1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
|
/* Copyright (c) 1997-2018
Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
http://www.polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#include "polymake/client.h"
#include "polymake/Map.h"
#include "polymake/group/orbit.h"
#include "polymake/linalg.h"
#include "polymake/Set.h"
#include <stack>
#include <sstream>
// These declarations are necessary, so we friend this class/struct later for
// accessing private members in serialization.
namespace polymake { namespace group {
class SwitchTable;
}}
namespace pm {
template<> struct spec_object_traits< pm::Serialized< polymake::group::SwitchTable > >;
}
namespace polymake { namespace group {
namespace switchtable {
inline bool fixes(Int i, const Array<Int>& g){
return g[i] == i;
}
// Check whether a permutation (non-)fixes entry n(=i).
struct non_fixed {
Int i;
non_fixed(Int n): i(n){}
bool operator() (const Array<Int>& g) { return !fixes(i, g); }
};
class Core {
public:
private:
Array<Int> identity;
Map<Int, Map<Int, Array<Int>>> switch_table;
Map<Int, pm::Set<Int>> supports;
Int bound;
friend class polymake::group::SwitchTable;
friend struct pm::spec_object_traits< pm::Serialized< polymake::group::SwitchTable > >;
void extract_supports() {
for(const auto& level : switch_table){
for(const auto& g:level.second){
supports[level.first] += g.first;
}
}
}
Int nFixedPts(const Array<Int>& g){
Int result = 0;
while(fixes(result, g)){
result++;
}
return result;
}
void extract_switches(const Array<Array<Int>>& all){
Map<Int, std::list<Array<Int>> > fixed_pt_filter;
for(const auto& elem : all){
if(elem != identity){
fixed_pt_filter[0].push_back(elem);
}
}
Int i = 0;
// Filter by fixed pts
while(fixed_pt_filter[i].size() != 0){
fixed_pt_filter[i+1] = fixed_pt_filter[i];
fixed_pt_filter[i+1].remove_if(non_fixed(i));
i++;
}
bound = i-1;
// Populate actual switch table
for(Int j=0; j<=bound; j++){
for(const auto& g : fixed_pt_filter[j]){
i = j;
while(g[i] != j){
i++;
}
if(i != j){
if(!switch_table[j].exists(i)){
(switch_table[j])[i] = g;
}
}
}
}
bound++;
}
public:
Core(const Array<Array<Int>>& all) {
identity = Array<Int>(all[0].size());
for(Int j=0; j<identity.size(); j++){
identity[j] = j;
}
extract_switches(all);
extract_supports();
}
Core() {}
std::string to_string() const {
std::ostringstream bos;
wrap(bos) << " Supports: (size, content)"<<endl;
for(const auto& level : switch_table){
wrap(bos) << "Level " << level.first << ": " << level.second.size() << " " << supports[level.first] << endl;
}
wrap(bos) << " Entries:" << endl;
for(const auto& level : switch_table){
for(const auto& sublevel : level.second) {
Int i = level.first;
Int j = sublevel.first;
wrap(bos) << "[" << i << "," << j << "]: " << sublevel.second << endl;
}
}
return bos.str();
}
void extract_switches(Int fixed, const pm::Set<Int>& desired, std::list<const Array<Int>*>& switches) const {
for(const auto& j : desired){
switches.push_back(&(switch_table[fixed][j]));
}
}
Int get_bound() const {
return bound;
}
const Array<Int>& get_identity() const {
return identity;
}
bool support_exists(Int fixed) const {
return supports.exists(fixed);
}
const pm::Set<Int>& get_support(Int fixed) const {
return supports[fixed];
}
};
template<typename CoreType, typename ActedOn>
class Optimizer {
private:
const CoreType& core;
ActedOn currentOptimal;
Array<Int> optimalSwitch;
// We need four stacks for our DFS
// 1. switchStack collects the switches we have at every level
// 2. iteratorStack contains iterators pointing in the switchStack
// 3. currentSwitchStack is the switch we applied previously
// 4. vStack contains the object we are optimizing after applying currentSwitchStack.top()
std::stack<std::list<const Array<Int>*>> switchStack;
std::stack<std::list<const Array<Int>*>::const_iterator> iteratorStack;
std::stack<Array<Int>> currentSwitchStack;
std::stack<ActedOn> vStack;
// Records level we are at in DFS
Int fixed;
// Check whether there are any switches that potentially improve a
// vector. If there are any elements, they are stored in the list
// 'switches'.
// First we check whether there are any switches at level 'fixed' at all.
// Then we ask the element v, which switches would be convenient for it.
inline void find_next_switches(std::list<const Array<Int>*>& switches, const ActedOn& v, bool& applyIdentity){
if(core.support_exists(fixed)){
const pm::Set<Int> goodSupport = v.get_support(fixed, core.get_support(fixed), applyIdentity);
core.extract_switches(fixed, goodSupport, switches);
} else {
applyIdentity = true;
}
}
inline void update_optimal(const ActedOn& ao, const Array<Int>& currentSwitch){
if(ao > currentOptimal){
currentOptimal = ao;
optimalSwitch = Array<Int>(currentSwitch);
}
}
inline void init() {
fixed = 0;
currentSwitchStack.push(core.get_identity());
vStack.push(ActedOn(currentOptimal));
}
inline bool atLeaf() {
return fixed >= core.get_bound();
}
inline void compute_next_switches(bool& applyIdentity){
std::list<const Array<Int>*> switches;
find_next_switches(switches, vStack.top(), applyIdentity);
switchStack.push(std::move(switches));
iteratorStack.push(switchStack.top().begin());
}
// Backtrack in DFS tree. If we were at a leaf then not all stacks need
// to be pruned.
inline void backtrack() {
iteratorStack.pop();
switchStack.pop();
vStack.pop();
currentSwitchStack.pop();
fixed--;
}
inline void backtrack_leaf() {
update_optimal(vStack.top(), currentSwitchStack.top());
vStack.pop();
currentSwitchStack.pop();
fixed--;
}
// Descend in DFS tree. Avoid multiplication in case we are applying the
// identity.
inline void descend() {
const Array<Int>* g = *(iteratorStack.top());
// std::cout << "Applying " << g << std::endl;
vStack.push(std::move(vStack.top().mutate(g)));
currentSwitchStack.push(action<on_container>(currentSwitchStack.top(),*g));
++iteratorStack.top();
fixed++;
}
inline void descend_identity() {
vStack.push(vStack.top());
currentSwitchStack.push(currentSwitchStack.top());
fixed++;
}
public:
Optimizer(const CoreType& c, const ActedOn& ao_in):
core(c), currentOptimal(ao_in), optimalSwitch(core.get_identity()) {}
void optimize(){
// The following is a depth first search with three different stacks.
// At every level we have certain switches we can apply that improve
// the element we act on. We only update the optimal at the leaves.
init();
while(vStack.size()>0){
if(atLeaf()){
backtrack_leaf();
} else {
// Are the switches already computed?
if(vStack.size() > switchStack.size()){
bool applyIdentity = false;
compute_next_switches(applyIdentity);
if(applyIdentity){
descend_identity();
} else {
descend();
}
} else {
// Are we at the end?
if(iteratorStack.top() == switchStack.top().end()){
backtrack();
} else {
descend();
}
}
}
}
}
std::pair<const ActedOn&, const Array<Int>&> get_optimal() const {
return std::pair<const ActedOn&, const Array<Int>&>(currentOptimal, optimalSwitch);
}
};
template<typename Scalar>
class PackagedVector {
private:
Vector<Scalar> v;
using SupportsMapType = Map<Scalar, Set<Int>>;
SupportsMapType supports;
PackagedVector(const Vector<Scalar>& w, const Map<Scalar, Set<Int>>& s): v(w), supports(s){}
public:
PackagedVector(const Vector<Scalar>& w): v(w){
for(Int i=0; i<v.dim(); i++){
supports[v[i]] += i;
}
}
// We are given the support at a certain level of the switch table. Now
// we run through the levels of our vector to find one that intersects
// the support non-trivially. This will always terminate, since the
// identity always satisfies the condition imposed and the identity is
// contained in the set 'in'.
const pm::Set<Int> get_support(const Int& fixed, const pm::Set<Int>& in, bool& applyIdentity) const {
pm::Set<Int> intersection;
for(const auto& desired : supports){
if(desired.first > v[fixed]) { break; }
intersection = desired.second * in;
if(!intersection.empty()){
if(desired.first == v[fixed]){
applyIdentity = true;
}
return intersection;
}
}
applyIdentity = true;
return pm::Set<Int>();
}
const Vector<Scalar>& inner() const {
return v;
}
bool operator >(const PackagedVector& other) const {
return -1 == lex_compare(v, other.v);
}
PackagedVector mutate(const Array<Int>* g) const {
Vector<Scalar> newV(action_inv<on_container>(*g, v));
return PackagedVector(newV);
}
};
} // end namespace switchtable
class SwitchTable {
private:
switchtable::Core core;
friend struct pm::spec_object_traits< pm::Serialized< polymake::group::SwitchTable > >;
public:
SwitchTable(const Array<Array<Int>>& all) : core(all) {}
SwitchTable() {}
template<typename Scalar>
std::pair<Vector<Scalar>, Array<Int>> lex_minimize_vector(const Vector<Scalar>& v) const {
switchtable::PackagedVector<Scalar> pv(v);
switchtable::Optimizer<switchtable::Core, switchtable::PackagedVector<Scalar>> sto(core, pv);
sto.optimize();
auto result = sto.get_optimal();
return std::pair<Vector<Scalar>, Array<Int>>(result.first.inner(), result.second);
}
template<typename Scalar>
std::pair<Vector<Scalar>, Array<Int>> lex_maximize_vector(const Vector<Scalar>& v) const {
auto result = lex_minimize_vector<Scalar>(-v);
return std::pair<Vector<Scalar>, Array<Int>>(-result.first, result.second);
}
bool operator==(const SwitchTable& other) const {
return core.switch_table == other.core.switch_table;
}
template <typename Output> friend
Output& operator<< (GenericOutput<Output>& out, const SwitchTable& me)
{
out.top() << me.core.to_string();
return out.top();
}
};
} // end namespace group
} // end namespace polymake
namespace pm{
template<>
struct spec_object_traits< Serialized< polymake::group::SwitchTable > > :
spec_object_traits<is_composite> {
typedef polymake::group::SwitchTable masquerade_for;
typedef Map<Int, Map<Int, Array<Int>>> elements;
template <typename Me, typename Visitor>
static void visit_elements(Me& me, Visitor& v) //for data_load
{
v << me.core.switch_table;
me.core.extract_supports();
}
template <typename Visitor>
static void visit_elements(const pm::Serialized<masquerade_for>& me, Visitor& v) //for data_save
{
v << me.core.switch_table;
}
};
}
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|