1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
|
/* Copyright (c) 1997-2024
Ewgenij Gawrilow, Michael Joswig, and the polymake team
Technische Universität Berlin, Germany
https://polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#pragma once
#include <cstddef> // needed for gcc 4.9, see http://gcc.gnu.org/gcc-4.9/porting_to.html
#if defined(__APPLE__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wzero-as-null-pointer-constant"
#endif
#include <gmpxx.h> //for mpz/mpq-handling
#if defined(__APPLE__)
#pragma clang diagnostic pop
#endif
#include "polymake/ListMatrix.h"
#include "polymake/internal/gmpxx_traits.h"
#include "polymake/polytope/ppl_interface.h"
#include "polymake/common/lattice_tools.h"
#include "polymake/linalg.h"
#include "polymake/hash_set"
#include "polymake/polytope/compress_incidence.h"
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wshadow"
#pragma clang diagnostic ignored "-Wzero-as-null-pointer-constant"
#elif defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wshadow"
#pragma GCC diagnostic ignored "-Wzero-as-null-pointer-constant"
#pragma GCC diagnostic ignored "-Wconversion"
#endif
#include <ppl.hh>
#if defined(__clang__)
#pragma clang diagnostic pop
#elif defined(__GNUC__)
#pragma GCC diagnostic pop
#endif
#include <fenv.h>
namespace PPL = Parma_Polyhedra_Library;
namespace polymake { namespace polytope { namespace ppl_interface {
//! PPL tends to modify the floating point operation mode, in particular, the rounding direction.
//! This seems to happen during initial load of the ppl library,
//! therefore the mode preferred by PPL is captured in a singleton living in this shared object (polytope).
//! Since this shared object depends on libppl, its global constructors will always be executed after libppl is loaded.
class fp_mode_setter
{
public:
fp_mode_setter()
{
fesetround(captured.mode);
}
~fp_mode_setter()
{
fesetround(FE_TONEAREST);
}
private:
class init
{
public:
init()
: version(PPL::version_major()) // ensure libppl is really loaded
, mode(fegetround())
{
fesetround(FE_TONEAREST);
}
const int version;
const int mode;
};
static init captured;
};
namespace {
// Constructs an (integral) mpz-vector by multiplying with lcm of denominators.
// Note: this is different from 'primitive', e.g. (2/3,4/3)->(2,4), not (1,2)
template <typename Scalar>
std::vector<mpz_class> convert_to_mpz(const Vector<Scalar>& v, const Integer& denom)
{
Vector<Integer> v_multi(denom*v); //This cast works since denom*v is integral by construction!!
std::vector<mpz_class> mpz_vec(v.dim());
for (Int i = 0; i < v.dim(); ++i) {
mpz_vec[i] = mpz_class(v_multi[i].get_rep());
}
return mpz_vec;
}
// Translates a ppl generator into a (homogenized) polymake vector,
// depending on its type (point, ray, line).
template <typename Scalar>
Vector<Scalar> ppl_gen_to_vec(const PPL::Generator& gen, const bool isCone)
{
const Int dim = gen.space_dimension()+1;
Vector<Scalar> vec(dim);
for (Int i = 1; i < dim; ++i)
vec[i] = Integer(gen.coefficient(PPL::Variable(i-1)));
if (gen.is_point()) { // in case of isCone, generators are rays or lines except for (0,...,0)
// gen.divisor only works for PPL-(closure-)points
vec /= Integer(gen.divisor());
vec[0] = 1;
} else {
assert(gen.is_ray() || gen.is_line());
}
return vec;
}
// Translates a ppl constraint (n entries, inhomogeneous term as an attribute)
// into a polymake vector.
template <typename Scalar>
Vector<Scalar> ppl_constraint_to_vec(const PPL::Constraint& cons, const bool isCone)
{
const Int dim = cons.space_dimension()+1;
Vector<Scalar> vec(dim);
vec[0] = cons.inhomogeneous_term(); // will be overwritten if isCone = true
for (Int i = 1; i < dim; ++i)
vec[i] = Integer(cons.coefficient(PPL::Variable(i-1)));
return vec;
}
template <typename Scalar>
PPL::C_Polyhedron construct_ppl_polyhedron_H(const Matrix<Scalar>& Inequalities, const Matrix<Scalar>& Equations, const bool isCone)
{
/* Linear expressions in H representations store the inhomogeneous term at index 0,
* and the variables' coefficients at indices 1, 2, ..., space_dim.
*/
PPL::Constraint_System cs;
const Int dim = std::max(Inequalities.cols(), Equations.cols())-1;
cs.set_space_dimension(dim);
// insert inequalities
for (auto row_it = entire(rows(Inequalities)); !row_it.at_end(); ++row_it) {
Integer lcm_of_row_denom(lcm(denominators(*row_it)));
std::vector<mpz_class> coefficients = convert_to_mpz<Scalar>(*row_it, lcm_of_row_denom);
// PPL variables have indices 0, 1, ..., space_dim-1.
PPL::Linear_Expression e;
for (Int j = dim; j >= 1; --j) {
e += coefficients[j] * PPL::Variable(j-1);
}
e += coefficients[0];
cs.insert(e >= 0);
}
// insert equations
for (auto row_it = entire(rows(Equations)); !row_it.at_end(); ++row_it) {
Integer lcm_of_row_denom(lcm(denominators(*row_it)));
std::vector<mpz_class> coefficients = convert_to_mpz<Scalar>(*row_it, lcm_of_row_denom);
// PPL variables have indices 0, 1, ..., space_dim-1.
PPL::Linear_Expression e;
for (Int j = dim; j >= 1; --j) {
e += coefficients[j] * PPL::Variable(j-1);
}
e += coefficients[0];
cs.insert(e == 0);
}
PPL::C_Polyhedron ppl_poly(cs);
return ppl_poly;
}
template <typename Scalar>
PPL::C_Polyhedron construct_ppl_polyhedron_V(const Matrix<Scalar>& Points, const Matrix<Scalar>& Lineality, const bool isCone)
{
// The V representation
PPL::Generator_System gs;
const Int dim = std::max(Points.cols(), Lineality.cols())-1; // necessary if only one matrix has entries
gs.set_space_dimension(dim);
/* Cones need an additional point (0,...,0) in ppl.
* Furthermore, the cone is translated into a polytope.
*/
if (isCone) {
PPL::Generator v = PPL::point(0*PPL::Variable(dim-1)); //origin
gs.insert(v);
}
// insert points/rays
for (auto row_it : attach_selector(rows(Points), operations::non_zero())) {
Integer lcm_of_row_denom(lcm(denominators(row_it)));
std::vector<mpz_class> coefficients = convert_to_mpz<Scalar>(row_it, lcm_of_row_denom);
// PPL variables have indices 0, 1, ..., space_dim-1.
PPL::Linear_Expression e;
for (Int j = dim; j >= 1; --j) {
e += coefficients[j] * PPL::Variable(j-1);
}
if (coefficients[0] != 0) {
PPL::Generator v = PPL::point(e, lcm_of_row_denom.gmp() ); // v is a point
gs.insert(v);
} else {
PPL::Generator v = PPL::ray(e); // v is a ray
gs.insert(v);
}
}
// insert linealities
for (auto row_it : attach_selector(rows(Lineality), operations::non_zero())) {
Integer lcm_of_row_denom(lcm(denominators(row_it)));
std::vector<mpz_class> coefficients = convert_to_mpz<Scalar>(row_it, lcm_of_row_denom);
// PPL variables have indices 0, 1, ..., space_dim-1.
PPL::Linear_Expression e;
for (Int j = dim; j >= 1; --j) {
e += coefficients[j] * PPL::Variable(j-1);
}
PPL::Generator l = line(e);
gs.insert(l);
}
PPL::C_Polyhedron ppl_poly(gs);
return ppl_poly;
}
} // End of namespace
/* FIXME (1): Don't know how to handle Float and Rational
simultaneously w.r.t. defining the optimal value */
template <typename Scalar>
convex_hull_result<Scalar>
ConvexHullSolver<Scalar>::enumerate_facets(const Matrix<Scalar>& Points, const Matrix<Scalar>& Lineality, const bool isCone) const
{
const Int num_columns = std::max(Points.cols(), Lineality.cols());
PPL::C_Polyhedron polyhedron = construct_ppl_polyhedron_V(Points, Lineality, isCone);
Set<Int> far_face(far_points(Points));
PPL::Constraint_System cs = polyhedron.minimized_constraints();
ListMatrix< Vector<Scalar> > facet_list(0, num_columns);
ListMatrix< Vector<Scalar> > affine_hull_list(0, num_columns);
const auto triv_ineq=unit_vector<Scalar>(num_columns, 0);
for (PPL::Constraint_System::const_iterator csi = cs.begin(); csi != cs.end(); ++csi) {
const PPL::Constraint& c = *csi;
Vector<Scalar> row = ppl_constraint_to_vec<Scalar>(c, isCone);
if (!(isCone && row == triv_ineq )) {
if (c.is_inequality()) {
// TODO: std::move(row) when move constructors implemented for vector classes
facet_list /= row;
} else {
assert(c.is_equality());
// TODO: std::move(row) when move constructors implemented for vector classes
affine_hull_list /= row;
}
}
}
// ppl seems to compute the far face inequality (shown in cs.ascii_dump())
// but the iterator above skips it...
// So we use the following to determine whether it is needed and add it manually:
// We use the rank of the far-face rays to determine
// whether we need to add the trivial inequality as facet.
// The case that p is just a point is also covered by this!
if (!isCone && rank(Points.minor(far_face,All)/Lineality)+1 == num_columns - affine_hull_list.rows()) {
facet_list /= triv_ineq;
}
return { Matrix<Scalar>(facet_list), Matrix<Scalar>(affine_hull_list) };
}
template <typename Scalar>
convex_hull_result<Scalar>
ConvexHullSolver<Scalar>::enumerate_vertices(const Matrix<Scalar>& Inequalities, const Matrix<Scalar>& Equations, const bool isCone) const
{
const Int num_columns = std::max(Inequalities.cols(), Equations.cols());
// an empty exterior description defines the empty (infeasible) polytope
// (ppl would return the whole space)
// for cones this is the full space and correctly handled later on
if (!isCone && Inequalities.rows() + Equations.rows() == 0)
return { Matrix<Scalar>(0, num_columns), Matrix<Scalar>(0, num_columns) };
PPL::C_Polyhedron polyhedron = construct_ppl_polyhedron_H(Inequalities, Equations, isCone);
PPL::Generator_System gs = polyhedron.minimized_generators();
ListMatrix<Vector<Scalar>> vertex_list(0,num_columns);
ListMatrix<Vector<Scalar>> lin_space_list(0,num_columns);
const auto cone_origin=unit_vector<Scalar>(num_columns, 0);
for (PPL::Generator_System::const_iterator gsi = gs.begin(); gsi != gs.end(); ++gsi) {
const PPL::Generator& g = *gsi;
Vector<Scalar> row = ppl_gen_to_vec<Scalar>(g, isCone);
if (!(isCone && row == cone_origin)) {
if (g.is_point() || g.is_ray()) {
// TODO: std::move(row) when move constructors implemented for vector classes
vertex_list /= row;
} else {
assert(g.is_line());
// TODO: std::move(row) when move constructors implemented for vector classes
lin_space_list /= row;
}
}
}
return { Matrix<Scalar>(vertex_list), Matrix<Scalar>(lin_space_list) };
}
template <typename Scalar>
LP_Solution<Scalar>
LP_Solver<Scalar>::solve(const Matrix<Scalar>& Inequalities, const Matrix<Scalar>& Equations,
const Vector<Scalar>& Objective, bool maximize, bool) const
{
// establish the PPL rounding mode temporarily
fp_mode_setter fp_mode;
LP_Solution<Scalar> result;
const Int num_columns = std::max(Inequalities.cols(), Equations.cols())-1;
if (num_columns == -1) {
result.status = LP_status::infeasible;
return result;
}
PPL::C_Polyhedron polyhedron = construct_ppl_polyhedron_H(Inequalities, Equations, 0); // isCone = 0
// Linear program
const Integer lcm_of_obj_denom = lcm(denominators(Objective));
std::vector<mpz_class> objective = convert_to_mpz<Scalar>(Objective, lcm_of_obj_denom);
PPL::Linear_Expression e;
for (Int j = num_columns; j >= 1; --j) {
e += objective[j] * PPL::Variable(j-1);
}
e += objective[0];
PPL::Coefficient bound_n, bound_d; // same as mpz_class
bool is_opt;
PPL::Generator g_opt = PPL::point();
const bool solvable = maximize ? polyhedron.maximize(e, bound_n, bound_d, is_opt, g_opt)
: polyhedron.minimize(e, bound_n, bound_d, is_opt, g_opt);
if (!solvable) { // ppl returns false if input is infeasible OR unbounded!
result.status = polyhedron.is_empty() ? LP_status::infeasible : LP_status::unbounded;
} else {
result.status = LP_status::valid;
result.solution = ppl_gen_to_vec<Scalar>(g_opt, false);
// opt_val needs to be divided additionally by the lcm of the denominators
// of the objective vector since the constructed Linear_Expression e
// has been multiplied by this factor in 'convert_to_mpz'.
// Note that ppl seems to work only with integral objective functions.
result.objective_value.set(Integer(bound_n), Integer(bound_d)*lcm_of_obj_denom);
}
return result;
}
} } }
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|