1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
|
# Copyright (c) 1997-2024
# Ewgenij Gawrilow, Michael Joswig, and the polymake team
# Technische Universität Berlin, Germany
# https://polymake.org
#
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 2, or (at your option) any
# later version: http://www.gnu.org/licenses/gpl.txt.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#-------------------------------------------------------------------------------
# @category Singular interface
# An intermediate object wrapping the ideal on the Singular side and providing its methods.
declare property_type SingularIdeal : c++ (include => ["polymake/ideal/singularIdeal.h"]) {
# @category Constructors
# Construct a Singular ideal with monomial ordering given by a matrix.
method construct(Array<Polynomial>, Matrix<Int>) : c++;
# @category Constructors
# Construct a Singular ideal with monomial ordering given by a vector.
method construct(Array<Polynomial>, Vector<Int>) : c++;
# @category Constructors
# Construct a Singular ideal with monomial ordering given by its name (in the Singular notation).
method construct(Array<Polynomial>, String) : c++;
# @category Singular interface
# Compute the Groebner basis.
method groebner() : c++ ;
# Compute the dimension of the ideal.
method dim() : c++ ;
# Check via saturation whether the ideal contains a monomial.
method contains_monomial() : c++ ;
# Compute the initial ideal. Depends on monomial ordering.
method initial_ideal() : c++;
# Compute the radical of the ideal.
method radical() : c++ ;
# Compute the saturation of the ideal.
method saturation(Array<Polynomial>) : c++ ;
method division(Polynomial) : c++;
method solve() : c++;
# Reduce a polynomial modulo the ideal, i.e. check ideal membership.
method reduce(Polynomial) : c++;
# Reduce a polynomial modulo the ideal, i.e. check ideal membership.
method reduce(Array<Polynomial>) : c++;
method polynomials() : c++;
# Compute the primary decomposition of the ideal.
method primary_decomposition() : c++;
}
object Groebner {
# @category Singular interface
# Intermediate object wrapping the Singular objects, i.e. the ring with the monomial ordering and the ideal.
property SINGULAR_IDEAL : SingularIdeal : non_storable;
# Reduce a [[Polynomial]] //p// with respect to the Groebner basis.
# @param Polynomial p
# @return Polynomial
user_method reduce(Polynomial) {
my ($self, $p) = @_;
$self->parent->N_VARIABLES == $p->n_vars() or croak ("incompatible rings");
return $self->SINGULAR_IDEAL->reduce($p);
}
# Reduce an [[Ideal]] //I// with respect to the Groebner basis.
# @param Ideal I
# @return Array<Polynomial>
user_method reduce(Ideal) {
my ($self, $I) = @_;
$self->parent->N_VARIABLES == $I->N_VARIABLES or croak ("incompatible rings");
return $self->SINGULAR_IDEAL->reduce($I->GENERATORS);
}
user_method division(Polynomial) {
my ($self, $p) = @_;
$self->parent->N_VARIABLES == $p->n_vars() or croak ("incompatible rings");
return $self->SINGULAR_IDEAL->division($p);
}
}
object Ideal {
rule GROEBNER.INITIAL_IDEAL : GROEBNER.SINGULAR_IDEAL, N_VARIABLES {
my $i = $this->GROEBNER->SINGULAR_IDEAL->initial_ideal();
$this->GROEBNER->INITIAL_IDEAL = new Ideal(GENERATORS=>$i->polynomials(), N_VARIABLES=>$this->N_VARIABLES);
}
rule GROEBNER.SINGULAR_IDEAL : GENERATORS, GROEBNER.ORDER_MATRIX {
$this->GROEBNER->SINGULAR_IDEAL = new SingularIdeal($this->GENERATORS, $this->GROEBNER->ORDER_MATRIX);
$this->GROEBNER->SINGULAR_IDEAL->groebner();
}
precondition : !ZERO;
rule GROEBNER.SINGULAR_IDEAL : GENERATORS, GROEBNER.ORDER_VECTOR {
$this->GROEBNER->SINGULAR_IDEAL = new SingularIdeal($this->GENERATORS, $this->GROEBNER->ORDER_VECTOR);
$this->GROEBNER->SINGULAR_IDEAL->groebner();
}
precondition : !ZERO;
rule GROEBNER.SINGULAR_IDEAL : GENERATORS, GROEBNER.ORDER_NAME {
$this->GROEBNER->SINGULAR_IDEAL = new SingularIdeal($this->GENERATORS, $this->GROEBNER->ORDER_NAME);
$this->GROEBNER->SINGULAR_IDEAL->groebner();
}
precondition : !ZERO;
rule GROEBNER.BASIS : GROEBNER.SINGULAR_IDEAL, N_VARIABLES{
$this->GROEBNER->BASIS = $this->GROEBNER->SINGULAR_IDEAL->polynomials();
}
rule GROEBNER.INITIAL_IDEAL.GENERATORS, GROEBNER.INITIAL_IDEAL.N_VARIABLES, GROEBNER.BASIS : GENERATORS, GROEBNER.ORDER_MATRIX , N_VARIABLES {
my $si;
unless ( defined($si = $this->lookup("GROEBNER.SINGULAR_IDEAL"))) {
$si = new SingularIdeal($this->GENERATORS, $this->GROEBNER->ORDER_MATRIX);
$si->groebner();
}
$this->GROEBNER->BASIS = $si->polynomials();
my $i = $si->initial_ideal();
$this->GROEBNER->INITIAL_IDEAL->GENERATORS = $i->polynomials();
$this->GROEBNER->INITIAL_IDEAL->N_VARIABLES = $this->N_VARIABLES;
}
precondition : !ZERO;
rule GROEBNER.SINGULAR_IDEAL : GROEBNER.BASIS , GROEBNER.ORDER_MATRIX {
$this->GROEBNER->SINGULAR_IDEAL = new SingularIdeal($this->GROEBNER->BASIS, $this->GROEBNER->ORDER_MATRIX);
$this->GROEBNER->SINGULAR_IDEAL->groebner();
}
rule MONOMIAL : GENERATORS {
my $si;
unless (defined($si = $this->lookup("GROEBNER"))) {
$si = $this->GROEBNER(ORDER_NAME=>"dp",temporary);
}
my $result = 1;
# One can easily show that it suffices to check whether the generators
# of the initial ideal are contained in the ideal.
foreach my $mon (@{$si->INITIAL_IDEAL->GENERATORS}){
$result &&= ($si->reduce($mon)->trivial);
}
$this->MONOMIAL = $result;
}
rule DIM : GENERATORS {
my $si;
unless (defined($si = $this->lookup("GROEBNER.SINGULAR_IDEAL"))) {
$si = $this->GROEBNER(ORDER_NAME=>"dp",temporary)->SINGULAR_IDEAL;
}
$this->DIM = $si->dim();
}
user_method SOLVE : N_VARIABLES, GENERATORS {
my $this = shift;
my $si;
unless (defined($si = $this->lookup("GROEBNER.SINGULAR_IDEAL"))) {
$si = $this->GROEBNER(ORDER_NAME=>"dp",temporary)->SINGULAR_IDEAL;
}
$si->solve();
}
rule PRIMARY_DECOMPOSITION : N_VARIABLES, GENERATORS {
my $n_vars = $this->N_VARIABLES;
my $si;
unless (defined($si = $this->lookup("GROEBNER.SINGULAR_IDEAL"))) {
$si = $this->GROEBNER(ORDER_NAME=>"dp",temporary)->SINGULAR_IDEAL;
}
my @pd = $si->primary_decomposition();
my @res;
foreach my $id (@pd) {
push @res, new Ideal(GENERATORS=>$id->polynomials(),N_VARIABLES=>$n_vars,PRIMARY=>1);
}
$this->PRIMARY_DECOMPOSITION = \@res;
}
rule RADICAL : N_VARIABLES, GENERATORS {
my $si;
unless (defined($si = $this->lookup("GROEBNER.SINGULAR_IDEAL"))) {
$si = $this->GROEBNER(ORDER_NAME=>"dp",temporary)->SINGULAR_IDEAL;
}
my $radical = $si->radical();
$this->RADICAL = new Ideal(GENERATORS=>$radical->polynomials(),N_VARIABLES=>$this->N_VARIABLES);
}
user_method SATURATION(Array<Polynomial>) : N_VARIABLES, GENERATORS {
my ($this, $polys) = @_;
my $si;
unless (defined($si = $this->lookup("GROEBNER.SINGULAR_IDEAL"))) {
$si = $this->GROEBNER(ORDER_NAME=>"dp",temporary)->SINGULAR_IDEAL;
}
my $saturation = $si->saturation($polys);
return new Ideal(GENERATORS=>$saturation->polynomials(),N_VARIABLES=>$this->N_VARIABLES);
}
# Check via saturation whether the ideal contains a monomial.
# Returns a monomial from the ideal or the trivial monomial if there is none.
# @param String s Optional term order (see [[ORDER_NAME]]) for intermediate Groebner bases, default: "dp"
# @return Polynomial
user_method contains_monomial(;$="dp") {
my ($I,$order) = @_;
return $I->GROEBNER(ORDER_NAME=>$order)->SINGULAR_IDEAL->contains_monomial();
}
}
# Local Variables:
# mode: perl
# cperl-indent-level:3
# indent-tabs-mode:nil
# End:
|