1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
|
# Copyright (c) 1997-2024
# Ewgenij Gawrilow, Michael Joswig, and the polymake team
# Technische Universität Berlin, Germany
# https://polymake.org
#
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 2, or (at your option) any
# later version: http://www.gnu.org/licenses/gpl.txt.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#-------------------------------------------------------------------------------
label libnormaliz
# The libnormaliz convex hull computation is currently disabled to avoid
# overloading the scheduler with too many convex hull codes.
# It can still be used directly via normaliz_compute.
#
# To enable the rules just remove the comment from the INCLUDE statement.
INCLUDE convexhull.rules
object Cone<Rational> {
rule libnormaliz.integer_points: DEGREE_ONE_GENERATORS : RAYS | INPUT_RAYS {
my @list = normaliz_compute($this,degree_one_generators=>1);
$this->DEGREE_ONE_GENERATORS = $list[0];
}
precondition : defined(MONOID_GRADING);
precondition : POINTED;
weight 5.29;
rule libnormaliz.integer_points: DEGREE_ONE_GENERATORS : FACETS | INEQUALITIES , LINEAR_SPAN | EQUATIONS {
my @list = normaliz_compute($this,from_facets=>1,dual_algorithm=>1,degree_one_generators=>1);
$this->DEGREE_ONE_GENERATORS = $list[0];
}
precondition : defined(MONOID_GRADING);
precondition : POINTED;
weight 5.34;
rule libnormaliz.hilbert,libnormaliz.integer_points: HILBERT_BASIS_GENERATORS : RAYS | INPUT_RAYS, LINEALITY_SPACE | INPUT_LINEALITY {
my @list = normaliz_compute($this,hilbert_basis=>1);
$this->HILBERT_BASIS_GENERATORS = [$list[0], $list[1]];
}
weight 5.59;
rule libnormaliz.hilbert,libnormaliz.integer_points: HILBERT_BASIS_GENERATORS : FACETS | INEQUALITIES , LINEAR_SPAN | EQUATIONS {
my @list = normaliz_compute($this,from_facets=>1,dual_algorithm=>1,hilbert_basis=>1);
$this->HILBERT_BASIS_GENERATORS = [$list[0], $list[1]];
}
weight 5.64;
rule libnormaliz.ehrhartpoly: H_STAR_VECTOR, HILBERT_SERIES : RAYS | INPUT_RAYS {
my @list = normaliz_compute($this,h_star_vector=>1,hilbert_series=>1);
$this->H_STAR_VECTOR = $list[0];
$this->HILBERT_SERIES = $list[1];
}
precondition : defined(MONOID_GRADING);
precondition : POINTED;
weight 5.39;
rule libnormaliz.ehrhartpoly: H_STAR_VECTOR, HILBERT_SERIES : FACETS | INEQUALITIES , LINEAR_SPAN | EQUATIONS {
my @list = normaliz_compute($this,from_facets=>1,dual_algorithm=>1,h_star_vector=>1,hilbert_series=>1);
$this->H_STAR_VECTOR = $list[0];
$this->HILBERT_SERIES = $list[1];
}
precondition : defined(MONOID_GRADING);
precondition : POINTED;
weight 5.44;
}
object Polytope<Rational> {
rule libnormaliz.ehrhartquasipoly: EHRHART_QUASI_POLYNOMIAL : RAYS | INPUT_RAYS {
my @list = normaliz_compute($this,ehrhart_quasi_polynomial=>1);
$this->EHRHART_QUASI_POLYNOMIAL = $list[0];
}
precondition : defined(MONOID_GRADING);
precondition : POINTED;
weight 5.39;
}
|