1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
|
(*
Title: Standard Basis Library: Word and LargeWord Structure
Author: David Matthews
Copyright David Matthews 1999, 2005
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*)
(* G&R 2004 status: updated. *)
(*
This file contains definitions of both LargeWord and Word. SysWord is
defined to be LargeWord.
The only purpose of LargeWord is so that it can be used, as SysWord, to
hold the full machine word values for certain operating-system calls.
*)
(* This uses the global definition of type "word" made in the compiler.
That type has special status as the default for literals of the form
0wn in the absence of any other type information. *)
local
open RuntimeCalls;
type largeword = {hi: word, lo: word}
(* Extract a word value from a character stream. *)
(* There's a complication here which is similar to that with 0x for
Int.scan. A word value may, optionally, be preceded by 0w or
for hex values 0wx, 0wX, 0x or 0X. Since this is optional it is
possible for the value after the 0w to be anything, not just a
valid number, in which case the result is the 0 and the continuation
is w... *)
fun scanWord radix getc src =
let
(* Some of this code duplicates code in Int.scan. It would
be better to avoid that if we could. The difficulty is that
Int.scan allows the number to begin with a sign and also
another 0x for hex values. *)
val base =
case radix of
StringCvt.BIN => 2
| StringCvt.OCT => 8
| StringCvt.DEC => 10
| StringCvt.HEX => 16
(* Read the digits, accumulating the result in acc. isOk is true
once we have read a valid digit. *)
fun read_digits src acc isOk =
case getc src of
NONE => if isOk then SOME(acc, src) else NONE
| SOME(ch, src') =>
if Char.ord ch >= Char.ord #"0"
andalso Char.ord ch < (Char.ord #"0" + base)
then read_digits src'
(acc*base + Char.ord ch - Char.ord #"0") true
else (* Invalid character - either end of number or bad no. *)
if isOk then SOME(acc, src) else NONE
fun read_hex_digits src acc isOk =
case getc src of
NONE => if isOk then SOME(acc, src) else NONE
| SOME(ch, src') =>
if Char.ord ch >= Char.ord #"0"
andalso Char.ord ch <= Char.ord #"9"
then read_hex_digits src'
(acc*16 + Char.ord ch - Char.ord #"0") true
else if Char.ord ch >= Char.ord #"A"
andalso Char.ord ch <= Char.ord #"F"
then read_hex_digits src'
(acc*16 + Char.ord ch - Char.ord #"A" + 10) true
else if Char.ord ch >= Char.ord #"a"
andalso Char.ord ch <= Char.ord #"f"
then read_hex_digits src'
(acc*16 + Char.ord ch - Char.ord #"a" + 10) true
else (* Invalid character - either end of number or bad no. *)
if isOk then SOME(acc, src) else NONE
fun read_number src =
case radix of
StringCvt.HEX => read_hex_digits src 0 false
| _ => (* Binary, octal and decimal *) read_digits src 0 false
in
case getc src of
NONE => NONE
| SOME(#"0", src') =>
let (* May be the start of the number or may be 0w, 0x etc. *)
val after0 =
case getc src' of
NONE => NONE
| SOME(ch, src'') =>
if ch = #"w"
then if radix = StringCvt.HEX
then (* Is it 0wx, 0wX ? *)
(
case getc src'' of
NONE => NONE
| SOME(ch, src''') =>
if ch = #"x" orelse ch = #"X"
then read_number src''' (* Skip the 0wx *)
else read_number src'' (* Skip the 0w *)
)
else read_number src'' (* Skip the 0w *)
else if (ch = #"x" orelse ch = #"X") andalso radix = StringCvt.HEX
then read_number src''
else read_number src (* Include the 0 in the input *)
in
(* If the string *)
case after0 of
NONE => (* No valid number after it, return the zero .*)
SOME(0, src')
| res => res
end
| SOME(ch, src') =>
if Char.isSpace ch (* Skip white space. *)
then scanWord radix getc src' (* Recurse *)
else (* See if it's a valid digit. *)
read_number src
end (* scanWord *)
(* Conversion from integer may involve extracting the low-order word
from a long-integer representation. *)
local
(* Load the first word of a long form arbitrary precision
number which is always little-endian, tag it and negate
it if necessary. *)
val getFirstWord: int -> word =
RunCall.run_call1 POLY_SYS_get_first_long_word
in
(* We previously had a single RTS function to do this. I've
replaced that by this code. Since most of the time we're
going to be converting short integers this will avoid
making an RTS call. getFirstWord can be implemented in
the code-generator fairly easily on little-endian machines
but it's too difficult to do it on the Sparc. *)
fun wordFromInt (i: int): word =
if LibrarySupport.isShortInt i
then RunCall.unsafeCast i
else getFirstWord i
end
(* The maximum word value is given by the smallest integer power of two
which when converted to word gives zero, less one. *)
val zero = (* 0w *) wordFromInt 0
local
fun power2' n 0 = n
| power2' n i = power2' (2*n) (i-1)
val power2 = power2' 1
fun findlong i =
if wordFromInt(power2 i) = zero then i else findlong(i+1)
in
val wordSize = findlong 1
val maxWordP1 = power2 wordSize
val maxWord = maxWordP1 - 1
val maxLongWord = power2 (wordSize*2) - 1
val maxWordAsWord = wordFromInt maxWord
val wordSizeAsWord = wordFromInt wordSize
end
val wordeq: word*word->bool = RunCall.run_call2 RuntimeCalls.POLY_SYS_word_eq;
structure Words :>
sig
(* The result signatures are quite complicated because the general
signature includes LargeWord.word and Word.word explicitly in a
few cases. We have to make variants of them to handle the fact that
we are declaring Word and LargeWord. *)
type smallword = word
type largeword
structure Word:
sig
type word = word
val wordSize : int
val toLarge : word -> largeword
val toLargeX : word -> largeword
val toLargeWord : word -> largeword
val toLargeWordX : word -> largeword
val fromLarge : largeword -> word
val fromLargeWord : largeword -> word
val toLargeInt : word -> LargeInt.int
val toLargeIntX : word -> LargeInt.int
val fromLargeInt : LargeInt.int -> word
val toInt : word -> Int.int
val toIntX : word -> Int.int
val fromInt : Int.int -> word
val orb : (word * word) -> word
val xorb : (word * word) -> word
val andb : (word * word) -> word
val notb : word -> word
val << : (word * word) -> word
val >> : (word * word) -> word
val ~>> : (word * word) -> word
val + : (word * word) -> word
val - : (word * word) -> word
val * : (word * word) -> word
val div : (word * word) -> word
val mod : (word * word) -> word
val ~ : word -> word
val compare : (word * word) -> General.order
val > : (word * word) -> bool
val < : (word * word) -> bool
val >= : (word * word) -> bool
val <= : (word * word) -> bool
val min : (word * word) -> word
val max : (word * word) -> word
val fmt : StringCvt.radix -> word -> string
val toString : word -> string
val fromString : string -> word option
val scan : StringCvt.radix -> (char, 'a) StringCvt.reader -> 'a -> (word * 'a) option
end
and LargeWord:
sig
eqtype word
val wordSize : int
val toLarge : word -> word
val toLargeX : word -> word
val toLargeWord : word -> word
val toLargeWordX : word -> word
val fromLarge : word -> word
val fromLargeWord : word -> word
val toLargeInt : word -> LargeInt.int
val toLargeIntX : word -> LargeInt.int
val fromLargeInt : LargeInt.int -> word
val toInt : word -> Int.int
val toIntX : word -> Int.int
val fromInt : Int.int -> word
val orb : (word * word) -> word
val xorb : (word * word) -> word
val andb : (word * word) -> word
val notb : word -> word
val << : (word * smallword) -> word
val >> : (word * smallword) -> word
val ~>> : (word * smallword) -> word
val + : (word * word) -> word
val - : (word * word) -> word
val * : (word * word) -> word
val div : (word * word) -> word
val mod : (word * word) -> word
val ~ : word -> word
val compare : (word * word) -> General.order
val > : (word * word) -> bool
val < : (word * word) -> bool
val >= : (word * word) -> bool
val <= : (word * word) -> bool
val min : (word * word) -> word
val max : (word * word) -> word
val fmt : StringCvt.radix -> word -> string
val toString : word -> string
val fromString : string -> word option
val scan : StringCvt.radix -> (char, 'a) StringCvt.reader -> 'a -> (word * 'a) option
end
(* These sharing constraints ensure that although we are using opaque
matching we retain the correct sharing. *)
sharing type LargeWord.word = largeword (* Abstract *)
end =
struct
type largeword = largeword and smallword = word
structure Word =
struct
(* Word.word is represented using the short (tagged) integer format.
It is, though, unsigned so large word values are represented in the
same form as negative integers. *)
type word = word
val fromInt = wordFromInt
and wordSize = wordSize
(* Conversion to signed integer is simple. *)
val toIntX: word->int = RunCall.unsafeCast
(* Conversion to unsigned integer has to treat values with the sign bit
set specially. *)
fun toInt x =
let
val signed = toIntX x
in
if signed < 0 then maxWordP1+signed else signed
end
fun scan radix getc src =
case scanWord radix getc src of
NONE => NONE
| SOME(res, src') =>
if res > maxWord then raise General.Overflow
else SOME(fromInt res, src')
(* TODO: Implement this directly? *)
val fromString = StringCvt.scanString (scan StringCvt.HEX)
val toLargeInt : word -> LargeInt.int = toInt
and toLargeIntX : word -> LargeInt.int = toIntX
and fromLargeInt : LargeInt.int -> word = fromInt
infix >> << ~>>
val op + : word*word->word = RunCall.run_call2 POLY_SYS_plus_word
and op - : word*word->word = RunCall.run_call2 POLY_SYS_minus_word
and op * : word*word->word = RunCall.run_call2 POLY_SYS_mul_word
and op div : word*word->word = RunCall.run_call2 POLY_SYS_div_word
and op mod : word*word->word = RunCall.run_call2 POLY_SYS_mod_word
and orb : word*word->word = RunCall.run_call2 POLY_SYS_or_word
and andb : word*word->word = RunCall.run_call2 POLY_SYS_and_word
and xorb : word*word->word = RunCall.run_call2 POLY_SYS_xor_word
and op >> : word*word->word = RunCall.run_call2 POLY_SYS_shift_right_word
and op << : word*word->word = RunCall.run_call2 POLY_SYS_shift_left_word
and op ~>> : word*word->word = RunCall.run_call2 POLY_SYS_shift_right_arith_word
local
val signShift = fromInt(Int.-(wordSize,1))
in
fun toLargeWord x = {hi=zero, lo=x}
and toLargeWordX x = (* Sign extend. *)
{hi = x ~>> signShift, lo = x}
and fromLargeWord (x: largeword) = #lo x
fun ~ x = zero - x
end
val toLarge = toLargeWord and toLargeX = toLargeWordX and fromLarge = fromLargeWord
fun notb x = xorb(maxWordAsWord, x)
(* We can format the result using the integer format function. *)
fun fmt radix i = Int.fmt radix (toInt i)
val toString = fmt StringCvt.HEX
val op > : word*word->bool = RunCall.run_call2 POLY_SYS_word_gtr
and op < : word*word->bool = RunCall.run_call2 POLY_SYS_word_lss
and op >= : word*word->bool = RunCall.run_call2 POLY_SYS_word_geq
and op <= : word*word->bool = RunCall.run_call2 POLY_SYS_word_leq
fun compare (i, j) =
if i < j then General.LESS
else if i > j then General.GREATER else General.EQUAL
fun min (i, j) = if i < j then i else j
and max (i, j) = if i > j then i else j
end (* Word *)
structure LargeWord =
struct
type word = largeword
val wordSize = 2*wordSize;
(* As this is LargeWord we don't need to do anything here. *)
fun toLargeWord x = x
and toLargeWordX x = x
and fromLargeWord x = x
val toLarge = toLargeWord and toLargeX = toLargeWordX and fromLarge = fromLargeWord
(* The values are treated as lo + 2^n * hi *)
fun fromInt x = { lo = Word.fromInt x,
hi = Word.fromInt (Int.div(x, maxWordP1)) }
and toIntX { lo, hi } = Word.toInt lo + Word.toIntX hi * maxWordP1
and toInt { lo, hi } = Word.toInt lo + Word.toInt hi * maxWordP1
val toLargeInt = toInt
val toLargeIntX = toIntX
val fromLargeInt = fromInt
fun scan radix getc src =
case scanWord radix getc src of
NONE => NONE
| SOME(res, src') =>
if res > maxLongWord then raise General.Overflow
else SOME(fromInt res, src')
(* TODO: Implement this directly? *)
val fromString = StringCvt.scanString (scan StringCvt.HEX)
(* Logical operations are fairly simple. *)
fun orb ({hi, lo}, {hi=hi', lo=lo'}) =
{hi=Word.orb(hi, hi'), lo=Word.orb(lo, lo')}
and xorb ({hi, lo}, {hi=hi', lo=lo'}) =
{hi=Word.xorb(hi, hi'), lo=Word.xorb(lo, lo')}
and andb ({hi, lo}, {hi=hi', lo=lo'}) =
{hi=Word.andb(hi, hi'), lo=Word.andb(lo, lo')}
and notb {hi, lo} = {hi=Word.notb hi, lo=Word.notb lo}
(* Shifts are a bit more difficult. *)
fun op << ({hi, lo}, x) =
if Word.>=(x, wordSizeAsWord)
then {hi=Word.<<(lo, Word.-(x, wordSizeAsWord)), lo=zero}
else {lo= Word.<<(lo, x),
hi = Word.orb(Word.<<(hi, x),
Word.>>(lo, Word.-(wordSizeAsWord, x)))}
and op >> ({hi, lo}, x) =
if Word.>=(x, wordSizeAsWord)
then {lo=Word.>>(hi, Word.-(x, wordSizeAsWord)), hi=zero}
else {hi= Word.>>(hi, x),
lo= Word.orb(Word.>>(lo, x),
Word.<<(hi, Word.-(wordSizeAsWord, x)))}
and op ~>> ({hi, lo}, x) =
if Word.>=(x, wordSizeAsWord)
then {lo=Word.~>>(hi, Word.-(x, wordSizeAsWord)),
hi=Word.~>>(hi, wordSizeAsWord) (* Just leaves the sign bit. *)}
else {hi= Word.~>>(hi, x),
(* No sign propagation into low-order word. *)
lo= Word.orb(Word.>>(lo, x),
Word.<<(hi, Word.-(wordSizeAsWord, x)))}
(* Arithmetic is most easily done just by converting to integer and
back again. *)
fun op + (x, y) = fromInt(Int.+(toInt x, toInt y))
and op - (x, y) = fromInt(Int.-(toInt x, toInt y))
and op * (x, y) = fromInt(Int.*(toInt x, toInt y))
and op div (x, y) = fromInt(Int.quot(toInt x, toInt y))
and op mod (x, y) = fromInt(Int.rem(toInt x, toInt y))
and ~ x = fromInt(Int.~(toInt x))
fun op > ({hi, lo}, {hi=hi', lo=lo'}) =
case Word.compare (hi, hi') of
General.GREATER => true
| General.EQUAL => Word.>(lo, lo')
| General.LESS => false
and op < ({hi, lo}, {hi=hi', lo=lo'}) =
case Word.compare (hi, hi') of
General.GREATER => false
| General.EQUAL => Word.<(lo, lo')
| General.LESS => true
and op >= ({hi, lo}, {hi=hi', lo=lo'}) =
case Word.compare (hi, hi') of
General.GREATER => true
| General.EQUAL => Word.>=(lo, lo')
| General.LESS => false
and op <= ({hi, lo}, {hi=hi', lo=lo'}) =
case Word.compare (hi, hi') of
General.GREATER => false
| General.EQUAL => Word.<=(lo, lo')
| General.LESS => true
and compare({hi, lo}, {hi=hi', lo=lo'}) =
case Word.compare (hi, hi') of
General.EQUAL => Word.compare(lo, lo')
| compHi => compHi
fun min (i, j) = if i < j then i else j
and max (i, j) = if i > j then i else j
(* We can format the result using the integer format function. *)
fun fmt radix i = Int.fmt radix (toInt i)
val toString = fmt StringCvt.HEX
end;
end (* Words *)
(* Converter to word values. *)
local
structure Conversion =
RunCall.Run_exception1
(
type ex_type = string;
val ex_iden = EXC_conversion
);
exception Conversion = Conversion.ex;
(* The string may be either 0wnnn or 0wxXXX *)
fun getRadix s =
if String.size s > 2 andalso String.sub(s, 2) = #"x"
then StringCvt.HEX else StringCvt.DEC
fun convWord s =
let
val radix = getRadix s
in
case StringCvt.scanString (Words.Word.scan radix) s of
NONE => raise Conversion "Invalid word constant"
| SOME res => res
end
and convLarge s =
let
val radix = getRadix s
in
case StringCvt.scanString (Words.LargeWord.scan radix) s of
NONE => raise Conversion "Invalid word constant"
| SOME res => res
end
in
(* Install this as a conversion function for word literals.
Unlike other overloaded functions there's no need to
ensure that overloaded conversion functions are installed
at the top-level. The compiler has type "word" built in
and will use this conversion function for literals of the
form 0w... in preference to any other (e.g. for Word8.word)
if unification does not give an explicit type.
However, because LargeWord.word is abstract we have to
install the convertor outside the structure. *)
val unused: unit = RunCall.addOverload convWord "convWord"
val unused: unit = RunCall.addOverload convLarge "convWord"
end
local
(* Install the pretty printer for Word.word *)
fun prettyWord(p, _, _, _) _ _ x =
p("0wx" ^ Words.Word.toString x)
and prettyLarge(p, _, _, _) _ _ x =
p("0wx" ^ Words.LargeWord.toString x)
in
val () = PolyML.install_pp prettyWord
val () = PolyML.install_pp prettyLarge
end
in
structure Word = Words.Word;
structure LargeWord = Words.LargeWord;
end;
(* Add the overloaded operators. Do this outside the structure so
that we can capture the inline code. We've already done this for
word (=Word.word) in the prelude. *)
RunCall.addOverload LargeWord.~ "~";
RunCall.addOverload LargeWord.+ "+";
RunCall.addOverload LargeWord.- "-";
RunCall.addOverload LargeWord.* "*";
RunCall.addOverload LargeWord.div "div";
RunCall.addOverload LargeWord.mod "mod";
RunCall.addOverload LargeWord.< "<";
RunCall.addOverload LargeWord.> ">";
RunCall.addOverload LargeWord.<= "<=";
RunCall.addOverload LargeWord.>= ">=";
(* This signature is defined in terms of Word and LargeWord so
we have to define it after the structures. *)
signature WORD =
sig
eqtype word
val wordSize : int
val toLarge : word -> LargeWord.word
val toLargeX : word -> LargeWord.word
val toLargeWord : word -> LargeWord.word
val toLargeWordX : word -> LargeWord.word
val fromLarge : LargeWord.word -> word
val fromLargeWord : LargeWord.word -> word
val toLargeInt : word -> LargeInt.int
val toLargeIntX : word -> LargeInt.int
val fromLargeInt : LargeInt.int -> word
val toInt : word -> Int.int
val toIntX : word -> Int.int
val fromInt : Int.int -> word
val orb : (word * word) -> word
val xorb : (word * word) -> word
val andb : (word * word) -> word
val notb : word -> word
val << : (word * Word.word) -> word
val >> : (word * Word.word) -> word
val ~>> : (word * Word.word) -> word
val + : (word * word) -> word
val - : (word * word) -> word
val * : (word * word) -> word
val div : (word * word) -> word
val mod : (word * word) -> word
val ~ : word -> word
val compare : (word * word) -> General.order
val > : (word * word) -> bool
val < : (word * word) -> bool
val >= : (word * word) -> bool
val <= : (word * word) -> bool
val min : (word * word) -> word
val max : (word * word) -> word
val fmt : StringCvt.radix -> word -> string
val toString : word -> string
val fromString : string -> word option
val scan : StringCvt.radix -> (char, 'a) StringCvt.reader -> (word, 'a) StringCvt.reader
end;
|