File: exporter.cpp

package info (click to toggle)
polyml 5.2.1-1.1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd, wheezy
  • size: 19,692 kB
  • ctags: 17,567
  • sloc: cpp: 37,221; sh: 9,591; asm: 4,120; ansic: 428; makefile: 203; ml: 191; awk: 91; sed: 10
file content (562 lines) | stat: -rw-r--r-- 18,166 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
/*
    Title:  exporter.cpp - Export a function as an object or C file

    Copyright (c) 2006-7 David C.J. Matthews

    This library is free software; you can redistribute it and/or
    modify it under the terms of the GNU Lesser General Public
    License as published by the Free Software Foundation; either
    version 2.1 of the License, or (at your option) any later version.
    
    This library is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    Lesser General Public License for more details.
    
    You should have received a copy of the GNU Lesser General Public
    License along with this library; if not, write to the Free Software
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA

*/

#ifdef WIN32
#include "winconfig.h"
#else
#include "config.h"
#endif

#ifdef HAVE_ASSERT_H
#include <assert.h>
#define ASSERT(x) assert(x)

#else
#define ASSERT(x)
#endif

#ifdef HAVE_STRING_H
#include <string.h>
#endif

#ifdef HAVE_ERRNO_H
#include <errno.h>
#endif

#ifdef HAVE_SYS_PARAM_H
#include <sys/param.h>
#endif

#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif

#include "exporter.h"
#include "save_vec.h"
#include "polystring.h"
#include "run_time.h"
#include "osmem.h"
#include "scanaddrs.h"
#include "gc.h"
#include "machine_dep.h"
#include "diagnostics.h"
#include "memmgr.h"
#include "processes.h" // For IO_SPACING

#include "pexport.h"

#ifdef HAVE_PECOFF
#include "pecoffexport.h"
#elif defined(HAVE_ELF_H)
#include "elfexport.h"
#elif defined(HAVE_MACH_O_RELOC_H)
#include "machoexport.h"
#endif

#if(!defined(MAXPATHLEN) && defined(MAX_PATH))
#define MAXPATHLEN MAX_PATH
#endif

/*
To export the function and everything reachable from it we need to copy
all the objects into a new area.  We leave tombstones in the original
objects by overwriting the length word.  That prevents us from copying an
object twice and breaks loops.  Once we've copied the objects we then
have to go back over the memory and turn the tombstones back into length
words.
*/

CopyScan::CopyScan(unsigned h): hierarchy(h)
{
    ASSERT(gMem.neSpaces == 0);
    // Set the space sizes to a quarter the space currently in use.  Making
    // the spaces too large may be a problem if we're very close to the maximum
    // address space.  Making them too small may increase the cost of linking.
    defaultImmSize = defaultMutSize = 0;
    defaultNoOverSize = 4096; // This can be small.
    unsigned i;
    for (i = 0; i < gMem.npSpaces; i++)
    {
        MemSpace *space = gMem.pSpaces[i];
        POLYUNSIGNED size = (space->top-space->bottom)/4;
        if (space->isMutable)
            defaultMutSize += size;
        else
            defaultImmSize += size;
    }
    for (i = 0; i < gMem.nlSpaces; i++)
    {
        LocalMemSpace *space = gMem.lSpaces[i];
        POLYUNSIGNED size = (space->top-space->pointer)/4;
        if (space->isMutable)
            defaultMutSize += size;
        else
            defaultImmSize += size;
    }
    if (defaultMutSize < 1024*1024)
        defaultMutSize = 1024*1024;
    if (defaultImmSize < 1024*1024)
        defaultImmSize = 1024*1024;
}

CopyScan::~CopyScan()
{
    gMem.DeleteExportSpaces();
}


// This function is called for each address in an object
// once it has been copied to its new location.  We copy first
// then scan to update the addresses.
POLYUNSIGNED CopyScan::ScanAddressAt(PolyWord *pt)
{
    PolyWord val = *pt;
    // Ignore integers.
    if (IS_INT(val) || val == PolyWord::FromUnsigned(0))
        return 0;
    // Ignore pointers to the IO area.  They will be relocated
    // when we write out the memory
    MemSpace *space = gMem.SpaceForAddress(val.AsAddress());
    ASSERT(space != 0);
    if (space->spaceType == ST_IO)
        return 0;

    // We may sometimes get addresses that have already been updated
    // to point to the new area.  e.g. (only?) in the case of constants
    // that have been updated in ScanConstantsWithinCode.
    if (space->spaceType == ST_EXPORT)
        return 0;

    // If this is at a lower level than the hierarchy we are saving
    // then leave it untouched.
    if (space->spaceType == ST_PERMANENT)
    {
        PermanentMemSpace *pmSpace = (PermanentMemSpace*)space;
        if (pmSpace->hierarchy < hierarchy)
            return 0;
    }

    if (val.IsCodePtr())
    {
        // Find the start of the code segment
        PolyObject *oldObject = ObjCodePtrToPtr(val.AsCodePtr());
        // Calculate the byte offset of this value within the code object.
        POLYUNSIGNED offset = val.AsCodePtr() - (byte*)oldObject;
        PolyObject *newObject = ScanObjectAddress(oldObject);
        *pt = PolyWord::FromCodePtr((byte*)newObject + offset);
        return 0;
    }

    ASSERT(OBJ_IS_DATAPTR(val));

    // Have we already scanned this?
    PolyObject *obj = val.AsObjPtr();
    if (obj->ContainsForwardingPtr())
    {
        // Update the address to the new value.
        PolyObject *newAddr = obj->GetForwardingPtr();
        *pt = newAddr;
        return 0; // No need to scan it again.
    }
    // No, we need to copy it.
    ASSERT(space->spaceType == ST_LOCAL || space->spaceType == ST_PERMANENT);
    POLYUNSIGNED lengthWord = obj->LengthWord();
    POLYUNSIGNED words = OBJ_OBJECT_LENGTH(lengthWord);

    PolyObject *newObj = 0;
    bool isMutableObj = obj->IsMutable();
    bool isNoOverwrite = false;
    if (isMutableObj) isNoOverwrite = obj->IsNoOverwriteObject();
    // Allocate a new address for the object.
    for (unsigned i = 0; i < gMem.neSpaces; i++)
    {
        PermanentMemSpace *space = gMem.eSpaces[i];
        if (isMutableObj == space->isMutable && isNoOverwrite == space->noOverwrite)
        {
            ASSERT(space->topPointer <= space->top && space->topPointer >= space->bottom);
            POLYUNSIGNED spaceLeft = space->top - space->topPointer;
            if (spaceLeft > words)
            {
                newObj = (PolyObject*)(space->topPointer+1);
                space->topPointer += words+1;
                break;
            }
        }
    }
    if (newObj == 0)
    {
        // Didn't find room in the existing spaces.  Create a new space.
        POLYUNSIGNED spaceWords;
        if (!isMutableObj) spaceWords = defaultImmSize;
        else if (isNoOverwrite) spaceWords = defaultNoOverSize;
        else spaceWords = defaultMutSize;
        if (spaceWords <= words)
            spaceWords = words+1; // Make sure there's space for this object.
        PermanentMemSpace *space = gMem.NewExportSpace(spaceWords, isMutableObj, isNoOverwrite);
        if (space == 0)
        {
            // Unable to allocate this.
            throw MemoryException();
        }
        newObj = (PolyObject*)(space->topPointer+1);
        space->topPointer += words+1;
        ASSERT(space->topPointer <= space->top && space->topPointer >= space->bottom);
    }

    newObj->SetLengthWord(lengthWord); // copy length word

    if (OBJ_IS_STACK_OBJECT(lengthWord))
        CopyStackFrame ((StackObject *)obj,(StackObject *)newObj);
    else
        memcpy(newObj, obj, words*sizeof(PolyWord));

    obj->SetForwardingPtr(newObj); // Put forwarding pointer in old object.

    if (OBJ_IS_CODE_OBJECT(lengthWord))
    {
        // We don't need to worry about flushing the instruction cache
        // since we're not going to execute this code here.
        // We do have to update any relative addresses within the code
        // to take account of its new position.  We have to do that now
        // even though ScanAddressesInObject will do it again because this
        // is the only point where we have both the old and the new addresses.
        machineDependent->ScanConstantsWithinCode(newObj, obj, words, this);
    }
    *pt = newObj; // Update it to the newly copied object.
    return lengthWord;  // This new object needs to be scanned.
}


PolyObject *CopyScan::ScanObjectAddress(PolyObject *base)
{
    PolyWord val = base;
    // Scan this as an address. 
    POLYUNSIGNED lengthWord = CopyScan::ScanAddressAt(&val);
    if (lengthWord)
        ScanAddressesInObject(val.AsObjPtr(), lengthWord);
    return val.AsObjPtr();
}

#define MAX_EXTENSION   4 // The longest extension we may need to add is ".obj"

// Convert the forwarding pointers in a region back into length words.

// Generally if this object has a forwarding pointer that's
// because we've moved it into the export region.  We can,
// though, get multiple levels of forwarding if there is an object
// that has been shifted up by a garbage collection, leaving a forwarding
// pointer and then that object has been moved to the export region.
// We mustn't turn locally forwarded values back into ordinary objects
// because they could contain addresses that are no longer valid.
static POLYUNSIGNED GetObjLength(PolyObject *obj)
{
    if (obj->ContainsForwardingPtr())
    {
        PolyObject *forwardedTo = obj->GetForwardingPtr();
        POLYUNSIGNED length = GetObjLength(forwardedTo);
        MemSpace *space = gMem.SpaceForAddress(forwardedTo);
        if (space->spaceType == ST_EXPORT)
            obj->SetLengthWord(length);
        return length;
    }
    else return obj->LengthWord();
}

static void FixForwarding(PolyWord *pt, POLYUNSIGNED space)
{
    while (space)
    {
        pt++;
        PolyObject *obj = (PolyObject*)pt;
        POLYUNSIGNED length = OBJ_OBJECT_LENGTH(GetObjLength(obj));
        pt += length;
        space -= length+1;
    }
}

class ExportRequest: public MainThreadRequest
{
public:
    ExportRequest(Handle root, Exporter *exp): exportRoot(root), exporter(exp) {}

    virtual void Perform() { exporter->RunExport(exportRoot->WordP()); }
    Handle exportRoot;
    Exporter *exporter;
};

static void exporter(TaskData *taskData, Handle args, const char *extension, Exporter *exports)
{
    char fileNameBuff[MAXPATHLEN+MAX_EXTENSION];
    POLYUNSIGNED length =
        Poly_string_to_C(DEREFHANDLE(args)->Get(0), fileNameBuff, MAXPATHLEN);
    if (length > MAXPATHLEN)
        raise_syscall(taskData, "File name too long", ENAMETOOLONG);

    // Does it already have the extension?  If not add it on.
    if (length < strlen(extension) || strcmp(fileNameBuff + length - strlen(extension), extension) != 0)
        strcat(fileNameBuff, extension);
    exports->exportFile = fopen(fileNameBuff, "wb");
    if (exports->exportFile == NULL)
        raise_syscall(taskData, "Cannot open export file", errno);

    Handle root = taskData->saveVec.push(args->WordP()->Get(1));

    // Request a full GC  to reduce the size of fix-ups.
    FullGC(taskData);
    // Request the main thread to do the export.
    ExportRequest request(root, exports);
    processes->MakeRootRequest(taskData, &request);
    if (exports->errorMessage)
        raise_fail(taskData, exports->errorMessage);
}

// This is called by the initial thread to actually do the export.
void Exporter::RunExport(PolyObject *rootFunction)
{
    Exporter *exports = this;
    // Copy the root and everything reachable from it into the temporary area.
    CopyScan copyScan;

    PolyObject *copiedRoot = 0;
    try {
        copiedRoot = copyScan.ScanObjectAddress(rootFunction);
    }
    catch (MemoryException)
    {
        // If we ran out of memory.
        copiedRoot = 0;
    }

    // Fix the forwarding pointers.
    unsigned j;
    for (j = 0; j < gMem.nlSpaces; j++)
    {
        LocalMemSpace *space = gMem.lSpaces[j];
        // Local areas only have objects from the allocation pointer to the top.
        FixForwarding(space->pointer, space->top - space->pointer);
    }
    for (j = 0; j < gMem.npSpaces; j++)
    {
        MemSpace *space = gMem.pSpaces[j];
        // Permanent areas are filled with objects from the bottom.
        FixForwarding(space->bottom, space->top - space->bottom);
    }

    // Reraise the exception after cleaning up the forwarding pointers.
    if (copiedRoot == 0)
    {
        exports->errorMessage = "Insufficient Memory";
        return;
    }

    // Copy the areas into the export object.
    exports->memTable = new memoryTableEntry[gMem.neSpaces+1];
    exports->ioMemEntry = 0;
    // The IO vector.  Should we actually create a blank area?  This needs to be
    // writable by the RTS but not normally by ML.
    MemSpace *ioSpace = gMem.IoSpace();
    exports->memTable[0].mtAddr = ioSpace->bottom;
    exports->memTable[0].mtLength = (char*)ioSpace->top - (char*)ioSpace->bottom;
    exports->memTable[0].mtFlags = 0;
    exports->memTable[0].mtIndex = 0;

    for (unsigned i = 0; i < gMem.neSpaces; i++)
    {
        memoryTableEntry *entry = &exports->memTable[i+1];
        PermanentMemSpace *space = gMem.eSpaces[i];
        entry->mtAddr = space->bottom;
        entry->mtLength = (space->topPointer-space->bottom)*sizeof(PolyWord);
        entry->mtIndex = i+1;
        if (space->isMutable)
        {
            entry->mtFlags = MTF_WRITEABLE;
            if (space->noOverwrite) entry->mtFlags |= MTF_NO_OVERWRITE;
        }
        else
            entry->mtFlags = MTF_EXECUTABLE;
    }

    exports->memTableEntries = gMem.neSpaces+1;

    exports->ioSpacing = IO_SPACING;
    exports->rootFunction = copiedRoot;

    exports->exportStore();
    return;
}

// Functions called via the RTS call.
Handle exportNative(TaskData *taskData, Handle args)
{
#ifdef HAVE_PECOFF
    // Windows including Cygwin
#ifdef WINDOWS_PC
    const char *extension = ".obj"; // Windows
#else
    const char *extension = ".o"; // Cygwin
#endif
    PECOFFExport exports;
    exporter(taskData, args, extension, &exports);
#elif defined(HAVE_ELF_H)
    // Most Unix including Linux, FreeBSD and Solaris.
    const char *extension = ".o";
    ELFExport exports;
    exporter(taskData, args, extension, &exports);
#elif defined(HAVE_MACH_O_RELOC_H)
    // Mac OS-X
    const char *extension = ".o";
    MachoExport exports;
    exporter(taskData, args, extension, &exports);
#else
    raise_exception_string (taskData, EXC_Fail, "Native export not available for this platform");
#endif
    return taskData->saveVec.push(TAGGED(0));
}

Handle exportPortable(TaskData *taskData, Handle args)
{
    PExport exports;
    exporter(taskData, args, ".txt", &exports);
    return taskData->saveVec.push(TAGGED(0));
}


// Helper functions for exporting.  We need to produce relocation information
// and this code is common to every method.
Exporter::Exporter(): exportFile(NULL), errorMessage(0), memTable(0)
{
}

Exporter::~Exporter()
{
    delete[](memTable);
    if (exportFile)
        fclose(exportFile);
}

void Exporter::relocateValue(PolyWord *pt)
{
    PolyWord q = *pt;
    if (IS_INT(q) || q == PolyWord::FromUnsigned(0)) {}
    else createRelocation(pt);
}

// Check through the areas to see where the address is.  It must be
// in one of them.
unsigned Exporter::findArea(void *p)
{
    for (unsigned i = 0; i < memTableEntries; i++)
    {
        if (p > memTable[i].mtAddr &&
            p <= (char*)memTable[i].mtAddr + memTable[i].mtLength)
            return i;
    }
    { ASSERT(0); }
    return 0;
}

void Exporter::relocateObject(PolyObject *p)
{
    if (p->IsByteObject())
    {
    }
    else if (p->IsCodeObject())
    {
        POLYUNSIGNED constCount;
        PolyWord *cp;
        ASSERT(! p->IsMutable() );
        p->GetConstSegmentForCode(cp, constCount);
        /* Now the constants. */
        for (POLYUNSIGNED i = 0; i < constCount; i++) relocateValue(&(cp[i]));

    }
    else if (p->IsStackObject())
    {
        StackObject *s = (StackObject*)p;
        POLYUNSIGNED length = p->Length();

        ASSERT(! p->IsMutable()); // Should have been frozen
        /* First the standard registers, space, pc, sp, hr. */
        // pc may be TAGGED(0) indicating a retry.
        PolyWord pc = PolyWord::FromCodePtr(s->p_pc);
        if (pc != TAGGED(0))
            s->p_pc = createRelocation(pc, &s->p_pc).AsCodePtr();

        PolyWord *stackPtr = s->p_sp; // Save this before we change it.
        s->p_sp = createRelocation(PolyWord::FromStackAddr(s->p_sp), &s->p_sp).AsStackAddr();
        s->p_hr = createRelocation(PolyWord::FromStackAddr(s->p_hr), &s->p_hr).AsStackAddr();

        /* Checked registers. */
        PolyWord *stackStart = (PolyWord*)p;
        PolyWord *stackEnd = stackStart+length;
        for (POLYUNSIGNED i = 0; i < s->p_nreg; i++)
        {
            PolyWord r = s->p_reg[i];
            if (r.AsStackAddr() >= stackStart && r.AsStackAddr() < stackEnd)
                createRelocation(&s->p_reg[i]);
            /* It seems we can have zeros in the registers, at least on the i386. */
            else if (r == PolyWord::FromUnsigned(0)) {}
            else relocateValue(&(s->p_reg[i]));
        }
        /* Now the values on the stack. */
        for (PolyWord *q = stackPtr; q < stackEnd; q++)
        {
            /* A stack may contain a value which is an offset. */
            if ((*q).AsStackAddr() >= stackStart && (*q).AsStackAddr() < stackEnd)
                createRelocation(q);
            else relocateValue(q);
        }
    }
    else /* Ordinary objects, essentially tuples. */
    {
        POLYUNSIGNED length = p->Length();
        for (POLYUNSIGNED i = 0; i < length; i++) relocateValue(p->Offset(i));
    }
}

ExportStringTable::ExportStringTable(): strings(0), stringSize(0), stringAvailable(0)
{
}

ExportStringTable::~ExportStringTable()
{
    free(strings);
}

// Add a string to the string table, growing it if necessary.
unsigned long ExportStringTable::makeEntry(const char *str)
{
    int len = strlen(str);
    unsigned long entry = stringSize;
    if (stringSize + len + 1 > stringAvailable)
    {
        stringAvailable = stringAvailable+stringAvailable/2;
        if (stringAvailable < stringSize + len + 1)
            stringAvailable = stringSize + len + 1 + 500;
        strings = (char*)realloc(strings, stringAvailable);
        if (strings == 0)
            throw MemoryException();
     }
    strcpy(strings + stringSize, str);
    stringSize += len + 1;
    return entry;
}