1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
|
/*
Title: Globals for the system.
Author: Dave Matthews, Cambridge University Computer Laboratory
Copyright (c) 2000-7
Cambridge University Technical Services Limited
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef _GLOBALS_H
#define _GLOBALS_H
/*
Poly words, pointers and objects.
The garbage collector needs to be able to distinguish different uses of a
memory word. We need to be able find which words are pointers to other
objects and which are simple integers. The simple distinction is between
integers, which are tagged by having the bottom bit set, and Addresses
which are word aligned (bottom 2 bits set on a 32 bit machine, bottom 3
bits on a 64 bit machine). There is a third case that can arise where
we have a return address to a piece of code. These
are generally aligned on a word+two-byte boundary except that they can
appear with any alignment in the saved PC field of a stack. Normally
these will only appear on the stack or in a register saved to the stack
but they can be passed as an argument to SetCodeConstant.
Addresses always point to the start of objects. There is one exception:
a stack object can contain addresses within the current stack. The
preceding word of a stack object is the length word. This contains the
length of the object in words in the low-order 3 (7 on a 64-bit machine)
bytes and a flag byte in the top byte. The flags give information about
the type of the object. The length word is also used by the garbage
collector and other object processors.
*/
/* Generally we use a tagged integer representation with 31 bits of
precision and the low-order bit as a tag bit. one represents a tagged
integer, zero a pointer. Code pointers are always aligned onto a
word + 2 byte boundary.
The exception is the Sparc which has special tagged add and subtract
instructions. These cause a trap if given a value which is not a
multiple of 4. To make use of these instructions we represent tagged
integers using 30 bits of precision and with the low order bits
containing 01.
DCJM 27/9/00.
*/
#if (defined(HOSTARCHITECTURE_SPARC) && !defined(INTERPRETED))
#define POLY_TAGSHIFT 2
#else
#define POLY_TAGSHIFT 1
#endif
#if defined(WINDWOWS_PC)
#include <windows.h>
typedef INT_PTR POLYSIGNED;
typedef UINT_PTR POLYUNSIGNED;
#else
typedef long POLYSIGNED;
typedef unsigned long POLYUNSIGNED;
#endif
typedef unsigned char byte;
class PolyObject;
typedef PolyObject *POLYOBJPTR;
typedef byte *POLYCODEPTR;
#define PC_RETRY_SPECIAL ((POLYCODEPTR)1) // This was previously TAGGED(0)
class PolyWord {
public:
// An object pointer can become a word directly.
PolyWord(POLYOBJPTR p) { contents.objectPtr = p; }
// Initialise to TAGGED(0). This is very rarely used.
PolyWord() { contents.unsignedInt = 1; }
// Integers need to be tagged.
static PolyWord TaggedInt(POLYSIGNED s) { return PolyWord((s << POLY_TAGSHIFT) | (POLYSIGNED)0x01); }
static PolyWord TaggedUnsigned(POLYUNSIGNED u) { return PolyWord((u << POLY_TAGSHIFT) | 0x01); }
static PolyWord FromStackAddr(PolyWord *sp) { return PolyWord(sp); }
static PolyWord FromCodePtr(POLYCODEPTR p) { return PolyWord(p); }
// Tests for the various cases.
bool IsTagged(void) const { return (contents.unsignedInt & 1) != 0; }
bool IsCodePtr(void) const { return (contents.unsignedInt & 3) == 2; }
bool IsDataPtr(void) const { return (contents.unsignedInt & (sizeof(PolyWord)-1)) == 0; }
// Extract the various cases.
POLYSIGNED UnTagged(void) const { return contents.signedInt >> POLY_TAGSHIFT; }
POLYUNSIGNED UnTaggedUnsigned(void) const { return contents.unsignedInt >> POLY_TAGSHIFT; }
POLYOBJPTR AsObjPtr(void) const { return contents.objectPtr; }
PolyWord *AsStackAddr(void) const { return contents.stackAddr; }
POLYCODEPTR AsCodePtr(void) const { return contents.codePtr; }
void *AsAddress(void)const { return AsCodePtr(); }
// There are a few cases where we need to store and extract untagged values
static PolyWord FromUnsigned(POLYUNSIGNED u) { return PolyWord(u); }
static PolyWord FromSigned(POLYSIGNED s) { return PolyWord(s); }
POLYUNSIGNED AsUnsigned(void) const { return contents.unsignedInt; }
protected:
PolyWord(POLYSIGNED s) { contents.signedInt = s; }
PolyWord(POLYUNSIGNED u) { contents.unsignedInt = u; }
public:
bool operator == (PolyWord b) const { return contents.unsignedInt == b.contents.unsignedInt; }
bool operator != (PolyWord b) const { return contents.unsignedInt != b.contents.unsignedInt; }
protected:
PolyWord(PolyWord *sp) { contents.stackAddr = sp; }
PolyWord(POLYCODEPTR p) { contents.codePtr = p; }
union {
POLYSIGNED signedInt; // A tagged integer - lowest bit set
POLYUNSIGNED unsignedInt; // A tagged integer - lowest bit set
POLYOBJPTR objectPtr; // Object pointer - two lowest bits clear.
POLYCODEPTR codePtr; // Address within code - lowest bits contain 10.
PolyWord *stackAddr; // Address within current stack - two lowest bits clear.
} contents;
};
//typedef PolyWord POLYWORD;
inline bool OBJ_IS_AN_INTEGER(const PolyWord a) { return a.IsTagged(); }
inline bool OBJ_IS_CODEPTR(const PolyWord a) { return a.IsCodePtr(); }
inline bool OBJ_IS_DATAPTR(const PolyWord a) { return a.IsDataPtr(); }
// The maximum tagged signed number is one less than 0x80 shifted into the top byte then shifted down
// by the tag shift.
#define MAXTAGGED (((POLYSIGNED)0x80 << (POLYSIGNED)(8*(sizeof(PolyWord)-1) -POLY_TAGSHIFT)) -1)
inline PolyWord TAGGED(POLYSIGNED a) { return PolyWord::TaggedInt(a); }
inline POLYSIGNED UNTAGGED(PolyWord a) { return a.UnTagged(); }
inline POLYUNSIGNED UNTAGGED_UNSIGNED(PolyWord a) { return a.UnTaggedUnsigned(); }
#define IS_INT(x) ((x).IsTagged())
/************************************************************************
*
* Low level definitions.
*
************************************************************************/
/* length word flags */
/*
The following encodings are used:
(1) OBJ_PRIVATE_GC_BIT = 0
A normal length word i.e. 7 more flags + 24 bit length.
(2) OBJ_PRIVATE_GC_BIT = 1, OBJ_PRIVATE_MUTABLE_BIT = 0
A "normal" tombstone. Remaining 30 bits are (word-aligned) pointer >> 2.
(3) OBJ_PRIVATE_GC_BIT = 1, OBJ_PRIVATE_MUTABLE_BIT = 1
A "depth" tombstone; used by share program. Remaining 30 bits are
an unsigned integer representing the (approximate) depth of the object
in the data-structure.
SPF 24/1/95
*/
#define OBJ_PRIVATE_FLAGS_SHIFT (8 * (sizeof(PolyWord) - 1))
#define _TOP_BYTE(x) ((POLYUNSIGNED)(x) << OBJ_PRIVATE_FLAGS_SHIFT)
// Bottom two bits define the content format.
// Zero bits mean ordinary word object containing addresses or tagged integers.
#define F_BYTE_OBJ 0x01 /* byte object (contains no pointers) */
#define F_CODE_OBJ 0x02 /* code object (mixed bytes and words) */
#define F_STACK_OBJ 0x03 /* stack object - may contain internal pointers */
#define F_NO_OVERWRITE 0x08 /* don't overwrite when loading - mutables only. */
#define F_NEGATIVE_BIT 0x10 /* sign bit for arbitrary precision ints */
#define F_WEAK_BIT 0x20 /* object contains weak references to option values. */
#define F_MUTABLE_BIT 0x40 /* object is mutable */
#define F_PRIVATE_GC_BIT 0x80 /* object is (pointer or depth) tombstone */
#define F_PRIVATE_FLAGS_MASK 0xFF
#define _OBJ_BYTE_OBJ _TOP_BYTE(0x01) /* byte object (contains no pointers) */
#define _OBJ_CODE_OBJ _TOP_BYTE(0x02) /* code object (mixed bytes and words) */
#define _OBJ_STACK_OBJ _TOP_BYTE(0x03) /* stack object - may contain internal pointers */
#define _OBJ_NO_OVERWRITE _TOP_BYTE(0x08) /* don't overwrite when loading - mutables only. */
#define _OBJ_NEGATIVE_BIT _TOP_BYTE(0x10) /* sign bit for arbitrary precision ints */
#define _OBJ_WEAK_BIT _TOP_BYTE(0x20)
#define _OBJ_MUTABLE_BIT _TOP_BYTE(0x40) /* object is mutable */
#define _OBJ_PRIVATE_GC_BIT _TOP_BYTE(0x80) /* object is (pointer or depth) tombstone */
#define _OBJ_PRIVATE_FLAGS_MASK _TOP_BYTE(0xFF)
#define _OBJ_PRIVATE_LENGTH_MASK ((-1) ^ _OBJ_PRIVATE_FLAGS_MASK)
#define MAX_OBJECT_SIZE _OBJ_PRIVATE_LENGTH_MASK
#define _OBJ_PRIVATE_DEPTH_MASK (_OBJ_PRIVATE_GC_BIT|_OBJ_MUTABLE_BIT)
/* case 1 - proper length words */
inline bool OBJ_IS_LENGTH(POLYUNSIGNED L) { return ((L & _OBJ_PRIVATE_GC_BIT) == 0); }
/* these should only be applied to proper length words */
/* discards GC flag, mutable bit and weak bit. */
inline byte GetTypeBits(POLYUNSIGNED L) { return (byte)(L >> OBJ_PRIVATE_FLAGS_SHIFT) & 0x03; }
inline POLYUNSIGNED OBJ_OBJECT_LENGTH(POLYUNSIGNED L) { return L & _OBJ_PRIVATE_LENGTH_MASK; }
inline bool OBJ_IS_BYTE_OBJECT(POLYUNSIGNED L) { return (GetTypeBits(L) == F_BYTE_OBJ); }
inline bool OBJ_IS_CODE_OBJECT(POLYUNSIGNED L) { return (GetTypeBits(L) == F_CODE_OBJ); }
inline bool OBJ_IS_STACK_OBJECT(POLYUNSIGNED L) { return (GetTypeBits(L) == F_STACK_OBJ); }
inline bool OBJ_IS_NO_OVERWRITE(POLYUNSIGNED L) { return ((L & _OBJ_NO_OVERWRITE) != 0); }
inline bool OBJ_IS_NEGATIVE(POLYUNSIGNED L) { return ((L & _OBJ_NEGATIVE_BIT) != 0); }
inline bool OBJ_IS_MUTABLE_OBJECT(POLYUNSIGNED L) { return ((L & _OBJ_MUTABLE_BIT) != 0); }
inline bool OBJ_IS_WEAKREF_OBJECT(POLYUNSIGNED L) { return ((L & _OBJ_WEAK_BIT) != 0); }
/* Standard macro for finding the start of a code segment from
a code-pointer. First we normalise it to get a properly aligned
word pointer. Then we increment this word pointer until we
get the zero word which is the end-of-code marker. The next
word after this is the byte offset of the start of the segment,
so we convert back to a byte pointer to do the subtraction, then
return the result as a word pointer. SPF 24/1/95
Note that this code must work even if "cp" is not aligned as
a code pointer, since the initial program counter used for
profiling may have a random alignment. SPF 26/1/96
*/
inline PolyObject *ObjCodePtrToPtr(byte *cp)
{
while ((POLYUNSIGNED)cp & (sizeof(POLYUNSIGNED)-1)) cp++; // Make it word aligned
POLYUNSIGNED *wp = (POLYUNSIGNED*)cp;
while (*wp != 0) wp++;
wp++;
POLYUNSIGNED byte_offset = *wp;
return (PolyObject *)((byte *)wp - byte_offset);
}
/* We have to very careful here, because the RTS code segments
are malformed - they don't contain the usual count of the
number of constants. This means we can't just use a combination
of the OBJ_CODEPTR_TO_PTR and OBJ_PTR_TO_CONSTS_PTR macros.
SPF 26/7/96
*/
inline void OBJ_CODEPTR_TO_CONSTS_PTR(PolyWord cp, PolyWord * &xp)
{
POLYUNSIGNED *wp = (POLYUNSIGNED *)(cp.AsUnsigned() & ~(sizeof(PolyWord)-1));
while (*wp != 0) wp++;
xp = (PolyWord*)wp;
}
/* Don't need to worry about whether shift is signed,
because OBJ_PRIVATE_USER_FLAGS_MASK removes the sign bit.
We don't want the GC bit (which should be 0) anyway.
*/
#define OBJ_PRIVATE_USER_FLAGS_MASK _TOP_BYTE(0x7F)
#define OBJ_IS_WORD_OBJECT(L) (GetTypeBits(L) == 0)
/* case 2 - forwarding pointer */
inline bool OBJ_IS_POINTER(POLYUNSIGNED L) { return (L & _OBJ_PRIVATE_DEPTH_MASK) == _OBJ_PRIVATE_GC_BIT; }
inline PolyObject *OBJ_GET_POINTER(POLYUNSIGNED L) { return (PolyObject*)(( L & ~_OBJ_PRIVATE_DEPTH_MASK) <<2); }
inline POLYUNSIGNED OBJ_SET_POINTER(PolyObject *pt) { return ((POLYUNSIGNED)pt >> 2) | _OBJ_PRIVATE_GC_BIT; }
/* case 3 - depth */
inline bool OBJ_IS_DEPTH(POLYUNSIGNED L) { return (L & _OBJ_PRIVATE_DEPTH_MASK) == _OBJ_PRIVATE_DEPTH_MASK; }
inline POLYUNSIGNED OBJ_GET_DEPTH(POLYUNSIGNED L) { return L & ~_OBJ_PRIVATE_DEPTH_MASK; }
inline POLYUNSIGNED OBJ_SET_DEPTH(POLYUNSIGNED n) { return n | _OBJ_PRIVATE_DEPTH_MASK; }
// An object i.e. a piece of allocated memory in the heap. In the simplest case this is a
// tuple, a list cons cell, a string or a ref. Every object has a length word in the word before
// where its address points. The top byte of this contains flags.
class PolyObject {
public:
byte *AsBytePtr(void)const { return (byte*)this; }
PolyWord *AsWordPtr(void)const { return (PolyWord*)this; }
POLYUNSIGNED LengthWord(void)const { return ((PolyWord*)this)[-1].AsUnsigned(); }
POLYUNSIGNED Length(void)const { return OBJ_OBJECT_LENGTH(LengthWord()); }
// Get and set a word
PolyWord Get(POLYUNSIGNED i) const { return ((PolyWord*)this)[i]; }
void Set(POLYUNSIGNED i, PolyWord v) { ((PolyWord*)this)[i] = v; }
PolyWord *Offset(POLYUNSIGNED i) const { return ((PolyWord*)this)+i; }
// Create a length word from a length and the flags in the top byte.
void SetLengthWord(POLYUNSIGNED l, byte f)
{ ((POLYUNSIGNED*)this)[-1] = l | ((POLYUNSIGNED)f << OBJ_PRIVATE_FLAGS_SHIFT); }
void SetLengthWord(POLYUNSIGNED l) { ((PolyWord*)this)[-1] = PolyWord::FromUnsigned(l); }
bool IsByteObject(void) const { return OBJ_IS_BYTE_OBJECT(LengthWord()); }
bool IsCodeObject(void) const { return OBJ_IS_CODE_OBJECT(LengthWord()); }
bool IsStackObject(void) const { return OBJ_IS_STACK_OBJECT(LengthWord()); }
bool IsWordObject(void) const { return OBJ_IS_WORD_OBJECT(LengthWord()); }
bool IsMutable(void) const { return OBJ_IS_MUTABLE_OBJECT(LengthWord()); }
bool IsWeakRefObject(void) const { return OBJ_IS_WEAKREF_OBJECT(LengthWord()); }
bool IsNoOverwriteObject(void) const { return OBJ_IS_NO_OVERWRITE(LengthWord()); }
bool ContainsForwardingPtr(void) const { return OBJ_IS_POINTER(LengthWord()); }
PolyObject *GetForwardingPtr(void) const { return OBJ_GET_POINTER(LengthWord()); }
void SetForwardingPtr(PolyObject *newp) { ((PolyWord*)this)[-1] = PolyWord::FromUnsigned(OBJ_SET_POINTER(newp)); }
bool ContainsNormalLengthWord(void) const { return OBJ_IS_LENGTH(LengthWord()); }
// Find the start of the constant section for a piece of code.
// The first of these is really only needed because we may have objects whose length
// words have been overwritten.
void GetConstSegmentForCode(POLYUNSIGNED obj_length, PolyWord * &cp, POLYUNSIGNED &count) const
{
PolyWord *last_word = Offset(obj_length - 1); // Last word in the code
count = last_word->AsUnsigned(); // This is the number of consts
cp = last_word - count;
}
void GetConstSegmentForCode(PolyWord * &cp, POLYUNSIGNED &count) const
{
GetConstSegmentForCode(Length(), cp, count);
}
PolyWord *ConstPtrForCode(void) const
{
PolyWord *cp; POLYUNSIGNED count;
GetConstSegmentForCode(cp, count);
return cp;
}
};
/* There was a problem with version 2.95 on Sparc/Solaris at least. The PolyObject
class has no members so classes derived from it e.g. ML_Cons_Cell should begin at
the beginning of the object. Later versions of GCC get this right. */
#if defined(__GNUC__) && (__GNUC__ <= 2)
#error Poly/ML requires GCC version 3 or newer
#endif
inline POLYUNSIGNED GetLengthWord(PolyWord p) { return p.AsObjPtr()->LengthWord(); }
// Get the length of an object.
inline POLYUNSIGNED OBJECT_LENGTH(PolyWord p) { return OBJ_OBJECT_LENGTH(GetLengthWord(p)); }
#define OBJ_PTR_TO_CONSTS_PTR(pt, xp) xp = pt->ConstPtrForCode()
// A list cell. This can be passed to or returned from certain RTS functions.
class ML_Cons_Cell: public PolyObject {
public:
PolyWord h;
PolyWord t;
#define ListNull (TAGGED(0))
static bool IsNull(PolyWord p) { return p == ListNull; }
};
/* An exception packet. This contains an identifier (either a tagged integer for RTS
exceptions or the address of a mutable for those created within ML), a string
name for printing and an exception argument value. */
class PolyException: public PolyObject {
public:
PolyWord ex_id; /* Exc identifier */
PolyWord ex_name;/* Exc name */
PolyWord arg; /* Exc arguments */
};
typedef PolyException poly_exn;
/*********************************************************************
*
* Stack object
*
*********************************************************************/
class StackObject: public PolyObject {
public:
/* space available */
POLYUNSIGNED p_space;
POLYCODEPTR p_pc;
/* stack pointer */
PolyWord *p_sp;
/* handler pointer */
PolyWord *p_hr;
/* number of checked registers */
POLYUNSIGNED p_nreg;
PolyWord p_reg[1];
};
/*
* Stream tokens are pointers to UNTAGGED C integers
* (stored in byte objects)
*/
class StreamToken: public PolyObject
{
public:
POLYUNSIGNED streamNo;
};
/***********************************************************************
*
* Used by Mmapping.
*
***********************************************************************/
//#define M_WRITABLE 0x1
//#define M_PROFILED 0x2
//#define M_DISCGARB1 0x40 /* Set on the source database when running discgarb. */
//#define M_DISCGARB2 0x80 /* Set on the destination database when running discgarb. */
//#define WRITABLE(f) ((f) & M_WRITABLE)
//#define PROFILED(f) ((f) & M_PROFILED)
//#define DISCGARB1(f) ((f) & M_DISCGARB1)
//#define DISCGARB2(f) ((f) & M_DISCGARB2)
typedef enum { NoMoreChildren,CannotCreate,CreatedOk } CStatus ;
// We allocate memory in units of at least this value so we have an integral
// number of words in the bitmaps.
#define BITSPERWORD (sizeof(PolyWord)*8)
/* How many units of size n do we need to hold an object of size m? */
#define ROUNDUP_UNITS(m,n) (((m) + (n) - 1) / (n))
#define ROUNDDOWN_UNITS(m,n) ((m) / (n))
/* Rounds m UP or DOWN to nearest multiple of n */
#define ROUNDUP(m,n) (ROUNDUP_UNITS(m,n) * (n))
#define ROUNDDOWN(m,n) (ROUNDDOWN_UNITS(m,n) * (n))
#define MBytes(n) ((n)*1024*1024)
/**********************************************************************
*
* Low level definitions.
*
**********************************************************************/
/* Macro to round a number of bytes up to a number of words. */
#define WORDS(s) ((s+sizeof(PolyWord)-1)/sizeof(PolyWord))
/**********************************************************************
*
* Representation of option type.
*
**********************************************************************/
#define NONE_VALUE (TAGGED(0))
/* SOME x is represented by a single word cell containing x. */
#if (defined(WIN32))
/* Windows doesn't include 0x in %p format. */
#define ZERO_X "0x"
#else
#define ZERO_X ""
#endif
#endif
|