1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
|
/* Copyright (c) 1997-2020
Ewgenij Gawrilow, Michael Joswig, and the polymake team
Technische Universität Berlin, Germany
https://polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#ifndef POLYMAKE_GRAPH_DOUBLY_CONNECTED_EDGE_LIST_H
#define POLYMAKE_GRAPH_DOUBLY_CONNECTED_EDGE_LIST_H
#include "polymake/client.h"
#include "polymake/Vector.h"
#include "polymake/Array.h"
#include <vector>
#include "polymake/Matrix.h"
#include "polymake/Integer.h"
#include "polymake/Rational.h"
#include "polymake/SparseMatrix.h"
#include "polymake/Set.h"
#include "polymake/IncidenceMatrix.h"
#include "polymake/linalg.h"
namespace polymake { namespace graph {
class DoublyConnectedEdgeList {
public:
class HalfEdge;
class Face;
class Vertex {
private:
HalfEdge* incidentEdge;
Face* face;
public:
Vertex()
: incidentEdge(nullptr)
, face(nullptr) {};
HalfEdge* getIncidentEdge() const
{
return incidentEdge;
}
void setIncidentEdge(HalfEdge* edge)
{
incidentEdge = edge;
}
Face* getFace() const
{
return face;
}
void setFace(Face* new_face)
{
face = new_face;
}
};
class Face {
private:
HalfEdge* half_edge;
Vertex* vertex;
Rational det_coord;
public:
Face()
: half_edge(nullptr)
, vertex(nullptr) {}
HalfEdge* getHalfEdge() const
{
return half_edge;
}
void setHalfEdge(HalfEdge* edge)
{
half_edge = edge;
}
bool operator==(const Face& other) const
{
return half_edge == other.half_edge && vertex == other.vertex;
}
const Rational& getDetCoord() const
{
return det_coord;
}
void setDetCoord(const Rational& new_det_coord)
{
det_coord = new_det_coord;
}
};
class HalfEdge {
protected:
HalfEdge* twin;
HalfEdge* next;
HalfEdge* prev;
Vertex* head;
Face* face;
Rational length;
public:
HalfEdge()
: twin(nullptr)
, next(nullptr)
, prev(nullptr)
, head(nullptr)
, face(nullptr)
, length(1) {}
bool operator==(const HalfEdge& other) const
{
return twin == other.twin && next == other.next;
}
const Rational& getLength() const
{
return length;
}
void setLength(const Rational& newLength)
{
length = newLength;
}
HalfEdge* getTwin()
{
return twin;
}
const HalfEdge* getTwin() const
{
return twin;
}
void setTwin(HalfEdge* newTwin)
{
twin = newTwin;
newTwin->twin = this;
}
HalfEdge* getNext()
{
return next;
}
const HalfEdge* getNext() const
{
return next;
}
void setNext(HalfEdge* newNext)
{
next = newNext;
newNext->prev = this;
}
HalfEdge* getPrev()
{
return prev;
}
const HalfEdge* getPrev() const
{
return prev;
}
void setPrev(HalfEdge* newPrev)
{
prev = newPrev;
newPrev->next = this;
}
Vertex* getHead()
{
return head;
}
const Vertex* getHead() const
{
return head;
}
void setHead(Vertex* newHead)
{
head = newHead;
newHead->setIncidentEdge(this);
}
void setFace(Face* newFace)
{
face = newFace;
newFace->setHalfEdge(this);
}
Face* getFace()
{
return face;
}
const Face* getFace() const
{
return face;
}
};
private:
static constexpr Int null_id() { return std::numeric_limits<Int>::max(); }
using flip_sequence = std::list<Int>;
protected:
Array<Vertex> vertices;
Array<HalfEdge> edges;
Array<Face> faces;
bool with_faces;
public:
DoublyConnectedEdgeList() = default;
DoublyConnectedEdgeList(const DoublyConnectedEdgeList& list) = default;
const Array<Vertex>& getVertices() const
{
return vertices;
}
const Array<HalfEdge>& getEdges() const
{
return edges;
}
const Array<Face>& getFaces() const
{
return faces;
}
// get the number of vertices corresponding to an DCEL input array
static Int getNumVert(const Array<Array<Int>>& half_edge_list);
// get the number of triangles corresponding to an DCEL input array
static Int getNumTriangs(const Array<Array<Int>>& half_edge_list);
// Construct a DCEL out of a given half edge list.
// The ith element in dcel_data is [i.head, (i+1).head, i.next, (i+1).next, i.face, (i+1).face].
// The latter two entries may be omitted if no faces are specified
explicit DoublyConnectedEdgeList(const Array<Array<Int>>& half_edge_list);
DoublyConnectedEdgeList(const Array<Array<Int>>& half_edge_list, const Vector<Rational>& coords);
private:
// set the incidences of an edge (which are two half edges) according to the input
void setEdgeIncidences(Int halfEdgeId, Int headId, Int twinHeadId, Int nextId, Int twinNextId);
// set face incidences of an edge
void setFaceIncidences(Int half_edge_id, Int face_id, Int twin_face_id);
public:
// return the edges-vertices incidence matrix
SparseMatrix<Int> EdgeVertexIncidenceMatrix() const;
// return true if the edge of index 'edgeId' is flippable, the two half edges have id 'edgeId' and 'edgeId'+1
bool isFlippable(Int edgeId) const;
// flip half edge and its twin ccw
void flipHalfEdge(HalfEdge* halfEdge);
void flipEdgeWithFaces(Int edge_id);
// flip edge of index 'edgeId'
void flipEdge(Int edgeId);
// unflip half edge and its twin ccw
void unflipHalfEdge(HalfEdge* halfEdge);
// unflip edge of index 'edgeId'
void unflipEdge(Int edgeId);
// return the total number of vertices
Int getNumVertices() const
{
return this->vertices.size();
}
// returns the number of half edges
Int getNumHalfEdges() const
{
return this->edges.size();
}
// returns the number of edges
Int getNumEdges() const
{
return getNumHalfEdges()/2;
}
// returns the number of faces
Int getNumFaces() const
{
return faces.size();
}
// return the index of the given vertex
Int getVertexId(const Vertex* vertex) const
{
if (vertex >= vertices.begin() && vertex < vertices.end())
return vertex - vertices.begin();
return null_id();
}
// return a pointer to the vertex with the given id
Vertex* getVertex(const Int id)
{
return &vertices[id];
}
const Vertex* getVertex(const Int id) const
{
return &vertices[id];
}
// return the index of the given halfedge
Int getHalfEdgeId(const HalfEdge* halfEdge) const
{
if (halfEdge >= edges.begin() && halfEdge < edges.end())
return halfEdge - edges.begin();
return null_id();
}
// return a pointer to the half edge with the given id
HalfEdge* getHalfEdge(const Int id)
{
return &edges[id];
}
const HalfEdge* getHalfEdge(const Int id) const
{
return &edges[id];
}
Face* getFace(const Int face_id)
{
return &faces[face_id];
}
const Face* getFace(const Int face_id) const
{
return &faces[face_id];
}
Int getFaceId(const Face* face) const
{
if (face >= faces.begin() && face < faces.end())
return face - faces.begin();
return null_id();
}
/* return the indices of the half edges that form a quadrilateral around the half edge of index id
k
/ \ half edge ik has index id
/ | \
/ | \ the output vector gives the id's of the surrounding quad as [ij, jk, kl, il]
l \ | / j
\ | /
\ /
i
*/
std::array<Int, 8> getQuadId(Int id) const;
// set the lengths of the edges according to the input vector
void setMetric(const Vector<Rational>& metric);
// set the A-coordinates of according to the input vector
void setAcoords(const Vector<Rational>& acoords);
// return the lengths of the edges
Vector<Rational> edgeLengths() const;
// calculte the inequalities that define the secondary cone
Matrix<Rational> DelaunayInequalities() const;
// for each valid facet of the secondary cone we collect the indices of those edges whose Delaunay inequalities define that facet
Array<flip_sequence> flippableEdges(const flip_sequence& list_arg = std::list<Int>()) const;
Matrix<Rational> coneFacets() const;
// normalize the Vector in the positive orthant by dividing by its 1-norm
template <typename TVec>
static
auto normalize(const GenericVector<TVec>& v)
{
return v / accumulate(v.top(), operations::add());
}
// normalize a matrix rowwise
template <typename TMatrix>
static
Matrix<Rational> normalize(const GenericMatrix<TMatrix, Rational>& m)
{
Matrix<Rational> result(m);
for (auto v = entire(rows(result)); !v.at_end(); ++v) {
*v /= accumulate(*v, operations::add());
}
return result;
}
Set<Vector<Rational>> coneRays() const;
// check if the facet is a potential candidate to flip the corresponding edges in the triangulation of the surface
// we exclude the far facet ( 1 : 0 : ... : 0 ) and the coordinate hyperplanes ( 0 : ... : 1 : 0 : ... : 0 ) as well as ( 0 : ... : 0 )
template <typename TVec>
static bool validFacet(const GenericVector<TVec, Rational>& facet_normal)
{
return nonZeros(facet_normal) > 1;
}
template <typename TVec>
static Int nonZeros(const GenericVector<TVec>& facet_normal)
{
Int non_zeros = 0;
for (auto it = entire(facet_normal.top()); !it.at_end(); ++it)
if (!is_zero(*it)) ++non_zeros;
return non_zeros;
}
// flip the edges of the given indices and in the given order: false = [left->right], true = [right->left]
// return the flip_sequence, where possible former flips are included if given as optional input
flip_sequence flipEdges_and_give_flips(const flip_sequence& edgeIds, flip_sequence former_flips = flip_sequence(), bool reverse = false);
// flip the edges of the given indices and in the given order: false = [left->right], true = [right->left]
void flipEdges(const flip_sequence& edgeIds, bool reverse = false);
// we flip those edges whose inequalities are equivalent to the facet normal until the there is no such edge, we only flip through valid facets
flip_sequence flipThroughFace(const Vector<Rational>& facet_normal, flip_sequence former_flips = flip_sequence());
// return the index of the first Delaunay inequality matrix that is equivalent to the given inequality "ineq"; return -1 if there is no such row
Int first_equiv_row(const Vector<Rational>& ineq) const;
// return true if the two vectors define the same non-degenerate half space
bool is_equiv(const Vector<Rational>& ineq_a, const Vector<Rational>& ineq_b) const;
// check if the the edge with index id is Delaunay after scaling the horocycles by the weights
bool is_Delaunay(Int id, const Vector<Rational>& weights) const;
// check if the triangulation is Delaunay w.r.t. the given weights, return id of the first edge that is not Delaunay or -1 if the triangulation is Delaunay
Int is_Delaunay(const Vector<Rational>& weights) const;
Vector<Int> DelaunayConditions(const Vector<Rational>& weights) const;
// the flip algorithm, we flip edges that are non-Delaunay w.r.t. the weights as long as there are some
flip_sequence flipToDelaunayAlt(const Vector<Rational>& weights);
// return the angle sum of the vertex of index id
Rational angleSum(Int id) const;
// return the angle sum vector
Vector<Rational> angleVector() const;
// each face gets a new index = face_id + numHalfEdges
// the triangleMap maps each edge_id to the index of its corresponding face
const Map<Int, Int> triangleMap() const;
}; // end class DoublyConnectedEdgeList
} // end graph namespace
} // end polymake namespace
#endif // POLYMAKE_GRAPH_DOUBLY_CONNECTED_EDGE_LIST_H
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|