {
public:
   typedef traits<Scalar> traits_t;

   vector_output(mytype* start_arg, Int sz_arg)
      : start(start_arg)
      , sz(sz_arg) {}

   typedef std::input_iterator_tag container_category;
   typedef Scalar value_type;
   typedef value_type reference;
   typedef value_type const_reference;
   typedef pm::unary_transform_iterator<pm::pointer2iterator_t<mytype*>, typename traits_t::getter> iterator;
   typedef iterator const_iterator;

   iterator begin() const { return iterator(start); }
   iterator end() const { return iterator(start+sz); }

private:
   mytype* start;
   Int sz;
};

template <typename Scalar>
class matrix_output_rows_iterator {
public:
   typedef std::input_iterator_tag iterator_category;
   typedef vector_output<Scalar> value_type;
   typedef value_type reference;
   typedef void pointer;
   typedef ptrdiff_t difference_type;

   typedef ListMatrix<Vector<Scalar>> lin_matrix_t;

   matrix_output_rows_iterator(mytype** start, Int n_rows, Int n_cols_arg,
                               dd_rowset lin_set_arg, lin_matrix_t& lin_out_arg)
      : cur(start)
      , end(start+n_rows)
      , n_cols(n_cols_arg)
      , row_index(1)         // cddlib starts counting at 1
      , lin_set(lin_set_arg)
      , lin_out(lin_out_arg)
   {
      valid_position();
   }

   value_type operator* () const
   {
      return value_type(*cur, n_cols);
   }

   matrix_output_rows_iterator& operator++ ()
   {
      ++cur; ++row_index;
      valid_position();
      return *this;
   }

   bool at_end() const { return cur == end; }

private:
   void valid_position()
   {
      while (!at_end() && set_member(row_index, lin_set)) {
         lin_out /= Vector<Scalar>(n_cols, typename value_type::iterator(*cur));
         ++cur;
         ++row_index;
      }
   }

   mytype** cur;
   mytype** end;
   Int n_cols;
   Int row_index;
   dd_rowset lin_set;
   lin_matrix_t& lin_out;
};


template <typename Scalar> class cdd_polyhedron;
template <typename Scalar> class cdd_lp;
template <typename Scalar> class cdd_lp_sol;
template <typename Scalar> class cdd_matrix;

template <typename Scalar>
class cdd_vector : public traits<Scalar> {
   typedef traits<Scalar> traits_t;

   friend class cdd_matrix<Scalar>;
public:
   explicit cdd_vector(Int dim_arg) : dim(dim_arg)
   {
      CDDRESOLVE(InitializeArow)(dim, &ptr);
   }

   ~cdd_vector() { CDDRESOLVE(FreeArow)(dim, ptr); }

   Vector<Scalar> get(Int start_at = 0) const
   {
      Vector<Scalar> result(dim-start_at, typename vector_output<Scalar>::iterator(ptr+start_at));
      for (mytype *cur=ptr+start_at, *end=ptr+dim; cur != end; ++cur)
         CDDRESOLVE(init)(*cur);
      return result;
   }

private:
   Int dim;
   CDDRESOLVE(Arow) ptr;
};

template <typename Scalar>
class cdd_matrix : public traits<Scalar> {
   using traits_t = traits<Scalar>;

   friend class cdd_polyhedron<Scalar>;
   friend class cdd_lp<Scalar>;
   friend class ConvexHullSolver<Scalar>;
   friend class LP_Solver<Scalar>;
public:
   // build from points and rays alone
   cdd_matrix(const Matrix<Scalar>& P);

   // build from inequalities and equations or rays and lineality
   cdd_matrix(const Matrix<Scalar>& I, const Matrix<Scalar>& E, const representation source_rep);

   // build from computed convex hull
   cdd_matrix(const cdd_polyhedron<Scalar>&, const representation target_rep);

   ~cdd_matrix() { CDDRESOLVE(FreeMatrix)(ptr); }

   void add_objective(const Vector<Scalar>& obj, bool maximize);

   convex_hull_result<Scalar> representation_conversion(const bool isCone, const representation target_rep) const;

   ListMatrix< Vector<Scalar> > vertex_normals(Bitset& Vertices);

   std::pair<Bitset, Set<Int>> canonicalize();

   void canonicalize_lineality(Bitset& Lin);

private:
   CDDRESOLVE(MatrixPtr) ptr;
   const Int num_rays_ineqs;
};

template <typename Scalar>
class cdd_polyhedron {
   friend class cdd_matrix<Scalar>;
   friend class ConvexHullSolver<Scalar>;
public:
   cdd_polyhedron(const cdd_matrix<Scalar>& M)
      : ptr(CDDRESOLVE(DDMatrix2Poly)(M.ptr, &err)) {}
   ~cdd_polyhedron() { CDDRESOLVE(FreePolyhedra)(ptr); }
   void verify();
protected:
   CDDRESOLVE(PolyhedraPtr) ptr;
   CDDRESOLVE(ErrorType) err;
};

template <typename Scalar>
class cdd_lp : public traits<Scalar> {
   typedef traits<Scalar> traits_t;
   friend class cdd_lp_sol<Scalar>;
public:
   cdd_lp(const cdd_matrix<Scalar>& M)
      : ptr(CDDRESOLVE(Matrix2LP)(M.ptr, &err)) {}
   ~cdd_lp() { CDDRESOLVE(FreeLPData)(ptr); }

   Vector<Scalar> optimal_vertex() const;
protected:
   CDDRESOLVE(LPPtr) ptr;
   CDDRESOLVE(ErrorType) err;
   CDDRESOLVE(LPSolutionPtr) get_solution();
};

template <typename Scalar>
class cdd_lp_sol {
public:
   cdd_lp_sol(cdd_lp<Scalar>& L) : ptr(L.get_solution()) {}
   ~cdd_lp_sol() { CDDRESOLVE(FreeLPSolution)(ptr); }

   Scalar optimal_value() const;
   LP_status get_status(bool throw_when_bad_dual) const;
protected:
   CDDRESOLVE(LPSolutionPtr) ptr;
};

class cdd_bitset;

class cdd_bitset_iterator {
   friend class cdd_bitset;
public:
   typedef std::forward_iterator_tag iterator_category;
   typedef Int value_type;
   typedef const Int& reference;
   typedef const Int* pointer;
   typedef ptrdiff_t difference_type;

   typedef cdd_bitset_iterator iterator;
   typedef cdd_bitset_iterator const_iterator;

   cdd_bitset_iterator() {}

protected:
   explicit cdd_bitset_iterator(set_type s_arg) :
      s(s_arg+1), cur(0), end(set_groundsize(s_arg)), bit(1)
   {
      valid_position();
   }

   cdd_bitset_iterator(set_type s_arg, bool /* _end */) :
      s(s_arg+1), cur(set_groundsize(s_arg)), end(cur), bit(0) {}

public:
   reference operator* () const { return cur; }

   cdd_bitset_iterator& operator++ ()
   {
      incr();
      valid_position();
      return *this;
   }

   const cdd_bitset_iterator operator++ (int) { cdd_bitset_iterator copy(*this); operator++(); return copy; }

   bool at_end() const { return cur>=end; }

   bool operator== (const cdd_bitset_iterator& it) const { return cur==it.cur; }
   bool operator!= (const cdd_bitset_iterator& it) const { return cur!=it.cur; }

protected:
   void valid_position()
   {
      while (!at_end() && !(*s & bit)) incr();
   }

   void incr()
   {
      ++cur;
      if (!(bit <<= 1)) {
         ++s;
         bit=1;
      }
   }

   set_type s;
   Int cur, end;
   unsigned long bit;
};

class cdd_bitset : public GenericSet<cdd_bitset, Int, pm::operations::cmp> {
   template <typename> friend class cdd_matrix;
public:
   // CAUTION: sets are initialized within cddlib functions.
   cdd_bitset() : ptr(nullptr) {}
   ~cdd_bitset() { set_free(ptr); }

   Int size() const { return set_card(ptr); }
   bool empty() const { return size()==0; }
   Int dim() const { return set_groundsize(ptr); }

   typedef Int value_type;
   typedef Int reference;
   typedef Int const_reference;
   typedef cdd_bitset_iterator iterator;
   typedef iterator const_iterator;

   iterator begin() const { return iterator(ptr); }
   iterator end() const { return iterator(ptr,true); }

   reference front() const { return *begin(); }
protected:
   set_type ptr;
};

} } }
namespace pm {

template <>
struct check_iterator_feature<polymake::polytope::cdd_interface::cdd_bitset_iterator, end_sensitive> : std::true_type {};

template <>
struct check_container_feature<polymake::polytope::cdd_interface::cdd_bitset, sparse_compatible> : std::true_type {};

template <typename Scalar>
struct check_iterator_feature<polymake::polytope::cdd_interface::matrix_output_rows_iterator<Scalar>, end_sensitive> : std::true_type {};

template <typename Scalar>
struct spec_object_traits<polymake::polytope::cdd_interface::vector_output<Scalar>> : spec_object_traits<is_container> {};

}
namespace polymake { namespace polytope { namespace cdd_interface {

// FIXME: method currently used for RAY_SEPARATORS/VERTEX_NORMALS from RAYS
//        for this computation LINEALITY_SPACE is not needed
// should not be used for INEQUALITES (set representation type)
template <typename Scalar>
cdd_matrix<Scalar>::cdd_matrix(const Matrix<Scalar>& P)
   : ptr(CDDRESOLVE(CreateMatrix)(P.rows(), P.cols()))
   , num_rays_ineqs(P.rows())
{
   // get size of the input matrix
   Int m = P.rows();
   Int n = P.cols();

   ptr->representation = CDDRESOLVE(Generator);    // Input type: points
   ptr->numbtype = traits_t::number_type;

   // copy data: polymake -> cdd
   auto p=concat_rows(P).begin();
   for (mytype **r=ptr->matrix, **rend=r+m;  r!=rend;  ++r) {
      mytype *c=*r;
      mytype *cend=c+n;
      for (;  c!=cend;  ++c, ++p)
         traits_t::store(c, p);
   }
}

template <typename Scalar>
cdd_matrix<Scalar>::cdd_matrix(const Matrix<Scalar>& I, const Matrix<Scalar>& E, const representation source_rep)
   : ptr(CDDRESOLVE(CreateMatrix)(I.rows() + E.rows(), I.cols() ? I.cols() : E.cols()))
   , num_rays_ineqs(I.rows())
{
   // get size of the input matrix
   Int mi = I.rows();
   Int me = E.rows();
   Int n  = I.cols() ? I.cols() : E.cols();

   // avoid segfault in some cdd versions for degenerate cases
   if (n == 0) {
      CDDRESOLVE(FreeMatrix)(ptr);
      throw std::runtime_error("cdd_interface - cannot properly handle ambient dimension 0");
   }

   if (source_rep == representation::H)
      ptr->representation = CDDRESOLVE(Inequality);   // Input type: inequalities
   else
      ptr->representation = CDDRESOLVE(Generator);    // Input type: points
   ptr->numbtype = traits_t::number_type;

   auto p=concat_rows(I).begin();
   mytype **r, **rend;
   for (r=ptr->matrix, rend=r+mi;  r!=rend;  ++r) {
      mytype *c=*r;
      mytype *cend=c+n;
      for (;  c!=cend;  ++c, ++p)
         traits_t::store(c,p);
   }

   p=concat_rows(E).begin();
   ++mi; // cddlib starts counting at 1
   for (rend+=me;  r!=rend;  ++r, ++mi) {
      mytype *c=*r;
      mytype *cend=c+n;
      for (;  c!=cend;  ++c, ++p)
         traits_t::store(c,p);
      set_addelem(ptr->linset, mi);
   }
}

template <typename Scalar>
void cdd_matrix<Scalar>::add_objective(const Vector<Scalar>& obj, bool maximize)
{
   auto o=obj.begin();
   for (mytype *r=ptr->rowvec, *rend=r+obj.size();  r!=rend;  ++r, ++o)
      traits_t::store(r,o);
   ptr->objective= maximize ? CDDRESOLVE(LPmax) : CDDRESOLVE(LPmin);
}

template <typename Scalar>
void cdd_polyhedron<Scalar>::verify()
{
   if (err != CDDRESOLVE(NoError)) {
      std::ostringstream err_msg;
      err_msg << "Error in dd_DDMatrix2Poly: " << err << endl;
      throw std::runtime_error(err_msg.str());
   }
}

template <typename Scalar>
CDDRESOLVE(LPSolutionPtr) cdd_lp<Scalar>::get_solution()
{
   if (err != CDDRESOLVE(NoError)) {
      std::ostringstream err_msg;
      err_msg << "Error in dd_Matrix2LP: " << err << endl;
      throw std::runtime_error(err_msg.str());
   }

   if (! CDDRESOLVE(LPSolve)(ptr, CDDRESOLVE(DualSimplex), &err)) {
      std::ostringstream err_msg;
      err_msg << "Error in dd_LPSolve: " << err << endl;
      throw std::runtime_error(err_msg.str());
   }

   return CDDRESOLVE(CopyLPSolution)(ptr);
}

template <typename Scalar>
cdd_matrix<Scalar>::cdd_matrix(const cdd_polyhedron<Scalar>& P, const representation target_rep)
   : ptr(target_rep == representation::H ? CDDRESOLVE(CopyInequalities)(P.ptr) : CDDRESOLVE(CopyGenerators)(P.ptr))
   , num_rays_ineqs(0) { }

// extracts the dual description from a cdd matrix
// and makes some adjustements for polymake needs
template <typename Scalar>
convex_hull_result<Scalar>
cdd_matrix<Scalar>::representation_conversion(const bool isCone, const representation target_rep) const
{
   const CDDRESOLVE(rowrange) m = ptr->rowsize;
   const CDDRESOLVE(colrange) n = ptr->colsize;
   const long linsize = set_card(ptr->linset);

   if (target_rep == representation::V && m<=0) throw infeasible();

   ListMatrix<Vector<Scalar>> Lin(0, n);
   Matrix<Scalar> Pt(m-linsize, n, matrix_output_rows_iterator<Scalar>(ptr->matrix, m, n, ptr->linset, Lin));

   if (target_rep == representation::V) {
      // for a 0-dimensional cone cdd returns the origin as a vertex
      // we have to remove this in our interpretation
      if (isCone && !linsize && Pt.rows()==1 && Pt(0,0)==1)
         Pt.resize(0, Pt.cols());

      // in the case of a homogeneous cone, the cddlib omits the origin point
      // in the case of a cone we don't want to add this!
      if (!linsize && is_zero(Pt.col(0)) && !isCone)
         Pt /= unit_vector<Scalar>(Pt.cols(), 0);
   }

   return { Pt, Matrix<Scalar>(linsize, n, operations::move(), entire(rows(Lin))) };
}


template <typename Scalar>
ListMatrix< Vector<Scalar> >
cdd_matrix<Scalar>::vertex_normals(Bitset& Vertices)
{
   ListMatrix< Vector<Scalar> > VN(0, ptr->colsize+1);
   auto vn_front=rows(VN).begin();
   cdd_vector<Scalar> cert(ptr->colsize+1);
   CDDRESOLVE(ErrorType) err;
   for (Int i = ptr->rowsize; i >= 1; --i) {
      const bool is_redundant=CDDRESOLVE(Redundant)(ptr, i, cert.ptr, &err);
      if (err != CDDRESOLVE(NoError)) {
         std::ostringstream err_msg;
         err_msg << "Error in dd_Redundant: " << err << endl;
         throw std::runtime_error(err_msg.str());
      }
      if (is_redundant) {
         CDDRESOLVE(MatrixRowRemove)(&ptr, i);
      } else {
         Vertices += i-1;
         Vector<Scalar> vertex_normal=cert.get(1);
         //  we redefined vertex normals to be affine functionals
         //  vertex_normal[0]=0;
         // vertex_normal.negate();
         // TODO: when move constructors for Vector are implemented,
         // std::move(vertex_normal) or pass the return value directly
         vn_front=VN.insert_row(vn_front, vertex_normal);
      }
   }
   return VN;
}


template <typename Scalar>
std::pair<Bitset, Set<Int>> cdd_matrix<Scalar>::canonicalize()
{
   cdd_bitset impl_linset, redset;
   CDDRESOLVE(rowindex) newpos;
   CDDRESOLVE(ErrorType) err;
   const CDDRESOLVE(rowrange) m = ptr->rowsize;

   const bool success=CDDRESOLVE(MatrixCanonicalize)(&ptr, &impl_linset.ptr, &redset.ptr, &newpos, &err);

   if (!success || err != CDDRESOLVE(NoError)) {
      std::ostringstream err_msg;
      err_msg << "Error in dd_MatrixCanonicalize: " << err << endl;
      throw std::runtime_error(err_msg.str());
   }

   std::pair<Bitset, Set<Int>> result{ Bitset(num_rays_ineqs), Set<Int>() };
   const long linsize = set_card(ptr->linset);
   for (Int i = 1; i <= m; ++i) {
      if (newpos[i] > 0) {
         if (newpos[i] <= linsize)
            result.second += i-1;
         else
            result.first += i-1;
      }
   }

   free(newpos);
   return result;
}


template <typename Scalar>
void
cdd_matrix<Scalar>::canonicalize_lineality(Bitset& Lin)
{
   cdd_bitset impl_linset;
   CDDRESOLVE(rowindex) newpos;
   CDDRESOLVE(ErrorType) err;
   const CDDRESOLVE(rowrange) m = ptr->rowsize;

   const bool success=CDDRESOLVE(MatrixCanonicalizeLinearity)(&ptr, &impl_linset.ptr, &newpos, &err);

   if (!success || err != CDDRESOLVE(NoError)) {
      std::ostringstream err_msg;
      err_msg << "Error in dd_MatrixCanonicalizeLinearity: " << err << endl;
      throw std::runtime_error(err_msg.str());
   }

   const long linsize = set_card(ptr->linset);

   for (Int i = 1; i <= m; ++i )
      if ( newpos[i] > 0 && newpos[i] <= linsize )
         Lin += i-1;

   free(newpos);
}

template <typename Scalar>
LP_status cdd_lp_sol<Scalar>::get_status(bool throw_when_bad_dual) const
{
   switch (ptr->LPS) {
   case CDDRESOLVE(Optimal):
      return LP_status::valid;
   case CDDRESOLVE(StrucInconsistent):
   case CDDRESOLVE(Inconsistent):
      return LP_status::infeasible;
   case CDDRESOLVE(Unbounded):
      return LP_status::unbounded;
   case CDDRESOLVE(StrucDualInconsistent):
   case CDDRESOLVE(DualInconsistent):
   case CDDRESOLVE(DualUnbounded):
      if (throw_when_bad_dual)
         throw infeasible();
      return LP_status::infeasible;
   default:
      std::ostringstream err_msg;
      err_msg << "cannot handle lp solution: cdd returned: " << ptr->LPS;
      throw std::runtime_error(err_msg.str());
   }
}

template <typename Scalar>
Vector<Scalar> cdd_lp<Scalar>::optimal_vertex() const
{
   return Vector<Scalar>(ptr->d, typename vector_output<Scalar>::iterator(ptr->sol));
}

// end of cdd classes
//  implementation of ConvexHullSolver methods

template <typename Scalar>
convex_hull_result<Scalar>
ConvexHullSolver<Scalar>::enumerate_facets(const Matrix<Scalar>& Points, const Matrix<Scalar>& Lineality, const bool isCone) const
{
   if(Points.rows() == 0 && Lineality.rows() == 0){
      // We deal with the trivial case here, since cdd fails for being called with two empty matrices.
      return convex_hull_result<Scalar>(Matrix<Scalar>(0,Points.cols()), Matrix<Scalar>(unit_matrix<Scalar>(Points.cols())));
   }
   dd_debug = verbose ? dd_TRUE : dd_FALSE;
   cdd_matrix<Scalar> IN(Points, Lineality, representation::V);
   cdd_polyhedron<Scalar> P(IN);
   dd_debug = dd_FALSE;
   P.verify();
   return cdd_matrix<Scalar>(P, representation::H).representation_conversion(isCone, representation::H);
}

template <typename Scalar>
convex_hull_result<Scalar>
ConvexHullSolver<Scalar>::enumerate_vertices(const Matrix<Scalar>& Inequalities, const Matrix<Scalar>& Equations, const bool isCone) const
{
   dd_debug = verbose ? dd_TRUE : dd_FALSE;
   cdd_matrix<Scalar> IN(Inequalities, Equations, representation::H);
   cdd_polyhedron<Scalar> P(IN);
   dd_debug = dd_FALSE;
   P.verify();
   return cdd_matrix<Scalar>(P, representation::V).representation_conversion(isCone, representation::V);
}

template <typename Scalar>
std::pair<Bitset, Set<Int>>
ConvexHullSolver<Scalar>::get_non_redundant_points(const Matrix<Scalar>& Pt, const Matrix<Scalar>& Lin, bool /* isCone */) const
{
   cdd_matrix<Scalar> IN(Pt, Lin, representation::V);
   // in some cases cdd does not return the facet x_0>=0 for the primal reduction
   // so we always use the dual reduction
   // FIXME this has to be checked carefully
   return IN.canonicalize();
}

template <typename Scalar>
std::pair<Bitset, Set<Int>>
ConvexHullSolver<Scalar>::get_non_redundant_inequalities(const Matrix<Scalar>& Ineq, const Matrix<Scalar>& Eq, bool /* isCone */) const
{
   cdd_matrix<Scalar> IN(Ineq, Eq, representation::H);
   return IN.canonicalize();
}

template <typename Scalar>
Bitset
ConvexHullSolver<Scalar>::canonicalize_lineality(const Matrix<Scalar>& Pt, const Matrix<Scalar>& Lin, const representation source_rep)
{
   cdd_matrix<Scalar> IN(Pt, Lin, source_rep);
   Bitset red_Lin(Pt.rows());
   IN.canonicalize_lineality(red_Lin);
   return red_Lin;
}

// FIXME Why is there no dual version of this?
template <typename Scalar>
typename ConvexHullSolver<Scalar>::non_redundant
ConvexHullSolver<Scalar>::find_vertices_among_points(const Matrix<Scalar>& Points)
{
   cdd_matrix<Scalar> IN(Points);
   Bitset Vertices(Points.rows());
   return non_redundant(Vertices, IN.vertex_normals(Vertices));
}

template <typename Scalar>
LP_Solution<Scalar>
LP_Solver<Scalar>::solve(const Matrix<Scalar>& Inequalities, const Matrix<Scalar>& Equations,
                         const Vector<Scalar>& Objective, bool maximize, bool feasibility_known) const
{
   LP_Solution<Scalar> result;
   try {
      cdd_matrix<Scalar> IN(Inequalities, Equations, representation::H);
      IN.add_objective(Objective, maximize);
      cdd_lp<Scalar> LP(IN);
      cdd_lp_sol<Scalar> Sol(LP);
      result.status = Sol.get_status(true);
      if (result.status == LP_status::valid) {
         result.objective_value = Sol.optimal_value();
         result.solution = LP.optimal_vertex();
      }
   }
   catch (const infeasible&) {
      // could not figure out whether the problem is infeasible or unbounded, retry with a trivial objective function
      if (feasibility_known) {
         result.status = Inequalities.rows() == 0 ? LP_status::infeasible : LP_status::unbounded;
      } else {
         cdd_matrix<Scalar> IN(Inequalities, Equations, representation::H);
         const Vector<Scalar> unit = unit_vector<Scalar>(Inequalities.cols(), 0);
         IN.add_objective(unit, true);
         cdd_lp<Scalar> LP(IN);
         cdd_lp_sol<Scalar> Sol(LP);
         result.status = Sol.get_status(false) == LP_status::infeasible ? LP_status::infeasible : LP_status::unbounded;
      }
   }
   return result;
}

} } }


// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End: