1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
|
/*
Title: Garbage Collector
Copyright (c) 2000-8
Cambridge University Technical Services Limited
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifdef WIN32
#include "winconfig.h"
#else
#include "config.h"
#endif
#ifdef HAVE_ASSERT_H
#include <assert.h>
#define ASSERT(x) assert(x)
#else
#define ASSERT(x)
#endif
#ifdef HAVE_WINDOWS_H
#include <windows.h> // Used in both Windows and Cygwin
#endif
#ifdef HAVE_UNISTD_H
#include <unistd.h> // For sysconf
#endif
#ifdef HAVE_SYS_TYPES_H
#include <sys/types.h>
#endif
#ifdef HAVE_SYS_SYSCTL_H
#include <sys/sysctl.h>
#endif
#include "globals.h"
#include "run_time.h"
#include "machine_dep.h"
#include "diagnostics.h"
#include "processes.h"
#include "timing.h"
#include "gc.h"
#include "scanaddrs.h"
#include "check_objects.h"
#include "osmem.h"
#include "bitmap.h"
#include "rts_module.h"
#include "memmgr.h"
unsigned gc_phase = 0; // Tells the profiler whether we're in the gc
// If the GC converts a weak ref from SOME to NONE it sets this ref. It can be
// cleared by the signal handler thread. There's no need for a lock since it
// is only set during GC and only cleared when not GCing.
bool convertedWeak = false;
/* zero the memory - the "standard" way */
#define wzero(start,word_count) do { memset(start, 0, (word_count)*sizeof(POLYUNSIGNED)); } while (0)
/*
How the garbage collector works.
Phase 1: Starting from the roots in the old mutable area, and
any pointers kept by the runtime system, we mark all
objects that are found within the two GC areas.
The GC areas extend from the allocation pointer
to the top of the area.
Phase 2: Then we scan the immutable object bitmap. When we find
a mutable object we try to find space for it in the mutable
area, if we find an immutable object we try to find space
for it further up the immutable area. We may have to extend
the mutable area to make room for objects since we must not commit
and leave mutable objects in the immutable area.
Then we do the same for the mutable area, copying immutable objects
out into the immutable area, and moving mutable objects up.
We keep track of the lowest object that could not be moved.
The allocation pointers will be reset to the lowest kept objects,
and the area below is taken to be free.
Phase 3: Then we start from the roots and runtime system objects and
look for pointers into the GC areas that point to tombstones.
These pointers are changed to point to the new position of
the objects. Then we process all the objects in the areas
doing the same thing.
Further notes:
The order of processing the immutable and mutable area has been changed
since the above comment was written (by Dave Matthews?).
It would be nice to combine phases 2 and 3 - we could traverse the
reachable data-structures, starting at the roots, adjusting pointers
as we go (rather like copyGC). We would only use the bitmap created
in phase 1 to tell us where to find space to move the new objects.
The main advantage of this approach is that is likely to be
quicker - we only have to traverse the new (small?) data-structure
rather than scanning the (large) mutable buffer.
The disadvantage is that it would leave part of the heap dirty,
and I think parts of the RTS may depend on any unused heap
word containing zeroes. I'll have to look at this very closely!
Note that this is a different issue from the compiler requiring
the area below the allocation area to be zeroed. (Should we
fix this?) Here we are talking about the area *above* the
allocation pointer, which may contain objects, tombstones
and zero words only.
A second disadvantage is that the "compress" pass may not give
as good compression as currently, because it wouldn't explicitly
start at the bottom and work up. In recompense, we would be able
to recycle all but the length word of a tombstone, so our
actual space usage might improve.
SPF 21/10/96
I've now deleted all that carefully optimised code that used to zero the
heap - it's now the responsibility of the compiler (and alloc) to ensure
that the store is correctly initialised whenever a GC might occur.
SPF 22/10/96
The GC is required to "clean" each area of the heap between pointer and top;
this area may only contain objects, tombstones and zero words. The GC
currently does this for the benefit of OpMutableBlock, but this behaviour
is also required for the PrintLocalProfileCounts in run_time.c to avoid
core dumps.
SPF 23/10/96
Let's try to improve the design of the garbage collector, by doing partial GCs
in 5 phases:
(1) Mark
(2) CopyImmutables
(3) FixupImmutable
(4) CopyMutables
(5) FixupMutables
What are the advantages/disadvantages of the new approach?
Advantage:
We can copy mutables into the holes left by copying-out immutables,
which gives better compaction of the mutable area. The inability
to do this is currently a problem for some applications because
it triggers far too many full GCs.
Disadvantage:
We have to run the copy and fix-up phases twice. This may be expensive.
Can we get the advantage without the disadvantage by only splitting the Copy
and Fixup phases when this looks like a win?
Note: we have to separate the Mark and Copy phases, as otherwise we won't be
able to handle weak pointers. Shame!
SPF 17/12/1997
*/
/* start <= val < end */
#define INRANGE(val,start,end) ((start) <= (val) && (val) < (end))
/* start <= val <= end */
#define INSOFTRANGE(val,start,end) ((start) <= (val) && (val) <= (end))
/* Code pointers are usually aligned to 2 mod 4
However stack->p_pc is not necessarily aligned, so we have to
be careful */
//#define IN_GC_AREA(_pt) (! IS_INT(_pt) && (IN_GC_IAREA((_pt).AsAddress()) || IN_GC_MAREA((_pt).AsAddress())))
inline POLYUNSIGNED BITNO(LocalMemSpace *area, PolyWord *pt) { return pt - area->bottom; }
inline PolyWord *BIT_ADDR(LocalMemSpace *area, POLYUNSIGNED bitno) { return area->bottom + bitno; }
void CopyStackFrame(StackObject *old_stack, StackObject *new_stack)
{
/* Moves a stack, updating all references within the stack */
PolyWord *old_base = (PolyWord *)old_stack;
PolyWord *new_base = (PolyWord*)new_stack;
POLYUNSIGNED old_length = old_stack->Length();
POLYUNSIGNED new_length = new_stack->Length();
PolyWord *old_top = old_base + old_length;
CheckObject (old_stack);
ASSERT (old_stack->IsStackObject());
ASSERT (new_stack->IsStackObject());
#if 0
/* This doesn't hold if we a copying a "frozen" stack on system start-up */
ASSERT (OBJ_IS_MUTABLE_OBJECT(old_base[-1]));
#endif
ASSERT (new_stack->IsMutable());
/* Calculate the offset of the new stack from the old. If the frame is
being extended objects in the new frame will be further up the stack
than in the old one. */
POLYSIGNED offset = new_base - old_base + new_length - old_length;
/* Copy the registers, changing any that point into the stack. */
new_stack->p_space = old_stack->p_space;
new_stack->p_pc = old_stack->p_pc;
new_stack->p_sp = old_stack->p_sp + offset;
new_stack->p_hr = old_stack->p_hr + offset;
new_stack->p_nreg = old_stack->p_nreg;
/* p_nreg contains contains the number of CHECKED registers */
// ASSERT(new_stack->p_nreg == CHECKED_REGS);
POLYUNSIGNED i;
for (i = 0; i < new_stack->p_nreg; i++)
{
PolyWord R = old_stack->p_reg[i];
/* if the register points into the old stack, make the new copy
point at the same relative offset within the new stack,
otherwise make the new copy identical to the old version. */
if (R.IsTagged() || ! INRANGE(R.AsAddress(),old_base,old_top))
new_stack->p_reg[i] = R;
else new_stack->p_reg[i] = PolyWord::FromStackAddr(R.AsStackAddr() + offset);
}
/* Copy unchecked registers. - The next "register" is the number of
unchecked registers to copy. Unchecked registers are used for
values that might look like addresses, i.e. don't have tag bits,
but are not. */
POLYUNSIGNED n = old_stack->p_reg[i].AsUnsigned();
new_stack->p_reg[i] = old_stack->p_reg[i];
i++;
ASSERT (n < 100);
while (n--)
{
new_stack->p_reg[i] = old_stack->p_reg[i];
i++;
}
/* Skip the unused part of the stack. */
i = (PolyWord*)old_stack->p_sp - old_base;
ASSERT (i <= old_length);
i = old_length - i;
PolyWord *old = old_stack->p_sp;
PolyWord *newp= new_stack->p_sp;
while (i--)
{
PolyWord old_word = *old++;
if (old_word.IsTagged() || ! INRANGE(old_word.AsAddress(),old_base,old_top))
*newp++ = old_word;
else
*newp++ = PolyWord::FromStackAddr(old_word.AsStackAddr() + offset);
}
CheckObject (new_stack);
}
/**************************************************************************/
/* This function finds all the mutable objects in the local mutable area. */
/* These are scanned since they may contain references into the gc area. */
/**************************************************************************/
// Mark these mutables.
static void OpMutables(ScanAddress *process)
{
// Scan the local mutable areas. It won't do anything if this is a full
// GC since gen_top == top.
for (unsigned i = 0; i < gMem.nlSpaces; i++)
{
LocalMemSpace *space = gMem.lSpaces[i];
if (space->isMutable)
process->ScanAddressesInRegion(space->gen_top, space->top);
}
// Scan the permanent mutable areas.
for (unsigned j = 0; j < gMem.npSpaces; j++)
{
MemSpace *space = gMem.pSpaces[j];
if (space->isMutable)
process->ScanAddressesInRegion(space->bottom, space->top);
}
}
class ProcessMarkPointers: public ScanAddress
{
public:
virtual POLYUNSIGNED ScanAddressAt(PolyWord *pt) { return DoScanAddressAt(pt, false); }
virtual void ScanRuntimeAddress(PolyObject **pt, RtsStrength weak);
virtual PolyObject *ScanObjectAddress(PolyObject *base);
private:
POLYUNSIGNED DoScanAddressAt(PolyWord *pt, bool isWeak);
virtual void ScanAddressesInObject(PolyObject *base, POLYUNSIGNED lengthWord);
// Have to redefine this for some reason.
void ScanAddressesInObject(PolyObject *base) { ScanAddressesInObject(base, base->LengthWord()); }
};
// Mark all pointers in the heap.
POLYUNSIGNED ProcessMarkPointers::DoScanAddressAt(PolyWord *pt, bool isWeak)
{
PolyWord val = *pt;
CheckPointer (val);
if (val.IsTagged())
return 0;
LocalMemSpace *space = gMem.LocalSpaceForAddress(val.AsAddress());
if (space == 0)
return 0; // Ignore it if it points to a permanent area
// Ignore it if it's outside the range we're currently collecting.
if (! INRANGE(val.AsStackAddr(), space->gen_bottom, space->gen_top))
return 0;
// We shouldn't get code addresses since we handle stacks and code
// segments separately so if this isn't an integer it must be an object address.
POLYUNSIGNED new_bitno = BITNO(space, val.AsStackAddr());
if (space->bitmap.TestBit(new_bitno))
return 0; // Already marked
PolyObject *obj = val.AsObjPtr();
POLYUNSIGNED L = obj->LengthWord();
POLYUNSIGNED n = OBJ_OBJECT_LENGTH(L);
/* Add up the objects to be moved into the mutable area. */
if (OBJ_IS_MUTABLE_OBJECT(L))
space->m_marked += n + 1;
else
space->i_marked += n + 1;
/* Mark the segment including the length word. */
space->bitmap.SetBits(new_bitno - 1, n + 1);
if (isWeak) // This is a SOME within a weak reference.
return 0;
if (OBJ_IS_BYTE_OBJECT(L))
return 0; // We've done as much as we need
else if (OBJ_IS_CODE_OBJECT(L) || OBJ_IS_STACK_OBJECT(L) || OBJ_IS_WEAKREF_OBJECT(L))
{
// Have to handle these specially.
(void)ScanAddressesInObject(obj, L);
return 0; // Already done it.
}
else
return L;
}
// The initial entry to process the roots. Also used when processing the addresses
// in objects that can't be handled by ScanAddressAt.
PolyObject *ProcessMarkPointers::ScanObjectAddress(PolyObject *obj)
{
PolyWord val = obj;
LocalMemSpace *space = gMem.LocalSpaceForAddress(val.AsAddress());
if (space == 0)
return obj; // Ignore it if it points to a permanent area
// Ignore it if it's outside the range we're currently collecting.
if (! INRANGE(val.AsStackAddr(), space->gen_bottom, space->gen_top))
return obj;
ASSERT(obj->ContainsNormalLengthWord());
CheckObject (obj);
POLYUNSIGNED bitno = BITNO(space, val.AsStackAddr());
if (space->bitmap.TestBit(bitno)) return obj; /* Already marked */
POLYUNSIGNED L = obj->LengthWord();
ASSERT (OBJ_IS_LENGTH(L));
POLYUNSIGNED n = OBJ_OBJECT_LENGTH(L);
ASSERT (n != 0);
/* Mark the segment including the length word. */
space->bitmap.SetBits (bitno - 1, n + 1);
/* Add up the objects to be moved into the mutable area. */
if (OBJ_IS_MUTABLE_OBJECT(L))
space->m_marked += n + 1;
else
space->i_marked += n + 1;
// Process the addresses in this object. We could short-circuit things
// for word objects by calling ScanAddressesAt directly.
ScanAddressesInObject(obj);
return obj;
}
// These functions are only called with pointers held by the runtime system.
// Weak references can occur in the runtime system, eg. streams and windows.
// Weak references are not marked and so unreferenced streams and windows
// can be detected and closed.
void ProcessMarkPointers::ScanRuntimeAddress(PolyObject **pt, RtsStrength weak)
{
PolyObject *val = *pt;
CheckPointer (val);
if (weak == STRENGTH_WEAK) return;
LocalMemSpace *space = gMem.LocalSpaceForAddress(val);
if (space != 0)
{
PolyWord w = val;
if (INRANGE(w.AsStackAddr(), space->gen_bottom, space->gen_top))
{
POLYUNSIGNED lengthWord = ScanAddressAt(&w);
if (lengthWord)
ScanAddressesInObject(val, lengthWord);
*pt = w.AsObjPtr();
}
}
}
// This is called both for objects in the local heap and also for mutables
// in the permanent area and, for partial GCs, for mutables in other areas.
void ProcessMarkPointers::ScanAddressesInObject(PolyObject *base, POLYUNSIGNED L)
{
if (OBJ_IS_WEAKREF_OBJECT(L))
{
ASSERT(OBJ_IS_MUTABLE_OBJECT(L)); // Should be a mutable.
ASSERT(OBJ_IS_WORD_OBJECT(L)); // Should be a plain object.
// We need to mark the "SOME" values in this object but we don't mark
// the references contained within the "SOME".
POLYUNSIGNED n = OBJ_OBJECT_LENGTH(L);
PolyWord *baseAddr = (PolyWord*)base;
for (POLYUNSIGNED i = 0; i < n; i++)
DoScanAddressAt(baseAddr+i, true);
// Add this to the limits for the containing area.
MemSpace *space = gMem.SpaceForAddress(baseAddr);
PolyWord *startAddr = baseAddr-1; // Must point AT length word.
PolyWord *endObject = baseAddr + n;
if (startAddr < space->lowestWeak) space->lowestWeak = startAddr;
if (endObject > space->highestWeak) space->highestWeak = endObject;
}
else ScanAddress::ScanAddressesInObject(base, L);
}
// Check for weak references that are no longer referenced.
class CheckWeakRef: public ScanAddress {
public:
void ScanAreas(void);
private:
virtual void ScanRuntimeAddress(PolyObject **pt, RtsStrength weak);
// This has to be defined since it's virtual.
virtual PolyObject *ScanObjectAddress(PolyObject *base) { return base; }
virtual void ScanAddressesInObject(PolyObject *obj, POLYUNSIGNED lengthWord);
};
// This deals with weak references within the run-time system.
void CheckWeakRef::ScanRuntimeAddress(PolyObject **pt, RtsStrength weak)
{
/* If the object has not been marked and this is only a weak reference */
/* then the pointer is set to zero. This allows streams or windows */
/* to be closed if there is no other reference to them. */
PolyObject *val = *pt;
PolyWord w = val;
CheckPointer (val);
if (weak == STRENGTH_STRONG)
return;
LocalMemSpace *space = gMem.LocalSpaceForAddress(w.AsStackAddr());
if (space == 0)
return; // Not in local area
if (! INRANGE(w.AsStackAddr(), space->gen_bottom, space->gen_top))
return; // Not in area we're currently collecting.
// If it hasn't been marked set it to zero.
if (! space->bitmap.TestBit(BITNO(space, w.AsStackAddr())))
*pt = 0;
}
// Deal with weak objects
void CheckWeakRef::ScanAddressesInObject(PolyObject *obj, POLYUNSIGNED L)
{
if (! OBJ_IS_WEAKREF_OBJECT(L)) return;
ASSERT(OBJ_IS_MUTABLE_OBJECT(L)); // Should be a mutable.
ASSERT(OBJ_IS_WORD_OBJECT(L)); // Should be a plain object.
// See if any of the SOME objects contain unreferenced refs.
POLYUNSIGNED length = OBJ_OBJECT_LENGTH(L);
PolyWord *baseAddr = (PolyWord*)obj;
for (POLYUNSIGNED i = 0; i < length; i++)
{
PolyWord someAddr = baseAddr[i];
if (someAddr.IsDataPtr())
{
LocalMemSpace *someSpace = gMem.LocalSpaceForAddress(someAddr.AsAddress());
if (someSpace != 0 &&
INRANGE(someAddr.AsStackAddr(), someSpace->gen_bottom, someSpace->gen_top))
{
PolyObject *someObj = someAddr.AsObjPtr();
// If this is a weak object the SOME value may refer to an unreferenced
// ref. If so we have to set this entry to NONE. For safety we also
// set the contents of the SOME to TAGGED(0).
ASSERT(someObj->Length() == 1 && someObj->IsWordObject()); // Should be a SOME node.
PolyWord refAddress = someObj->Get(0);
LocalMemSpace *space = gMem.LocalSpaceForAddress(refAddress.AsAddress());
if (space != 0 &&
INRANGE(refAddress.AsStackAddr(), space->gen_bottom, space->gen_top))
// If the ref is permanent it's always there.
{
POLYUNSIGNED new_bitno = BITNO(space, refAddress.AsStackAddr());
if (! space->bitmap.TestBit(new_bitno))
{
// It wasn't marked so it's otherwise unreferenced.
baseAddr[i] = TAGGED(0); // Set it to NONE.
someObj->Set(0, TAGGED(0)); // For safety.
convertedWeak = true;
}
}
}
}
}
}
// We need to check any weak references both in the areas we are
// currently collecting and any other areas. This actually checks
// weak refs in the area we're collecting even if they are not
// actually reachable any more. N.B. This differs from OpMutables
// because it also scans the area we're collecting.
void CheckWeakRef::ScanAreas(void)
{
for (unsigned i = 0; i < gMem.nlSpaces; i++)
{
LocalMemSpace *space = gMem.lSpaces[i];
if (space->isMutable)
ScanAddressesInRegion(space->lowestWeak, space->highestWeak);
}
// Scan the permanent mutable areas.
for (unsigned j = 0; j < gMem.npSpaces; j++)
{
MemSpace *space = gMem.pSpaces[j];
if (space->isMutable)
ScanAddressesInRegion(space->lowestWeak, space->highestWeak);
}
}
class ProcessUpdate: public ScanAddress
{
public:
virtual POLYUNSIGNED ScanAddressAt(PolyWord *pt);
virtual void ScanRuntimeAddress(PolyObject **pt, RtsStrength weak);
virtual PolyObject *ScanObjectAddress(PolyObject *base);
void UpdateObjectsInArea(LocalMemSpace *area);
};
/*********************************************************************/
/* This function is called in the update phase to update pointers to */
/* objects in the gc area that are in old mutable segments. */
/*********************************************************************/
PolyObject *ProcessUpdate::ScanObjectAddress(PolyObject *obj)
{
PolyWord val = obj;
LocalMemSpace *space = gMem.LocalSpaceForAddress(val.AsStackAddr());
if (space != 0)
{
if (obj->ContainsForwardingPtr())
obj = obj->GetForwardingPtr();
else ASSERT(obj->ContainsNormalLengthWord());
CheckObject (obj);
}
return obj;
}
void ProcessUpdate::ScanRuntimeAddress(PolyObject **pt, RtsStrength/* weak*/)
/* weak is not used, but needed so type of the function is correct */
{
PolyWord w = *pt;
LocalMemSpace *space = gMem.LocalSpaceForAddress(w.AsStackAddr());
if (space != 0)
{
PolyObject *obj = *pt;
if (obj->ContainsForwardingPtr())
*pt = obj->GetForwardingPtr();
else ASSERT(obj->ContainsNormalLengthWord()); /* SPF 24/1/95 */
CheckObject (*pt);
}
}
/* Search the area downwards looking for n consecutive free words. */
/* Return the bitmap index if successful or 0 (should we use -1?) on failure. */
static inline POLYUNSIGNED FindFreeInArea(LocalMemSpace *dst, POLYUNSIGNED limit, POLYUNSIGNED n)
{
/* SPF's version of the start caching code. SPF 2/10/96 */
/* Invariant: dst->start[0] .. dst->start[dst->start_index] is a descending sequence. */
POLYUNSIGNED truncated_n = (n < NSTARTS) ? n : NSTARTS - 1;
ASSERT(0 <= limit);
/* Invariant: dst->start[0] .. dst->start[dst->start_index] is a descending sequence. */
/*
Update the starting array, so that the first few entries are valid.
The starting point for a given size of hole must be at least as
small (late) as the starting point for smaller holes.
We remember the start_index of our previous allocation, so
that if we have the same size object again, this loop becomes
trivial. SPF 2/10/96
*/
for (POLYUNSIGNED i = dst->start_index; i < truncated_n; i ++)
{
if (dst->start[i] < dst->start[i+1])
{
dst->start[i+1] = dst->start[i];
}
}
/* Invariant: dst->start[0] .. dst->start[truncated_n] is a descending sequence. */
dst->start_index = truncated_n;
/* Invariant: dst->start[0] .. dst->start[dst->start_index] is a descending sequence. */
/* Start our search at the appropriate point. */
POLYUNSIGNED start = dst->start[truncated_n];
/* If we can't copy UP, give up immediately. It's important that we DON'T
update dst->start[n], because that might INCREASE it, which isn't
allowed. SPF 19/11/1997
*/
if (start <= limit)
{
return 0;
}
POLYUNSIGNED free = dst->bitmap.FindFree(limit, start, n);
/* free == 0 || limit <= free && free < start */
/*
We DON'T update the array for big allocations, because this would cause
us to skip holes that are actually large enough for slightly smaller
(but still big) allocations. An allocation is "big" if it doesn't
have its own dedicated slot in the start array. This won't actually
cost us much, provided there's enough small allocations between
the big ones, as these will cause the pointer to be advanced.
SPF 2/10/96
*/
/* dst->start[0] .. dst->start[dst->start_index] is a descending sequence */
if (n < NSTARTS)
{
/* free == 0 || limit <= free && free < start */
ASSERT(n == dst->start_index);
dst->start[n] = (free == 0) ? limit : free;
/* Writing "dst->start[n] = free;" is attractive but wrong. The problem
is that even if we can't compact the immutables much, we may still
be able to copy immutables from the mutable area into the immutable
area, but setting dst->start[n] to 0 would prevent this.
SPF 19/11/1997 */
}
/* dst->start[0] .. dst->start[dst->start_index] is still is a descending sequence */
return free;
}
// This does nothing to the addresses but by applying it in ScanConstantsWithinCode we
// adjust any relative addresses so they are relative to the new location.
class ProcessIdentity: public ScanAddress {
public:
virtual PolyObject *ScanObjectAddress(PolyObject *base) { return base; }
};
static void CopyObjectsInArea(LocalMemSpace *src, bool compressImmutables)
{
/* Start scanning the bitmap from the very bottom since it is */
/* likely that very recently created objects need copying. */
/* Skip whole words of zeroes since these may be quite common if */
/* the objects to be copied are sparsely separated. */
/* Invariant: at this point there are no objects below src->gen_bottom */
POLYUNSIGNED bitno = BITNO(src,src->gen_bottom);
POLYUNSIGNED highest = src->highest;
// Bitmap *bitmap = &src->bitmap;
for (;;)
{
if (bitno >= highest) return;
/* SPF version; Invariant: 0 < highest - bitno */
bitno += src->bitmap.CountZeroBits(bitno, highest - bitno);
if (bitno >= highest) return;
ASSERT (src->bitmap.TestBit(bitno));
/* first set bit corresponds to the length word */
PolyWord *old = BIT_ADDR(src, bitno); /* Old object address */
PolyObject *obj = (PolyObject*)(old+1);
POLYUNSIGNED L = obj->LengthWord();
ASSERT (OBJ_IS_LENGTH(L));
CheckObject(obj);
POLYUNSIGNED n = OBJ_OBJECT_LENGTH(L) + 1 ;/* Length of allocation (including length word) */
bitno += n;
POLYUNSIGNED free = 0; /* Bitmap index of new allocation */
// The destination space if either a mutable space if this is a mutable
// or an immutable space if it's immutable.
LocalMemSpace *dst = 0; /* New object allocation area */
// Find a mutable space for the mutable objects and an immutable space for
// the immutables. We are copying objects starting from the first space
// and working upwards so to avoid copying the same object multiple times
// we must allocate from the last space first. We may copy an object within
// its own space but we don't copy an object into an earlier space of the
// same type.
for (unsigned i = gMem.nlSpaces; i > 0; i--)
{
dst = gMem.lSpaces[i-1];
if (OBJ_IS_MUTABLE_OBJECT(L))
{
// Mutable object
if (dst->isMutable)
{
ASSERT(src->isMutable); // Should come from a mutable area
free = FindFreeInArea(dst, (src == dst) ? bitno : 0, n);
if (free)
break; // Found space.
if (src == dst)
break; // We mustn't copy it to an earlier area.
}
}
else
{
// Immutable object.
if (! dst->isMutable)
{
/* If we're copying mutables to the immutable area and we're just doing sequential
allocations at the bottom, we can optimise out all that "clever" search
code in FindFreeInArea. */
if (! compressImmutables)
{
POLYUNSIGNED dest_bitno = BITNO(dst, dst->pointer);
ASSERT(src->isMutable); // Only if we're copying from mutable area
if (n < dest_bitno)
{
free = dest_bitno - n;
break;
}
}
else // It's a full GC, so try to be compact within the immutable area.
{
free = FindFreeInArea(dst, (src == dst) ? bitno : 0, n);
if (free)
break;
}
// We mustn't copy it to an earlier area. N.B. If we're copying from
// a mutable area we CAN copy it to an immutable area earlier in
// the sequence.
if (src == dst)
break;
}
}
}
if (free == 0) /* no room */
{
// We're not going to move this object
// Update src->pointer, so the old object doesn't get trampled.
if (old < src->pointer)
src->pointer = old;
/* We haven't been able to move this object on this GC, but we might */
/* still be able to move some smaller objects, which might free enough */
/* space that we'll be able to move this object on the next GC, even if */
/* nothing becomes garbage before then. SPF 19/11/1997 */
continue;
}
/* allocate object in the bitmap */
dst->bitmap.SetBits(free, n);
PolyWord *newp = BIT_ADDR(dst, free); /* New object address */
/* Update dst->pointer, so the new object doesn't get trampled. SPF 4/10/96 */
if (newp < dst->pointer)
dst->pointer = newp;
// If we are copying into a later area we may copy into an area
// that crosses gen_bottom for that area. We need to adjust gen_bottom
// since we assume above that gen_bottom points to a valid object.
if (newp < dst->gen_bottom && newp+n > dst->gen_bottom)
dst->gen_bottom = newp+n;
PolyObject *newObj = (PolyObject*)(newp+1);
if (OBJ_IS_STACK_OBJECT(L))
{
newObj ->SetLengthWord(L); /* copy length word */
CopyStackFrame ((StackObject *)obj,(StackObject *)newObj);
obj->SetForwardingPtr(newObj);
}
else /* not a stack object */
{
for (POLYUNSIGNED i = 0; i < n; i++)
newp[i] = old[i];
ASSERT((*newp).AsUnsigned() == L);
obj->SetForwardingPtr(newObj);
// If this is a code object flush out anything from the instruction cache
// that might previously have been at this address
if (OBJ_IS_CODE_OBJECT(L))
{
ProcessIdentity identity;
machineDependent->FlushInstructionCache(newp, n * sizeof(PolyWord));
// We have to update any relative addresses in the code.
machineDependent->ScanConstantsWithinCode(newObj, obj, OBJ_OBJECT_LENGTH(L), &identity);
}
// We mustn't check the object until after we've adjusted any relative offsets.
CheckObject((PolyObject*)(BIT_ADDR(dst, free) + 1));
}
dst->copied += n;
}
}
// Update the addresses in a group of words.
POLYUNSIGNED ProcessUpdate::ScanAddressAt(PolyWord *pt)
{
PolyWord val = *pt;
Check (val);
if (val.IsTagged())
return 0;
// It looked like it would be possible to simplify this code and
// just call ContainsForwardingPtr on any address.
// Profiling shows that it's quite important to avoid calling
// ContainsForwardingPtr unnecessarily. I guess the reason is that
// it actually accesses the memory referenced by the address and it
// is unlikely to be in the cache.
LocalMemSpace *space = gMem.LocalSpaceForAddress(val.AsStackAddr());
if (space == 0)
return 0;
if (! INRANGE(val.AsStackAddr(), space->gen_bottom, space->gen_top))
return 0;
PolyObject *obj = val.AsObjPtr();
if (obj->ContainsForwardingPtr())
{
*pt = obj->GetForwardingPtr();
CheckObject (pt->AsObjPtr());
}
else
{
ASSERT(obj->ContainsNormalLengthWord());
CheckObject(obj);
}
return 0;
}
// Updates the addresses for objects in the area with the "allocated" bit set.
// It processes the area between area->pointer and the bit corresponding to area->highest.
void ProcessUpdate::UpdateObjectsInArea(LocalMemSpace *area)
{
PolyWord *pt = area->pointer;
POLYUNSIGNED bitno = BITNO(area, pt);
POLYUNSIGNED highest = area->highest;
for (;;)
{
ASSERT(bitno <= highest); /* SPF */
/* Zero freed space. This is necessary for OpMutableBlock,
which expects the old mutable area to contain only
genuine objects, tombstones and zero words. This is
all rather sad, since zeroing the mutable buffer in
this manner may well be one of the hot-spots of the GC.
At least we only start at area->pointer, so we shouldn't
normally have to zap *too* much store.
SPF 22/10/96
*/
/*
The alternative, of making these dummy byte objects in which
case it is only the length word that needs to be set, didn't
seem to make any difference. The CPU is probably writing back
whole cache lines so setting the length word probably means
the whole cache line has to be written anyway. DCJM 2/6/06.
*/
while (bitno < highest && !area->bitmap.TestBit(bitno))
{
*pt++ = PolyWord::FromUnsigned(0);
bitno++;
}
if (bitno == highest)
return;
/* first set bit corresponds to the length word */
pt++;
PolyObject *obj = (PolyObject*)pt;
POLYUNSIGNED L = obj->LengthWord();
bitno++;
if (obj->ContainsForwardingPtr()) /* skip over moved object */
{
obj = obj->GetForwardingPtr();
CheckObject (obj);
POLYUNSIGNED length = obj->Length();
pt += length;
bitno += length;
}
else /* !OBJ_IS_POINTER(L) */
{
CheckObject (obj);
if (OBJ_IS_WORD_OBJECT(L))
{
POLYUNSIGNED length = OBJ_OBJECT_LENGTH(L);
area->updated += length+1;
while (length--)
{
PolyWord val = *pt;
Check (val);
if (! val.IsTagged() && val != PolyWord::FromUnsigned(0))
{
LocalMemSpace *space = gMem.LocalSpaceForAddress(val.AsAddress());
if (space != 0 &&
INRANGE(val.AsStackAddr(), space->gen_bottom, space->gen_top))
{
PolyObject *obj = val.AsObjPtr();
if (obj->ContainsForwardingPtr())
{
*pt = obj->GetForwardingPtr();
CheckObject (pt->AsObjPtr());
}
else
{
ASSERT(obj->ContainsNormalLengthWord());
CheckObject(obj);
}
}
}
pt++;
bitno++;
}
}
else /* !OBJ_IS_WORD_OBJECT(L) */
{
POLYUNSIGNED length = OBJ_OBJECT_LENGTH(L);
area->updated += length+1;
ScanAddressesInObject(obj, L);
pt += length;
bitno += length;
} /* !OBJ_IS_WORD_OBJECT(L) */
} /* !OBJ_IS_POINTER(L) */
} /* for loop */
}
#define GC_START 1
#define GC_NEWLINE 2
#define GC_FULL 4
// Try to allocate another heap segment. It tries to allocate the requested size
// but if that fails it allocates what it can.
static bool TryMoreHeap(POLYUNSIGNED size, bool mut)
{
if (userOptions.debug & DEBUG_NOGROW) return false; // No heap growing.
do {
// Return if this succeeded.
if (gMem.NewLocalSpace(size, mut))
return true;
// Otherwise try with half the size and stop when
// it's less than 64k words.
size = size / 2;
} while (size > 64*1024);
return false;
}
/* The problem with this version of PossiblyExpandArea is that it doesn't always expand
it enough for the subsequent compaction phase to actually liberate wordsRequiredToAllocate
of free space. SPF 31/7/96
*/
// This function is called after the mark phase of a full garbage collection to
// expand the immutable area if necessary. wordsNeeded is the amount of immutable
// data detected during the mark phase.
static void PossiblyExpandImmutableArea(const POLYUNSIGNED wordsNeeded)
{
POLYUNSIGNED currentSize = 0;
unsigned nISpaces = 0; // Number of immutable spaces already
for (unsigned j = 0; j < gMem.nlSpaces; j++)
{
LocalMemSpace *space = gMem.lSpaces[j];
if (! space->isMutable)
{
currentSize += space->top - space->bottom;
nISpaces++;
}
}
if (userOptions.immutableFreeSpace + wordsNeeded > currentSize) // need to get some more space
{
// We want to ensure that we have immutableFreeSpace free after this
// collection. We allocate in units of immutableSegSize so as not to
// have too many small segments.
POLYUNSIGNED requestedGrowth = userOptions.immutableFreeSpace + wordsNeeded - currentSize;
if (requestedGrowth < userOptions.immutableSegSize)
requestedGrowth = userOptions.immutableSegSize;
// Make the segments larger if we have already allocated several.
// The factors here are a guess. Maybe tune them more carefully
unsigned spaceFactor = nISpaces / 3;
while (spaceFactor > 0) { requestedGrowth += userOptions.immutableSegSize; spaceFactor--; }
POLYUNSIGNED chunks = ROUNDUP_UNITS(requestedGrowth, BITSPERWORD);
POLYUNSIGNED words = chunks * BITSPERWORD;
(void)TryMoreHeap(words, false); // If this fails just carry on with what we have.
}
}
/* This function CHECKS whether we have enough space AFTER the compaction phase. */
static bool BufferIsReallyFull(bool mutableRegion, POLYUNSIGNED wordsNeeded, const bool fullGC)
{
// This is the space we need to be free. If this is a mutable area wordsNeeded is the
// space needed to allocate the object whose attempted allocation triggered this collection.
// It needs to be available in at least one mutable area. If this is an immutable area
// wordsNeeded is the amount of space needed for immutable objects that couldn't be copied
// out of the mutable area so doesn't need to be contiguous.
POLYUNSIGNED requiredFree;
if (mutableRegion)
requiredFree = fullGC ? userOptions.mutableFreeSpace: userOptions.mutableMinFree;
else
{
requiredFree = fullGC ? userOptions.immutableFreeSpace: userOptions.immutableMinFree;
requiredFree += wordsNeeded;
wordsNeeded = 0;
}
for (unsigned i = 0; i < gMem.nlSpaces; i++)
{
LocalMemSpace *space = gMem.lSpaces[i];
if (space->isMutable == mutableRegion)
{
POLYUNSIGNED currentlyFree = space->pointer - space->bottom;
if (currentlyFree >= wordsNeeded)
{
currentlyFree -= wordsNeeded;
wordsNeeded = 0;
}
if (currentlyFree >= requiredFree)
requiredFree = 0;
else requiredFree -= currentlyFree;
}
}
return wordsNeeded != 0 || requiredFree != 0;
}
// AFTER a full GC, make sure we have a full buffer's worth of free space available.
static bool AdjustHeapSize(bool isMutableSpace, POLYUNSIGNED wordsRequired)
{
bool sizeChanged = false;
POLYUNSIGNED currentSize = 0, currentlyFree = 0;
unsigned nSpaces = 0;
POLYUNSIGNED largestFree = 0;
for (unsigned j = 0; j < gMem.nlSpaces; j++)
{
LocalMemSpace *space = gMem.lSpaces[j];
if (space->isMutable == isMutableSpace)
{
POLYUNSIGNED spaceSize = space->top - space->bottom;
POLYUNSIGNED spaceFree = space->pointer - space->bottom;
currentSize += spaceSize;
currentlyFree += spaceFree;
if (largestFree < spaceFree) largestFree = spaceFree;
nSpaces++;
}
}
const POLYUNSIGNED requiredFree = wordsRequired +
(isMutableSpace ? userOptions.mutableFreeSpace : userOptions.immutableFreeSpace);
/* Basic sanity checks. */
ASSERT(0 <= wordsRequired);
ASSERT(0 <= requiredFree);
// We may be trying to allocate a very large object, e.g. a new stack segment, in
// which case we must ensure that we have enough space in at least one space.
// Otherwise we just check we have enough free overall.
if (requiredFree > currentlyFree || (isMutableSpace && largestFree < wordsRequired))
{ // expand the heap.
POLYUNSIGNED requestedGrowth = requiredFree - currentlyFree;
const POLYUNSIGNED segSize =
isMutableSpace ? userOptions.mutableSegSize : userOptions.immutableSegSize;
if (requestedGrowth < segSize)
requestedGrowth = segSize;
// Make the segments larger if we have already allocated several.
// The factors here are a guess. Maybe tune them more carefully
unsigned spaceFactor = nSpaces / 3;
while (spaceFactor > 0) { requestedGrowth += segSize; spaceFactor--; }
if (requestedGrowth < wordsRequired) requestedGrowth = wordsRequired;
POLYUNSIGNED chunks = ROUNDUP_UNITS(requestedGrowth, BITSPERWORD);
POLYUNSIGNED words = chunks * BITSPERWORD;
if (TryMoreHeap(words, isMutableSpace)) // If this fails just carry on with what we have.
sizeChanged = true;
}
else // currentlyFree >= requiredFree
{
// The reason for shrinking the stack is to reduce the swap space and
// possibly the address space requirements. This may be necessary if
// we have finished building a large data structure and now want to
// export it. The export code requires buffer space and may need the
// space we're using.
POLYUNSIGNED requestedShrink = currentlyFree - requiredFree;
// Delete the most recent space first.
for (unsigned k = gMem.nlSpaces; k > 0; k--)
{
LocalMemSpace *space = gMem.lSpaces[k-1];
if (space->isMutable == isMutableSpace &&
space->pointer == space->top /* It's completely empty */ &&
(POLYUNSIGNED)(space->top - space->bottom) <= requestedShrink)
{
// We can free this space without going under our limit
requestedShrink -= space->top - space->bottom;
gMem.DeleteLocalSpace(space);
sizeChanged = true;
}
}
}
return sizeChanged;
}
void OpGCProcs (ScanAddress *process)
{
GCModules(process);
}
static int RecollectThisGeneration(unsigned thisGeneration)
{
if (thisGeneration > 3)
return false;
POLYUNSIGNED total = 0, updated = 0;
for(unsigned j = 0; j < gMem.nlSpaces; j++)
{
LocalMemSpace *lSpace = gMem.lSpaces[j];
total += lSpace->gen_top - lSpace->pointer;
updated += lSpace->updated;
}
if (total == 0)
return false;
return updated * 2 < total; // Less than 50% updated
}
// Called when Poly/ML starts up.
void CreateHeap(void)
{
// Immutable space
POLYUNSIGNED immutSize = ROUNDDOWN(userOptions.immutableSegSize, BITSPERWORD);
if (gMem.NewLocalSpace(immutSize, false) == 0)
Exit("Unable to allocate immutable area");
// Mutable space
POLYUNSIGNED mutSize = ROUNDDOWN(userOptions.mutableSegSize, BITSPERWORD);
if (gMem.NewLocalSpace(mutSize, true) == 0)
Exit("Unable to allocate mutable area");
}
static bool doGC(bool doFullGC, const POLYUNSIGNED wordsRequiredToAllocate)
{
/* Invariant: the bitmaps are completely clean. */
/* Note: this version of doGC does NOT clean the store
- that's now the user's resposibility SPF 22/10/96
*/
unsigned j;
POLYUNSIGNED gcflags = GC_START;
static bool doFullGCNextTime = 0;
static unsigned this_generation = 0;
record_gc_time(false);
ASSERT (gc_phase == 0);
GC_AGAIN:
/* Invariant: the bitmaps are completely clean. */
/* At this point, we should have
lSpace->bottom <= lSpace->pointer <= lSpace->gen_top <= lSpace->top
lSpace->gen_top divides the current generation from the old one.
lSpace->pointer is the current allocation pointer.
*/
for(j = 0; j < gMem.nlSpaces; j++)
{
LocalMemSpace *lSpace = gMem.lSpaces[j];
ASSERT (lSpace->top >= lSpace->gen_top);
ASSERT (lSpace->gen_top >= lSpace->pointer);
ASSERT (lSpace->pointer >= lSpace->bottom);
// Record low-water mark before we change anything.
// gen_bottom is the lowest object actually allocated in the
// area.
lSpace->gen_bottom = lSpace->pointer;
// Set upper and lower limits of weak refs.
lSpace->highestWeak = lSpace->bottom;
lSpace->lowestWeak = lSpace->top;
}
// Set limits of weak refs.
for (j = 0; j < gMem.npSpaces; j++)
{
PermanentMemSpace *pSpace = gMem.pSpaces[j];
pSpace->highestWeak = pSpace->bottom;
pSpace->lowestWeak = pSpace->top;
}
/* Our recovery actions may insist on a full GC */
if (doFullGCNextTime)
{
doFullGC = true;
doFullGCNextTime = false;
}
/* Mark phase */
gc_phase = 1; /* SPF 7/6/96 */
gcflags |= GC_NEWLINE;
if (doFullGC)
{
gcflags |= GC_FULL;
/* Collect everything */
for(j = 0; j < gMem.nlSpaces; j++)
{
LocalMemSpace *lSpace = gMem.lSpaces[j];
lSpace->gen_top = lSpace->top;
}
}
gcflags &= ~GC_START;
gcflags &= ~GC_NEWLINE;
/* Bitmaps are allocated in InitialiseGC and are zeroed
at the END of each GC, because that way we know how much
of each bitmap (not all!) we need to touch.
SPF 3/10/96 */
for(j = 0; j < gMem.nlSpaces; j++)
{
LocalMemSpace *lSpace = gMem.lSpaces[j];
lSpace->i_marked = lSpace->m_marked = 0;
}
/* Do the actual marking */
ProcessMarkPointers marker;
OpMutables(&marker);
OpGCProcs(&marker);
/* Invariant: at most the first (gen_top - bottom) bits of the each bitmap can be dirty here. */
// Mutable areas can contain mutable or immutable objects. Immutable areas
// should only contain immutable objects. Verify this.
for(j = 0; j < gMem.nlSpaces; j++)
{
LocalMemSpace *lSpace = gMem.lSpaces[j];
if (! lSpace->isMutable) ASSERT(lSpace->m_marked == 0);
}
/* Compact phase */
gc_phase = 2; /* SPF 7/6/96 */
/* Detect unreferenced streams, windows etc. */
CheckWeakRef checkRef;
OpGCProcs(&checkRef);
checkRef.ScanAreas();
if (convertedWeak)
// Notify the signal thread to broadcast on the condition var when
// the GC is complete.
processes->SignalArrived();
/* If we are doing a full GC we expand the immutable area now, so that there's
enough room to copy the immutables that are currently in the mutable buffer.
There's no point expanding the mutable buffer now - we'll do that later
when we know *exactly* how large we want it to be. */
if (doFullGC)
{
POLYUNSIGNED immutableData = 0;
for(j = 0; j < gMem.nlSpaces; j++)
immutableData += gMem.lSpaces[j]->i_marked;
PossiblyExpandImmutableArea(immutableData);
}
/* Invariant: at most the first (gen_top - bottom) bits of each bitmap can be dirty here. */
for(j = 0; j < gMem.nlSpaces; j++)
{
LocalMemSpace *lSpace = gMem.lSpaces[j];
lSpace->highest = BITNO(lSpace, lSpace->gen_top);
for (unsigned i = 0; i < NSTARTS; i++)
lSpace->start[i] = lSpace->highest;
lSpace->start_index = NSTARTS - 1;
lSpace->copied = 0;
}
/* Invariant: lSpace->start[0] .. lSpace->start[lSpace->start_index] is a descending sequence. */
/* Invariant: there are no objects below lSpace->gen_bottom. */
// First, process the mutable areas, copying immutable data into the immutable areas
// and compacting mutable objects within the area.
POLYUNSIGNED immutable_overflow = 0; // The immutable space we couldn't copy out.
{
POLYUNSIGNED immutableFree = 0, immutableNeeded = 0;
for(j = 0; j < gMem.nlSpaces; j++)
{
LocalMemSpace *lSpace = gMem.lSpaces[j];
if (lSpace->isMutable)
// Mutable area - add up the immutables to be moved out
immutableNeeded += lSpace->i_marked;
else
{ // Immutable area - calculate the number of unallocated words WITHIN the area
POLYUNSIGNED immutableSpace = lSpace->gen_top - lSpace->gen_bottom;
POLYUNSIGNED immutableUsed = lSpace->i_marked;
immutableFree += immutableSpace - immutableUsed;
}
}
// This is an optimisation. If we have a small amount of immutable data
// to move from the mutable area relative to the size of gaps in the
// immutable area we use a compacting copy which tries to use these gaps.
// If there is a larger amount of immutable data to move we simply add them
// on at the bottom. The idea is to reduce the cost of finding spaces to
// copy these objects.
bool compressImmutables = immutableNeeded / 2 < immutableFree ; /* Needs tuning!!! */
/* Reset the allocation pointers. This puts garbage (and real data) below them. */
for(j = 0; j < gMem.nlSpaces; j++)
{
LocalMemSpace *lSpace = gMem.lSpaces[j];
if (lSpace->isMutable || compressImmutables)
lSpace->pointer = lSpace->gen_top;
}
/* Invariant: there are no objects below A.M.gen_bottom. */
for(j = 0; j < gMem.nlSpaces; j++)
{
LocalMemSpace *lSpace = gMem.lSpaces[j];
if (lSpace->isMutable)
CopyObjectsInArea(lSpace, compressImmutables);
}
// Calculate the amount copied.
unsigned markedImmut = 0, markedMut = 0, copiedToI = 0, copiedToM = 0;
for(j = 0; j < gMem.nlSpaces; j++)
{
LocalMemSpace *lSpace = gMem.lSpaces[j];
if (lSpace->isMutable)
{
markedImmut += lSpace->i_marked;
markedMut += lSpace->m_marked;
copiedToM += lSpace->copied;
}
else
copiedToI += lSpace->copied;
}
ASSERT(copiedToM + copiedToI <= markedMut + markedImmut);
ASSERT(copiedToI <= markedImmut);
ASSERT(copiedToI != markedImmut || copiedToM <= markedMut);
/* We may have A.M.copied > A.M.m_marked, if the immutable buffer overflows */
// If we didn't have enough space in the immutable areas to copy out the
// immutable objects this will record the extra space we would need.
immutable_overflow = markedImmut - copiedToI;
}
/* The area between A.M.gen_bottom and A.M.pointer may contain
tombstones, so we daren't increase A.M.gen_bottom. */
for(j = 0; j < gMem.nlSpaces; j++)
{
LocalMemSpace *lSpace = gMem.lSpaces[j];
if (lSpace->isMutable)
{
// We may have copied mutable objects from an earlier space
if (lSpace->pointer < lSpace->gen_bottom)
lSpace->gen_bottom = lSpace->pointer;
}
}
/* If we've copied an object from the mutable area below the previous
limit of the immutable area using a "non-compressing" copy,
it would be unsafe to attempt to compress the immutable area (we
might get a double indirection).
However, it *is* safe if we've used a "compressing" copy from
the mutables buffer. We won't move anything twice, because each
object goes into the first "big enough" hole on each pass. If
the second pass finds a "big enough" hole above the object, the
first pass would have found this hole too, and used it.
This is slightly tricky reasoning, so be careful!
SPF 19/12/1997
*/
/* Reclaim the genuine data from the immutable buffer. */
for(j = 0; j < gMem.nlSpaces; j++)
gMem.lSpaces[j]->copied = 0;
POLYUNSIGNED immutable_space = 0, immutable_used = 0, immutable_needed = 0;
for(j = 0; j < gMem.nlSpaces; j++)
{
LocalMemSpace *lSpace = gMem.lSpaces[j];
if (! lSpace->isMutable)
{
// If we have copied immutable objects out of the mutable buffer
// below gen_bottom we need to reset that.
// if (lSpace->pointer < lSpace->gen_bottom)
// lSpace->gen_bottom = lSpace->pointer;
immutable_space += lSpace->gen_top - lSpace->gen_bottom;
immutable_used += lSpace->i_marked + lSpace->copied;
immutable_needed += lSpace->i_marked;
}
}
POLYUNSIGNED immutable_free = immutable_space - immutable_used;
bool compressImmutables = immutable_needed / 4 < immutable_free ; /* Needs tuning!!! */
for(j = 0; j < gMem.nlSpaces; j++)
{
LocalMemSpace *lSpace = gMem.lSpaces[j];
if (! lSpace->isMutable)
{
if (lSpace->gen_bottom <= lSpace->pointer)
{
if (compressImmutables)
{
lSpace->copied = 0;
/* Invariant: there are no objects below lSpace->gen_bottom. */
CopyObjectsInArea(lSpace, true);
}
else // simply reclaim the immutable data (with its embedded garbage)
lSpace->pointer = lSpace->gen_bottom;
ASSERT(lSpace->gen_bottom <= lSpace->pointer);
/* The area between lSpace->gen_bottom and lSpace->pointer may contain
tombstones, so we daren't increase lSpace->gen_bottom. */
}
else // We may have copied immutable objects from an earlier space.
lSpace->gen_bottom = lSpace->pointer;
}
}
// An extra little check.
for(j = 0; j < gMem.nlSpaces; j++)
{
LocalMemSpace *lSpace = gMem.lSpaces[j];
if (! lSpace->isMutable)
{
ASSERT(lSpace->gen_bottom <= lSpace->pointer);
}
}
POLYUNSIGNED mCopied = 0, iCopied = 0, iMarked = 0;
for(j = 0; j < gMem.nlSpaces; j++)
{
LocalMemSpace *lSpace = gMem.lSpaces[j];
if (lSpace->isMutable)
mCopied += lSpace->copied;
else
{
iMarked += lSpace->i_marked;
iCopied += lSpace->copied;
}
}
ASSERT(mCopied == 0);
ASSERT(iCopied <= iMarked);
for(j = 0; j < gMem.nlSpaces; j++)
{
LocalMemSpace *lSpace = gMem.lSpaces[j];
ASSERT(INSOFTRANGE(lSpace->pointer, lSpace->bottom, lSpace->gen_top));
}
/* Update phase */
gc_phase = 3; /* SPF 7/6/96 */
/* Invariant: at most the first (gen_top - bottom) bits of each bitmap can be dirty here. */
for(j = 0; j < gMem.nlSpaces; j++)
gMem.lSpaces[j]->updated = 0;
ProcessUpdate processUpdate;
OpMutables(&processUpdate);
for(j = 0; j < gMem.nlSpaces; j++)
processUpdate.UpdateObjectsInArea(gMem.lSpaces[j]);
OpGCProcs(&processUpdate);
{
POLYUNSIGNED iUpdated = 0, mUpdated = 0, iMarked = 0, mMarked = 0;
for(j = 0; j < gMem.nlSpaces; j++)
{
LocalMemSpace *lSpace = gMem.lSpaces[j];
iMarked += lSpace->i_marked;
mMarked += lSpace->m_marked;
if (lSpace->isMutable)
mUpdated += lSpace->updated;
else
iUpdated += lSpace->updated;
}
ASSERT(iUpdated == iMarked - immutable_overflow);
ASSERT(mUpdated == mMarked + immutable_overflow);
}
/* Invariant: at most the first (gen_top - bottom) bits of the each bitmap can be dirty. */
for(j = 0; j < gMem.nlSpaces; j++)
{
LocalMemSpace *lSpace = gMem.lSpaces[j];
lSpace->bitmap.ClearBits(0, lSpace->gen_top - lSpace->bottom);
}
/* Invariant: the bitmaps are completely clean */
if (doFullGC)
{
/* If we've had an immutable overflow, allow for this when we grow the heap */
AdjustHeapSize(false /* immutable space*/, immutable_overflow);
bool iFull = BufferIsReallyFull(false /* immutable area */, immutable_overflow, doFullGC);
bool mFull = BufferIsReallyFull(true /* mutable area */, wordsRequiredToAllocate, doFullGC);
/* If we're going to recollect the current generation, don't adjust the mutable buffer size yet. */
/* We'll (probably) do that on the next collection. SPF 22/12/1997 */
if (iFull || ! mFull || ! RecollectThisGeneration(this_generation))
AdjustHeapSize(true /* mutable space */, wordsRequiredToAllocate);
}
CheckMemory();
/* Have we cleared enough space? */
{
bool iFull = BufferIsReallyFull(false /* immutable area */, immutable_overflow, doFullGC);
bool mFull = BufferIsReallyFull(true /* mutable area */, wordsRequiredToAllocate, doFullGC);
if (iFull || mFull)
{
/* Recovery actions */
if (!iFull && RecollectThisGeneration(this_generation)) /* Needs tuning!!! */
{
/* The next GC will re-collect THIS generation, which should be
enough to recover properly. */
}
else if (! doFullGC) // Do a full GC next time
doFullGCNextTime = true;
else // It was a full GC but we don't have as much free space as we normally
// want at the end of a full GC. Do we have as much as we would want at the
// end of a partial GC?
if (BufferIsReallyFull(false /* immutable area */, 0, false) ||
BufferIsReallyFull(true /* mutable area */, wordsRequiredToAllocate, false))
{
// No we don't even have that - interrupt console processes and end GC here.
gc_phase = 0;
record_gc_time(true);
return false;
}
}
}
if (RecollectThisGeneration(this_generation))
{
/* If this was a full GC, make sure the next one is too, as we may
need to reconfigure the mutable buffer size. If we only did a
partial next, we would still have to mark all the immutables again
(they would still be new) which is the main cost of a full GC.
*/
doFullGCNextTime |= doFullGC;
this_generation++;
}
else
{
/* Merge this generation with the old one */
for(j = 0; j < gMem.nlSpaces; j++)
{
LocalMemSpace *lSpace = gMem.lSpaces[j];
lSpace->gen_top = lSpace->pointer;
}
this_generation = 0;
}
// Do we have enough space for the original allocation request?
bool haveSpace = false;
for(j = 0; j < gMem.nlSpaces; j++)
{
LocalMemSpace *space = gMem.lSpaces[j];
if (space->isMutable)
{
if ((POLYUNSIGNED)(space->pointer - space->bottom) >= wordsRequiredToAllocate)
{
haveSpace = true;
break;
}
}
}
if (! haveSpace)
/* Try our recovery action immediately */
goto GC_AGAIN;
/* If the heap is very close to what we can handle on this machine,
do the full GC immediately, because if we wait, we'll generate
more data in the mutable buffer which will make the thrashing caused
by the inevitable full GC even worse. SPF 2/3/1998 */
if (doFullGCNextTime)
{
POLYUNSIGNED memSize = GetPhysicalMemorySize();
// Ignore this if we can't determine.or if we have more memory than the address space.
if (memSize != 0 && memSize+1 != 0)
{
POLYUNSIGNED memWords = memSize/sizeof(PolyWord);
POLYUNSIGNED spaceUsed = 0;
unsigned i;
for (i = 0; i < gMem.npSpaces; i++)
{
MemSpace *space = gMem.pSpaces[i];
spaceUsed += space->top - space->bottom;
}
for (i = 0; i < gMem.nlSpaces; i++)
{
LocalMemSpace *space = gMem.lSpaces[i];
// For mutable segments include all the space since
// that's going to be used for allocation. For immutable
// spaces include only the area currently in use
if (space->isMutable)
spaceUsed += space->top - space->bottom;
else
spaceUsed += space->top - space->pointer;
}
// This crude estimate leaves out C heap, space for executable etc.
// We used to include the bitmaps here as well. Since that's a fixed percentage of
// the sizes it could easily be taken account of by reducing the percentage of real
// pages that cause a full collection.
POLYUNSIGNED heapLoad;
if (memWords < 100) heapLoad = 100;
else heapLoad = spaceUsed / (memWords/100);
// If we're more than 80% full.
if (heapLoad > 80)
goto GC_AGAIN;
}
}
/* End of garbage collection */
gc_phase = 0;
record_gc_time(true);
/* Invariant: the bitmaps are completely clean */
return true; // Completed
}
// Return the physical memory size. Returns the maximum unsigned integer value if
// it won't .
#if defined(HAVE_WINDOWS_H)
// Define this here rather than attempting to use MEMORYSTATUSEX since
// it may not be in the include and we can't easily test. The format
// of MEMORYSTATUSVLM is the same.
typedef struct _MyMemStatusEx {
DWORD dwLength;
DWORD dwMemoryLoad;
DWORDLONG ullTotalPhys;
DWORDLONG ullAvailPhys;
DWORDLONG ullTotalPageFile;
DWORDLONG ullAvailPageFile;
DWORDLONG ullTotalVirtual;
DWORDLONG ullAvailVirtual;
DWORDLONG ullAvailExtendedVirtual;
} MyMemStatusEx;
typedef VOID (WINAPI *GLOBALMEMSLVM)(MyMemStatusEx *);
typedef BOOL (WINAPI *GLOBALMEMSEX)(MyMemStatusEx *);
#endif
POLYUNSIGNED GetPhysicalMemorySize(void)
{
POLYUNSIGNED maxMem = 0-1; // Maximum unsigned value.
#if defined(HAVE_WINDOWS_H)
{
// This is more complicated than it needs to be. GlobalMemoryStatus
// returns silly values if there is more than 4GB so GlobalMemoryStatusEx
// is preferred. However, it is not in all the include files and may not
// be in kernel32.dll in pre-XP versions. Furthermore at one point it was
// called GlobalMemoryStatusVlm. The only way to do this portably is the
// hard way.
HINSTANCE hlibKernel = LoadLibrary("kernel32.dll");
if (hlibKernel)
{
MyMemStatusEx memStatEx;
memset(&memStatEx, 0, sizeof(memStatEx));
memStatEx.dwLength = sizeof(memStatEx);
GLOBALMEMSEX globalMemStatusEx =
(GLOBALMEMSEX)GetProcAddress(hlibKernel, "GlobalMemoryStatusEx");
GLOBALMEMSLVM globalMemStatusVlm =
(GLOBALMEMSLVM)GetProcAddress(hlibKernel, "GlobalMemoryStatusVlm");
if (globalMemStatusEx && ! (*globalMemStatusEx)(&memStatEx))
memStatEx.ullTotalPhys = 0; // Clobber any rubbish since it says it failed.
else if (globalMemStatusVlm)
// GlobalMemoryStatusVlm returns VOID so we assume it worked
(*globalMemStatusVlm) (&memStatEx);
FreeLibrary(hlibKernel);
if (memStatEx.ullTotalPhys) // If it's non-zero assume it succeeded
{
DWORDLONG dwlMax = maxMem;
if (memStatEx.ullTotalPhys > dwlMax)
return maxMem;
else
return (POLYUNSIGNED)memStatEx.ullTotalPhys;
}
}
// Fallback if that fails.
MEMORYSTATUS memStatus;
memset(&memStatus, 0, sizeof(memStatus));
GlobalMemoryStatus(&memStatus);
if (memStatus.dwTotalPhys > maxMem)
return maxMem;
else
return (POLYUNSIGNED)memStatus.dwTotalPhys;
}
#endif
#if defined(_SC_PHYS_PAGES) && defined(_SC_PAGESIZE)
{
// Linux and Solaris. This gives a silly value in Cygwin.
long physPages = sysconf(_SC_PHYS_PAGES);
long physPagesize = sysconf(_SC_PAGESIZE);
if (physPages != -1 && physPagesize != -1)
{
unsigned long maxPages = maxMem / physPagesize;
if ((unsigned long)physPages > maxPages)
return maxMem;
else // We've checked it won't overflow.
return physPages*physPagesize;
}
}
#endif
#if defined(HAVE_SYSCTL) && defined(CTL_HW)
// FreeBSD and Mac OS X. It seems HW_MEMSIZE has been added to
// Max OS X to return a 64-bit value.
#ifdef HW_MEMSIZE
{
static int mib[2] = { CTL_HW, HW_MEMSIZE };
uint64_t physMem = 0;
size_t len = sizeof(physMem);
if (sysctl(mib, 2, &physMem, &len, NULL, 0) == 0 && len == sizeof(physMem))
{
if (physMem > (uint64_t)maxMem)
return maxMem;
else
return (POLYUNSIGNED)physMem;
}
}
#endif
#ifdef HW_PHYSMEM
// If HW_MEMSIZE isn't there or the call failed try this.
{
static int mib[2] = { CTL_HW, HW_PHYSMEM };
unsigned int physMem = 0;
size_t len = sizeof(physMem);
if (sysctl(mib, 2, &physMem, &len, NULL, 0) == 0 && len == sizeof(physMem))
{
if (physMem > maxMem)
return maxMem;
else
return physMem;
}
}
#endif
#endif
return 0; // Unable to determine
}
class FullGCRequest: public MainThreadRequest
{
public:
virtual void Perform() { doGC (true,0); }
};
class QuickGCRequest: public MainThreadRequest
{
public:
QuickGCRequest(POLYUNSIGNED words): wordsRequired(words) {}
virtual void Perform() { result = doGC (false, wordsRequired); }
bool result;
POLYUNSIGNED wordsRequired;
};
// Perform a full garbage collection. This is called either from ML via the full_gc RTS call
// or from various RTS functions such as open_file to try to recover dropped file handles.
void FullGC(TaskData *taskData)
{
FullGCRequest request;
processes->MakeRootRequest(taskData, &request);
}
// This is the normal call when memory is exhausted and we need to garbage collect.
bool QuickGC(TaskData *taskData, POLYUNSIGNED wordsRequiredToAllocate)
{
QuickGCRequest request(wordsRequiredToAllocate);
processes->MakeRootRequest(taskData, &request);
return request.result;
}
|