1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
|
(*
Copyright (c) 2000
Cambridge University Technical Services Limited
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*)
(*
Title: ML prelude file.
Author: Dave Matthews, Cambridge University Computer Laboratory
Copyright Cambridge University 1985
*)
(* 10/2/94 SPF merged prelude files from AHL's v2.07X and Dave's v2.08 *)
(* 10/2/94 SPF inlined signatures to avoid name-space pollution *)
(* For ML97 this prelude has been reduced to virtually nothing. Almost
everything is defined in the Standard Basis library. *)
(*****************************************************************************)
(* Infixes *)
(*****************************************************************************)
infix 7 * / div mod
infix 6 + - ^
infixr 5 :: @
infix 4 = <> > >= < <=
infix 3 := o
infix 0 before
(* Set up the overloading first so we can use it in the rest of the
prelude. Setting up overloads is messy because of the need to capture
the inline code for the functions. *)
(* Conversion functions. At this stage we have installed a simple
conversion function for strings and ints. *)
val it: string->real = RunCall.run_call1 RuntimeCalls.POLY_SYS_conv_real;
RunCall.addOverload it "convReal";
(* Comparisons. These are overloaded on strings, chars and word as well as int and real. *)
val it: int*int->bool = RunCall.run_call2 RuntimeCalls.POLY_SYS_int_geq;
RunCall.addOverload it ">=";
val it: string*string->bool = RunCall.run_call2 RuntimeCalls.POLY_SYS_teststrgeq;
RunCall.addOverload it ">=";
val it: real*real->bool = RunCall.run_call2 RuntimeCalls.POLY_SYS_Real_geq;
RunCall.addOverload it ">=";
val it: char*char->bool = RunCall.run_call2 RuntimeCalls.POLY_SYS_word_geq;
RunCall.addOverload it ">=";
val it: word*word->bool = RunCall.run_call2 RuntimeCalls.POLY_SYS_word_geq;
RunCall.addOverload it ">=";
val it: int*int->bool = RunCall.run_call2 RuntimeCalls.POLY_SYS_int_leq;
RunCall.addOverload it "<=";
val it: string*string->bool = RunCall.run_call2 RuntimeCalls.POLY_SYS_teststrleq;
RunCall.addOverload it "<=";
val it: real*real->bool = RunCall.run_call2 RuntimeCalls.POLY_SYS_Real_leq;
RunCall.addOverload it "<=";
val it: char*char->bool = RunCall.run_call2 RuntimeCalls.POLY_SYS_word_leq;
RunCall.addOverload it "<=";
val it: word*word->bool = RunCall.run_call2 RuntimeCalls.POLY_SYS_word_leq;
RunCall.addOverload it "<=";
val it: int*int->bool = RunCall.run_call2 RuntimeCalls.POLY_SYS_int_gtr;
RunCall.addOverload it ">";
val it: string*string->bool = RunCall.run_call2 RuntimeCalls.POLY_SYS_teststrgtr;
RunCall.addOverload it ">";
val it: real*real->bool = RunCall.run_call2 RuntimeCalls.POLY_SYS_Real_gtr;
RunCall.addOverload it ">";
val it: char*char->bool = RunCall.run_call2 RuntimeCalls.POLY_SYS_word_gtr;
RunCall.addOverload it ">";
val it: word*word->bool = RunCall.run_call2 RuntimeCalls.POLY_SYS_word_gtr;
RunCall.addOverload it ">";
val it: int*int->bool = RunCall.run_call2 RuntimeCalls.POLY_SYS_int_lss;
RunCall.addOverload it "<";
val it: string*string->bool = RunCall.run_call2 RuntimeCalls.POLY_SYS_teststrlss;
RunCall.addOverload it "<";
val it: real*real->bool = RunCall.run_call2 RuntimeCalls.POLY_SYS_Real_lss;
RunCall.addOverload it "<";
val it: char*char->bool = RunCall.run_call2 RuntimeCalls.POLY_SYS_word_lss;
RunCall.addOverload it "<";
val it: word*word->bool = RunCall.run_call2 RuntimeCalls.POLY_SYS_word_lss;
RunCall.addOverload it "<";
(* Binary operations. *)
val it: int*int->int = RunCall.run_call2 RuntimeCalls.POLY_SYS_aplus;
RunCall.addOverload it "+";
val it: real*real->real = RunCall.run_call2 RuntimeCalls.POLY_SYS_Add_real;
RunCall.addOverload it "+";
val it: word*word->word = RunCall.run_call2 RuntimeCalls.POLY_SYS_plus_word;
RunCall.addOverload it "+";
val it: int*int->int = RunCall.run_call2 RuntimeCalls.POLY_SYS_aminus;
RunCall.addOverload it "-";
val it: real*real->real = RunCall.run_call2 RuntimeCalls.POLY_SYS_Sub_real;
RunCall.addOverload it "-";
val it: word*word->word = RunCall.run_call2 RuntimeCalls.POLY_SYS_minus_word;
RunCall.addOverload it "-";
val it: int*int->int = RunCall.run_call2 RuntimeCalls.POLY_SYS_amul;
RunCall.addOverload it "*";
val it: real*real->real = RunCall.run_call2 RuntimeCalls.POLY_SYS_Mul_real;
RunCall.addOverload it "*";
val it: word*word->word = RunCall.run_call2 RuntimeCalls.POLY_SYS_mul_word;
RunCall.addOverload it "*";
(* Unary operations. *)
val it: int->int = RunCall.run_call1 RuntimeCalls.POLY_SYS_aneg;
RunCall.addOverload it "~";
val it: real->real = RunCall.run_call1 RuntimeCalls.POLY_SYS_Neg_real;
RunCall.addOverload it "~";
local
val zero: word = RunCall.unsafeCast 0
in
fun it x = zero - x
end;
RunCall.addOverload it "~";
fun it (i: int): int = if i >= 0 then i else ~ i;
RunCall.addOverload it "abs";
fun it (x: real): real = if x >= 0.0 then x else ~ x;
RunCall.addOverload it "abs";
local
val zero: word = RunCall.unsafeCast 0
in
fun it x = if x >= zero then x else ~ x
end;
RunCall.addOverload it "abs";
(* Equality functions. In this case we
are not actually adding overloadings (equality is
handled specially by the type system) but telling
the compiler about functions which provide faster
implementation of equality than the general-purpose
structure equality. *)
(* POLY_SYS_equala performs equality checking on both short and long
versions of arbitrary precision integers. *)
val it: int*int->bool = RunCall.run_call2 RuntimeCalls.POLY_SYS_equala;
RunCall.addOverload it "=";
(* POLY_SYS_int_eq does a simple bitwise comparison on its
arguments which is sufficient if the values are always short. *)
val it: bool*bool->bool = RunCall.run_call2 RuntimeCalls.POLY_SYS_int_eq;
RunCall.addOverload it "=";
val it: char*char->bool = RunCall.run_call2 RuntimeCalls.POLY_SYS_int_eq;
RunCall.addOverload it "=";
val it: string*string->bool = RunCall.run_call2 RuntimeCalls.POLY_SYS_teststreq;
RunCall.addOverload it "=";
(* POLY_SYS_word_eq is the same as POLY_SYS_int_eq in the memory mapped
version of Poly/ML. It used to be different in the persistent store
version because it was possible for two pointers to the same object
to have different values. *)
(* Adding an overload for equality on 'a ref has the effect of allowing
equality on all ref types. *)
local
(* This is even more messy than usual because we have a type variable
in the type. *)
val f : word*word->bool =
RunCall.run_call2 RuntimeCalls.POLY_SYS_word_eq
in
fun it (x: 'a ref, y: 'a ref) = RunCall.unsafeCast f (x,y)
end;
RunCall.addOverload it "=";
val it : word * word -> bool = RunCall.run_call2 RuntimeCalls.POLY_SYS_word_eq;
RunCall.addOverload it "=";
local
val not = RunCall.run_call1 RuntimeCalls.POLY_SYS_not_bool
in
fun it(i:int, j: int): bool = not(RunCall.run_call2 RuntimeCalls.POLY_SYS_equala(i, j))
end;
RunCall.addOverload it "<>";
val it: bool*bool->bool = RunCall.run_call2 RuntimeCalls.POLY_SYS_int_neq;
RunCall.addOverload it "<>";
val it: char*char->bool = RunCall.run_call2 RuntimeCalls.POLY_SYS_int_neq;
RunCall.addOverload it "<>";
val it: string*string->bool = RunCall.run_call2 RuntimeCalls.POLY_SYS_teststrneq;
RunCall.addOverload it "<>";
local
(* This is even more messy than usual because of the types. *)
val f : word*word->bool =
RunCall.run_call2 RuntimeCalls.POLY_SYS_word_neq
in
fun it (x: 'a ref, y: 'a ref) = RunCall.unsafeCast f (x,y)
end;
RunCall.addOverload it "<>";
val it : word * word -> bool = RunCall.run_call2 RuntimeCalls.POLY_SYS_word_neq;
RunCall.addOverload it "<>";
(* div, mod and / are overloaded in ML97. *)
val it: real * real -> real = RunCall.run_call2 RuntimeCalls.POLY_SYS_Div_real;
RunCall.addOverload it "/";
local
infix 7 quot
val op quot: int * int -> int = RunCall.run_call2 RuntimeCalls.POLY_SYS_adiv;
in
fun it (x, y) =
let
(* If the signs differ the normal quot operation will give the wrong
answer. We have to round the result down by subtracting either y-1 or
y+1. This will round down because it will have the opposite sign to x *)
(* ...
val d = x - (if (y >= 0) = (x >= 0) then 0 else if y > 0 then y-1 else y+1)
... *)
val xpos = x >= 0;
val ypos = y >= 0;
val d =
if xpos = ypos
then x
else if ypos
then (x - (y - 1))
else (x - (y + 1))
in
d quot y (* may raise Div for divide-by-zero *)
end;
end;
RunCall.addOverload it "div";
local
infix 7 rem
val op rem: int * int -> int = RunCall.run_call2 RuntimeCalls.POLY_SYS_amod;
in
fun it(x, y) =
let
val r = (x rem y) (* must handle divide-by-zero *)
(* handle Div => raise Mod; *)
in
if r = 0 orelse (y >= 0) = (r >= 0) then r else r + y
end;
end;
RunCall.addOverload it "mod";
val it : word*word->word = RunCall.run_call2 RuntimeCalls.POLY_SYS_div_word;
RunCall.addOverload it "div";
val it : word*word->word = RunCall.run_call2 RuntimeCalls.POLY_SYS_mod_word;
RunCall.addOverload it "mod";
local
(* We need to use the same identifier for this that we used when
compiling the compiler, particularly "make". *)
structure Fail =
RunCall.Run_exception1
(
type ex_type = string;
val ex_iden = RuntimeCalls.EXC_Fail
)
in
exception Fail = Fail.ex
end;
(* A few useful functions which are in the top-level environment.
Others are added later. *)
(* This is built in because the length of a string is stored as
an untagged integer. The result needs to be a tagged integer. Actually
this might be better written using a separate function POLY_SYS_get_string_length
(by analogy with POLY_SYS_set_string_length) and then
fun size (s: string): int = if isShort s then 1 else POLY_SYS_get_string_length s;
The advantage would be that the . *)
val size : string -> int =
RunCall.run_call1 RuntimeCalls.POLY_SYS_string_length;
val str: char ->string = RunCall.unsafeCast;
val ord: char -> int = RunCall.unsafeCast;
val not: bool -> bool = RunCall.run_call1 RuntimeCalls.POLY_SYS_not_bool;
val use: string -> unit = Bootstrap.use; (* This will be replaced. *)
local
val System_setw: (* 'a ref*int*'a*) word*int*word ->unit =
RunCall.run_call3 RuntimeCalls.POLY_SYS_assign_word
in
fun (var: 'a ref) := (v: 'a) : unit =
(RunCall.unsafeCast System_setw (var, 0, v); ())
end;
(* The following version of "o" currently gets optimised better. *)
fun (f o g) = fn x => f (g x); (* functional composition *)
fun length l =
let
(* Tail-recursive function. *)
fun len [] i = i
| len (_::l) i = len l (i+1)
in
len l 0
end
local
(* Temporary conversion function for characters. This is replaced in
the Char structure. *)
open RuntimeCalls;
structure Conversion =
RunCall.Run_exception1
(
type ex_type = string;
val ex_iden = EXC_conversion
);
exception Conversion = Conversion.ex;
val isShortString : string -> bool = RunCall.run_call1 POLY_SYS_is_short
fun convChar (s: string) : char =
let
val convS = Bootstrap.convString s
in
(* Should be exactly a single character i.e. a single short value. *)
if isShortString convS then RunCall.unsafeCast convS
else raise Conversion "Bad character"
end;
in
val it = RunCall.addOverload convChar "convChar";
end;
(* Print functions. Some of these are replaced by functions in the Basis library and
are installed here merely so that we can get useful output if we get a failure while
compiling it. *)
local
open RuntimeCalls
val ord0 = ord #"0";
val chr = RunCall.unsafeCast
fun print_bool (put, beg, brk, nd) depth _ (b: bool) =
put(if b then "true" else "false")
fun print_string (put, beg, brk, nd) depth _ (s: string) =
put(s) (* Not escaped at the moment. *)
fun print_char (put, beg, brk, nd) depth _ (c: char) =
(put("#"); put(RunCall.unsafeCast c))
fun print_list (put, beg, brk, nd) depth printEl (l: 'a list) =
let
(* Print the list as [<elem>, <elem>, etc ]. Replace the
rest of the list by ... once the depth reaches zero. *)
fun plist [] depth = ()
| plist _ 0 = put "..."
| plist [h] depth = printEl (h, depth)
| plist (h::t) depth =
( printEl (h, depth);
put ",";
brk (1, 0);
plist t (depth - 1)
)
in
beg (3, false); (* Wrap this in a begin-end block to keep it together. *)
put "[";
if depth <= 0 then put "..." else plist l depth;
put "]";
nd ()
end
in
val it = PolyML.install_pp print_bool;
val it = PolyML.install_pp print_string;
val it = PolyML.install_pp print_char;
val it = PolyML.install_pp print_list
end;
|