1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
|
/*
Title: memmgr.cpp Memory segment manager
Copyright (c) 2006-7 David C. J. Matthews
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifdef WIN32
#include "winconfig.h"
#else
#include "config.h"
#endif
#ifdef HAVE_ASSERT_H
#include <assert.h>
#define ASSERT(x) assert(x)
#else
#define ASSERT(x)
#endif
#include "globals.h"
#include "memmgr.h"
#include "osmem.h"
#include "scanaddrs.h"
#include "bitmap.h"
MemSpace::MemSpace()
{
spaceType = ST_PERMANENT;
isMutable = false;
bottom = 0;
top = 0;
isOwnSpace = false;
}
MemSpace::~MemSpace()
{
if (isOwnSpace && bottom != 0)
osMemoryManager->Free(bottom, (char*)top - (char*)bottom);
}
LocalMemSpace::LocalMemSpace()
{
spaceType = ST_LOCAL;
gen_top = 0;
gen_bottom = 0;
highest = 0;
pointer = 0;
for (unsigned i = 0; i < NSTARTS; i++)
start[i] = 0;
start_index = 0;
i_marked = m_marked = copied = updated = 0;
}
bool LocalMemSpace::InitSpace(POLYUNSIGNED size, bool mut)
{
isMutable = mut;
// Allocate the heap itself.
size_t iSpace = size*sizeof(PolyWord);
bottom =
(PolyWord*)osMemoryManager->Allocate(iSpace, PERMISSION_READ|PERMISSION_WRITE|PERMISSION_EXEC);
if (bottom == 0)
return false;
isOwnSpace = true; // Deallocate when we're finished.
// The size may have been rounded up to a block boundary.
size = iSpace/sizeof(PolyWord);
top = bottom + size;
gen_top = top;
pointer = top;
gen_bottom = top;
// Bitmap for the space.
return bitmap.Create(size);
}
MemMgr::MemMgr()
{
npSpaces = nlSpaces = 0;
minLocal = maxLocal = 0;
pSpaces = 0;
lSpaces = 0;
eSpaces = 0;
nextIndex = 0;
}
MemMgr::~MemMgr()
{
unsigned i;
for (i = 0; i < npSpaces; i++)
delete(pSpaces[i]);
for (i = 0; i < nlSpaces; i++)
delete(lSpaces[i]);
for (i = 0; i < neSpaces; i++)
delete(eSpaces[i]);
}
// Create and initialise a new local space and add it to the table.
LocalMemSpace* MemMgr::NewLocalSpace(POLYUNSIGNED size, bool mut)
{
LocalMemSpace *space = new LocalMemSpace;
if (space->InitSpace(size, mut) && AddLocalSpace(space))
return space;
// If something went wrong.
delete space;
return 0;
}
// Add a local memory space to the table.
bool MemMgr::AddLocalSpace(LocalMemSpace *space)
{
// Compute the maximum and minimum local addresses. The idea
// is to speed up LocalSpaceForAddress which is likely to be a hot-spot
// in the GC.
if (nlSpaces == 0)
{
// First space
minLocal = space->bottom;
maxLocal = space->top;
}
else
{
if (space->bottom < minLocal)
minLocal = space->bottom;
if (space->top > maxLocal)
maxLocal = space->top;
}
// Add to the table.
LocalMemSpace **table = (LocalMemSpace **)realloc(lSpaces, (nlSpaces+1) * sizeof(LocalMemSpace *));
if (table == 0) return false;
lSpaces = table;
lSpaces[nlSpaces++] = space;
return true;
}
// Create an entry for a permanent space.
PermanentMemSpace* MemMgr::NewPermanentSpace(PolyWord *base, POLYUNSIGNED words,
bool mut, bool noOv, unsigned index, unsigned hierarchy /*= 0*/)
{
PermanentMemSpace *space = new PermanentMemSpace;
space->bottom = base;
space->topPointer = space->top = space->bottom + words;
space->spaceType = ST_PERMANENT;
space->isMutable = mut;
space->noOverwrite = noOv;
space->index = index;
space->hierarchy = hierarchy;
if (index >= nextIndex) nextIndex = index+1;
// Extend the permanent memory table and add this space to it.
PermanentMemSpace **table =
(PermanentMemSpace **)realloc(pSpaces, (npSpaces+1) * sizeof(PermanentMemSpace *));
if (table == 0)
{
delete space;
return 0;
}
pSpaces = table;
pSpaces[npSpaces++] = space;
return space;
}
// Delete a local space and remove it from the table.
bool MemMgr::DeleteLocalSpace(LocalMemSpace *sp)
{
for (unsigned i = 0; i < nlSpaces; i++)
{
if (lSpaces[i] == sp)
{
delete sp;
nlSpaces--;
while (i < nlSpaces)
{
lSpaces[i] = lSpaces[i+1];
i++;
}
return true;
}
}
return false;
}
// Create an entry for the IO space.
MemSpace* MemMgr::InitIOSpace(PolyWord *base, POLYUNSIGNED words)
{
ioSpace.bottom = base;
ioSpace.top = ioSpace.bottom + words;
ioSpace.spaceType = ST_IO;
ioSpace.isMutable = false;
return &ioSpace;
}
// Create and initialise a new export space and add it to the table.
PermanentMemSpace* MemMgr::NewExportSpace(POLYUNSIGNED size, bool mut, bool noOv)
{
PermanentMemSpace *space = new PermanentMemSpace;
space->spaceType = ST_EXPORT;
space->isMutable = mut;
space->noOverwrite = noOv;
space->index = nextIndex++;
// Allocate the memory itself.
size_t iSpace = size*sizeof(PolyWord);
space->bottom =
(PolyWord*)osMemoryManager->Allocate(iSpace, PERMISSION_READ|PERMISSION_WRITE|PERMISSION_EXEC);
if (space->bottom == 0)
{
delete space;
return 0;
}
space->isOwnSpace = true;
// The size may have been rounded up to a block boundary.
size = iSpace/sizeof(PolyWord);
space->top = space->bottom + size;
space->topPointer = space->bottom;
// Add to the table.
PermanentMemSpace **table = (PermanentMemSpace **)realloc(eSpaces, (neSpaces+1) * sizeof(PermanentMemSpace *));
if (table == 0)
{
delete space;
return 0;
}
eSpaces = table;
eSpaces[neSpaces++] = space;
return space;
}
void MemMgr::DeleteExportSpaces(void)
{
while (neSpaces > 0)
delete(eSpaces[--neSpaces]);
}
// If we have saved the state rather than exported a function we turn the exported
// spaces into permanent ones, removing existing permanent spaces at the same or
// lower level.
bool MemMgr::PromoteExportSpaces(unsigned hierarchy)
{
// Create a new table big enough to hold all the permanent and export spaces
PermanentMemSpace **pTable =
(PermanentMemSpace **)calloc(npSpaces+neSpaces, sizeof(PermanentMemSpace *));
if (pTable == 0) return false;
unsigned newSpaces = 0;
// Save permanent spaces at a lower hierarchy. Others are converted into
// local spaces. Most or all items will have been copied from these spaces
// into an export space but there could be items reachable only from the stack.
for (unsigned i = 0; i < npSpaces; i++)
{
PermanentMemSpace *pSpace = pSpaces[i];
if (pSpace->hierarchy < hierarchy)
pTable[newSpaces++] = pSpace;
else
{
// Turn this into a local space.
LocalMemSpace *space = new LocalMemSpace;
space->top = space->gen_top = space->gen_bottom = pSpace->top;
space->bottom = space->pointer = pSpace->bottom;
space->isMutable = pSpace->isMutable;
space->isOwnSpace = true;
if (! space->bitmap.Create(space->top-space->bottom) || ! AddLocalSpace(space))
return false;
}
}
// Save newly exported spaces.
for (unsigned j = 0; j < neSpaces; j++)
{
PermanentMemSpace *space = eSpaces[j];
space->hierarchy = hierarchy; // Set the hierarchy of the new spaces.
space->spaceType = ST_PERMANENT;
// Put a dummy object to fill up the unused space.
if (space->topPointer != space->top)
FillUnusedSpace(space->topPointer, space->top - space->topPointer);
// Put in a dummy object to fill the rest of the space.
pTable[newSpaces++] = space;
}
neSpaces = 0;
npSpaces = newSpaces;
free(pSpaces);
pSpaces = pTable;
return true;
}
// Before we import a hierarchical saved state we need to turn any previously imported
// spaces into local spaces.
bool MemMgr::DemoteImportSpaces()
{
// Create a new permanent space table.
PermanentMemSpace **table =
(PermanentMemSpace **)calloc(npSpaces, sizeof(PermanentMemSpace *));
if (table == NULL) return false;
unsigned newSpaces = 0;
for (unsigned i = 0; i < npSpaces; i++)
{
PermanentMemSpace *pSpace = pSpaces[i];
if (pSpace->hierarchy == 0) // Leave truly permanent spaces
table[newSpaces++] = pSpace;
else
{
// Turn this into a local space.
LocalMemSpace *space = new LocalMemSpace;
space->top = space->gen_top = space->gen_bottom = pSpace->top;
space->bottom = space->pointer = pSpace->bottom;
space->isMutable = pSpace->isMutable;
space->isOwnSpace = true;
if (! space->bitmap.Create(space->top-space->bottom) || ! AddLocalSpace(space))
return false;
}
}
npSpaces = newSpaces;
free(pSpaces);
pSpaces = table;
return true;
}
// Return the space the address is in or NULL if none.
// We have to check here against the bottom of the area rather
// than the allocation because, when called from CopyObject,
// the "pointer" field points to the top of the area.
// N.B. By checking for pt < space->top we are assuming that we don't have
// zero length objects. A zero length object at the top of the space would
// have its length word as the last word in the space and the address of the
// object would be == space->top.
MemSpace *MemMgr::SpaceForAddress(const void *pt)
{
unsigned i;
for (i = 0; i < nlSpaces; i++)
{
MemSpace *space = lSpaces[i];
if (pt >= space->bottom && pt < space->top)
return space;
}
for (i = 0; i < npSpaces; i++)
{
MemSpace *space = pSpaces[i];
if (pt >= space->bottom && pt < space->top)
return space;
}
for (i = 0; i < neSpaces; i++)
{
MemSpace *space = eSpaces[i];
if (pt >= space->bottom && pt < space->top)
return space;
}
if (pt >= ioSpace.bottom && pt < ioSpace.top)
return &ioSpace;
return 0; // Not in any space
}
bool MemMgr::IsPermanentMemoryPointer(const void *pt)
{
for (unsigned i = 0; i < npSpaces; i++)
{
MemSpace *space = pSpaces[i];
if (pt >= space->bottom && pt < space->top)
return true;
}
return false;
}
// Return the space for a given index
PermanentMemSpace *MemMgr::SpaceForIndex(unsigned index)
{
for (unsigned i = 0; i < npSpaces; i++)
{
PermanentMemSpace *space = pSpaces[i];
if (space->index == index)
return space;
}
return NULL;
}
// In several places we assume that segments are filled with valid
// objects. This fills unused memory with one or more "byte" objects.
void MemMgr::FillUnusedSpace(PolyWord *base, POLYUNSIGNED words)
{
PolyWord *pDummy = base+1;
while (words > 0)
{
POLYUNSIGNED oSize = words;
// If the space is larger than the maximum object size
// we will need several objects.
if (words > MAX_OBJECT_SIZE) oSize = MAX_OBJECT_SIZE;
else oSize = words-1;
// Make this a byte object so it's always skipped.
((PolyObject*)pDummy)->SetLengthWord(oSize, F_BYTE_OBJ);
words -= oSize+1;
pDummy += oSize+1;
}
}
// Allocate an area of the heap of at least minWords and at most maxWords.
// This is used both when allocating single objects (when minWords and maxWords
// are the same) and when allocating heap segments. If there is insufficient
// space to satisfy the minimum it will return 0.
PolyWord *MemMgr::AllocHeapSpace(POLYUNSIGNED minWords, POLYUNSIGNED &maxWords)
{
allocLock.Lock();
for (unsigned j = 0; j < gMem.nlSpaces; j++)
{
LocalMemSpace *space = gMem.lSpaces[j];
if (space->isMutable)
{
POLYUNSIGNED available = space->pointer - space->bottom;
if (available > 0 && available >= minWords)
{
// Reduce the maximum value if we had less than that.
if (available < maxWords)
maxWords = available;
space->pointer -= maxWords; // Allocate it.
PolyWord *result = space->pointer; // Return the address.
allocLock.Unlock();
return result;
}
}
}
allocLock.Unlock();
return 0; // There isn't space even for the minimum.
}
MemMgr gMem; // The one and only memory manager object
|