1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
|
/* Copyright (c) 1997-2021
Ewgenij Gawrilow, Michael Joswig, and the polymake team
Technische Universität Berlin, Germany
https://polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#pragma once
#include "polymake/Matrix.h"
#include "polymake/graph/DoublyConnectedEdgeList.h"
namespace polymake {
namespace graph {
using DoublyConnectedEdgeList = graph::dcel::DoublyConnectedEdgeList;
using HalfEdge = graph::dcel::HalfEdge;
using Face = graph::dcel::Face;
using Vertex = graph::dcel::Vertex;
// 3-cube as DCEL
DoublyConnectedEdgeList conway_seed_impl() {
Matrix<Int> DCEL_data = {
{ 0, 2, 2, 21, 0, 4 },
{ 4, 0, 4, 18, 0, 2 },
{ 6, 4, 6, 17, 0, 5 },
{ 2, 6, 0, 22, 0, 3 },
{ 7, 3, 10, 20, 1, 3 },
{ 5, 7, 12, 23, 1, 5 },
{ 1, 5, 14, 16, 1, 2 },
{ 3, 1, 8, 19, 1, 4 },
{ 4, 5, 3, 11, 2, 5 },
{ 1, 0, 13, 1, 2, 4 },
{ 2, 3, 7, 15, 3, 4 },
{ 7, 6, 9, 5, 3, 5 }};
return DoublyConnectedEdgeList(DCEL_data);
}
DoublyConnectedEdgeList conway_ambo_impl(const DoublyConnectedEdgeList& old){
DoublyConnectedEdgeList result;
Int n_halfedges = 2*old.getNumHalfEdges();
Int n_vertices = old.getNumHalfEdges()/2;
Int n_faces = old.getNumVertices() + old.getNumFaces();
result.resize(n_vertices, n_halfedges, n_faces);
Int n = old.getNumHalfEdges();
Int halfedge_counter = 0;
for(Int i=0; i<n; i++){
const HalfEdge* he = old.getHalfEdge(i);
Int vertex_id, next_vertex_id;
if (i%2 == 0){vertex_id = i/2;
}else{vertex_id = (i-1)/2;}
if (he->getNext()->getID()%2 == 0){next_vertex_id = he->getNext()->getID()/2;
}else{next_vertex_id = (he->getNext()->getID()-1)/2;}
// We add two new halfedges.
// newhe: Points to next of old halfedge
// newhe_twin: Points from the next of old halfedge
HalfEdge& newhe = result.halfedges[halfedge_counter++];
HalfEdge& newhe_twin = result.halfedges[halfedge_counter++];
newhe.setHead(&result.vertices[next_vertex_id]);
newhe_twin.setHead(&result.vertices[vertex_id]);
newhe.setTwin(&newhe_twin);
newhe.setFace(&result.faces[he->getFace()->getID()]);
newhe_twin.setFace(&result.faces[old.getNumFaces()+he->getHead()->getID()]);
result.connect_halfedges(&newhe,&result.halfedges[2*he->getNext()->getID()]);
result.connect_halfedges(&result.halfedges[2*he->getPrev()->getID()], &newhe);
result.connect_halfedges(&newhe_twin,&result.halfedges[2*he->getTwin()->getPrev()->getID()+1]);
result.connect_halfedges(&result.halfedges[2*he->getNext()->getTwin()->getID()+1],&newhe_twin);
//result.faces[old.getNumFaces()+he->getTwin()->getHead()->getID()].setHalfEdge(&newhe_twin);
//result.faces[he->getFace()->getID()].setHalfEdge(&newhe);
}
return result;
}
DoublyConnectedEdgeList conway_kis_impl(const DoublyConnectedEdgeList& old){
DoublyConnectedEdgeList result;
Int n_halfedges = 3*old.getNumHalfEdges();
Int n_vertices = old.getNumVertices() + old.getNumFaces();
Int n_faces = old.getNumHalfEdges();
result.resize(n_vertices, n_halfedges, n_faces);
result.populate(old.toMatrixInt());
Int n = old.getNumFaces();
// Remember the starting edges of the old faces so we can overwrite the
// existing faces.
Array<HalfEdge*> starting_edges(n);
for(Int i=0; i<n; i++){
starting_edges[i] = result.faces[i].getHalfEdge();
}
Int halfedge_counter = old.getNumHalfEdges();
Int vertex_counter = old.getNumVertices();
Int face_counter = 0;
for(Int i=0; i<n; i++){
Vertex& center = result.vertices[vertex_counter++];
HalfEdge *start = starting_edges[i], *he = start;
Int start_face = face_counter, next_face, j = 0, first_pointing_in_ID = -1;
do {
// We will change the 'next' edge, so we need to remember the old
// next.
HalfEdge* nexthe = he->getNext();
// We add two new halfedges.
// newhe: Points outwards
// newhe_twin: Points towards center
HalfEdge& newhe = result.halfedges[halfedge_counter++];
HalfEdge& newhe_twin = result.halfedges[halfedge_counter++];
newhe.setTwin(&newhe_twin);
newhe_twin.setHead(¢er);
newhe.setHead(he->getHead());
if(nexthe == start){
next_face = start_face;
// Close the last cycle
result.connect_halfedges(&result.halfedges[first_pointing_in_ID], &newhe);
} else {
next_face = face_counter+1;
}
he->setFace(&result.faces[face_counter]);
newhe.setFace(&result.faces[next_face]);
newhe_twin.setFace(&result.faces[face_counter]);
result.faces[next_face].setHalfEdge(nexthe);
result.faces[face_counter].setHalfEdge(he);
if(j > 0){
result.connect_halfedges(&newhe_twin, &result.halfedges[halfedge_counter-4]);
} else {
// At this point we don't know yet how long this cycle will be,
// so we have to remember the first edge pointing inwards, so we
// can link it up later.
first_pointing_in_ID = newhe_twin.getID();
}
result.connect_halfedges(&newhe, nexthe);
result.connect_halfedges(he, &newhe_twin);
he = nexthe;
face_counter++;
j++;
} while(he != start);
}
return result;
}
DoublyConnectedEdgeList conway_snub_impl(const DoublyConnectedEdgeList& old){
DoublyConnectedEdgeList result;
Int n_halfedges = 5*old.getNumHalfEdges();
//Numbered in bijection to old Half-edges
Int n_vertices = old.getNumHalfEdges();
//We have faces corresponding to vertices, faces
//corresponding to faces and faces corresponding
//to halfedges
Int n_faces = old.getNumHalfEdges()+old.getNumFaces()+old.getNumVertices();
result.resize(n_vertices, n_halfedges, n_faces);
//We populate part of DCEL result with DCEL old
result.populate(old.toMatrixInt());
Int n_old_faces = old.getNumFaces();
// Remember the starting edges of the old faces
Array<HalfEdge*> starting_edges(n_old_faces);
for(Int i=0; i<n_old_faces; i++){
starting_edges[i] = old.faces[i].getHalfEdge();
}
Array<HalfEdge> oldhalfedges=old.halfedges;
Int halfedge_counter=old.getNumHalfEdges();
Int face_counter=n_old_faces;
for(Int i=0; i<n_old_faces; i++){
HalfEdge *start = starting_edges[i], *he = start;
do {
HalfEdge* nexthe = he->getNext();
// We add five new halfedges.
// oldhe: Half-edge resembling the correponding old one
// longhe: Half-edge whose head is the same as oldhe and
// whose tail is the head of the previous half-edge
// of oldhe when seen as an old half-edge
// longhe_twin: twin of longhe
// shorthe: Half-edge whose head is the tail of oldhe and whose
// tail is the same as the tail of shorthe
// shorthe_twin: twin of shorthe
//In this first part we populate the halfedges in the faces
//corresponding to the old polytope, and the faces
//corresponding to the halfedges
HalfEdge& longhe = result.halfedges[halfedge_counter++];
HalfEdge& longhe_twin = result.halfedges[halfedge_counter++];
longhe.setTwin(&longhe_twin);
HalfEdge& shorthe = result.halfedges[halfedge_counter++];
HalfEdge& shorthe_twin = result.halfedges[halfedge_counter++];
shorthe.setTwin(&shorthe_twin);
longhe.setHead(&result.vertices[he->getID()]);
longhe_twin.setHead(&result.vertices[he->getPrev()->getID()]);
shorthe.setHead(&result.vertices[he->getTwin()->getID()]);
shorthe_twin.setHead(&result.vertices[he->getPrev()->getID()]);
result.halfedges[he->getID()].setHead(&result.vertices[he->getID()]);
result.connect_halfedges(&result.halfedges[he->getID()],&longhe_twin);
result.connect_halfedges(&longhe_twin,&shorthe);
result.connect_halfedges(&shorthe,&result.halfedges[he->getID()]);
if(he!=start){
// Close the last cycle
Int ID_prev=he->getPrev()->getID();
HalfEdge* longhe_prev=result.halfedges[ID_prev].getNext()->getTwin();
result.connect_halfedges(longhe_prev,&longhe);
if (nexthe == start){
HalfEdge* longhe_next=result.halfedges[start->getID()].getNext()->getTwin();
result.connect_halfedges(&longhe,longhe_next);
}
}
longhe.setFace(&result.faces[i]);
result.halfedges[he->getID()].setFace(&result.faces[face_counter]);
longhe_twin.setFace(&result.faces[face_counter]);
shorthe.setFace(&result.faces[face_counter]);
result.faces[face_counter].setHalfEdge(&result.halfedges[he->getID()]);
result.faces[i].setHalfEdge(&longhe);
face_counter++;
he = nexthe;
} while(he != start);
}
for(Int i=0; i<n_old_faces; i++){
HalfEdge *start = starting_edges[i], *he = start;
do {
//In this second part we populate the halfedges in the faces
//corresponding to the old vertices
HalfEdge* nexthe = he->getNext();
HalfEdge* shorthe_curr=result.halfedges[he->getID()].getPrev()->getTwin();
HalfEdge* shorthe_next=result.halfedges[he->getTwin()->getNext()->getID()].getPrev()->getTwin();
result.connect_halfedges(shorthe_next,shorthe_curr);
shorthe_curr->setFace(&result.faces[face_counter+he->getPrev()->getHead()->getID()]);
result.faces[face_counter+he->getPrev()->getHead()->getID()].setHalfEdge(shorthe_curr);
he = nexthe;
} while(he != start);
}
return result;
}
} // namespace graph
} // namespace polytope
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|